Pathobiochemistry of the extrapyramidal system: a “short note” review

  • P. Riederer
  • E. Sofic
  • W. D. Rausch
  • G. Hebenstreit
  • J. Bruinvels
Part of the Key Topics in Brain Research book series (KEYTOPICS)


Evidence is presented to show that in Parkinson’s disease (PD) there exists a topographical degeneration in the nigrostriatal dopamine system. This finding may account for response variabilities and side effects occuring after antiparkinsonian therapy. Postsynaptic receptors do not show topical differences in both Bmax- and KD-values in treated PD. Postsynaptic receptors respond inadequately in about 30% of PD. Denervation supersensitivity may only occur in striatal subareas depleted of dopamine to an extent of > 90%. Compensatory mechanisms include presynaptic overactivity and enhanced activity of otherwise reduced tyrosine hydroxylase. Iron (III), total iron and ferritin are significantly increased in the substantia nigra indicating disturbances at the level of redox-equilibrium, respiratory chain activity and energy metabolism. These findings together with accumulation of exogenous or endogenous toxins may be of pathogenic importance in PD. Whether such pathophysiological considerations involve peripheral dopamine or catecholaminergic systems (e.g. the sympatho-adrenal medullary function) is uncertain and requires further experimental studies.


Tyrosine Hydroxylase Substantia Nigra Rostral Part Postsynaptic Receptor Respiratory Chain Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbeau A, Murphy GF, Sourkes TL (1961) Excretion of dopamine in diseases of basal ganglia. Science 133: 1706–1707PubMedCrossRefGoogle Scholar
  2. Barbeau A (1975) Pathophysiology of the oscillations in performance after long-term therapy with 1-DOPA. In: Birkmayer W, Hornykiewicz O (eds) Advances in parkinsonism. Editiones Roche, Basel, pp 424–434Google Scholar
  3. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  4. Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit, 2. Aufl. Wien New York, SpringerGoogle Scholar
  5. Birkmayer W, Birkmayer JGD (1986) Iron, A new aid in the treatment of Parkinson patients. J Neural Transm 67: 287–292Google Scholar
  6. Birkmayer W, Riederer P, Emich C (1988) Treatment of Parkinson’s disease with the abeorphine CI 201–678, a rigid analogue of dopamine Biogenic Amines 5: 269–274Google Scholar
  7. Carmichael SW, Wilson RJ, Brimijoin WS, Melton LJ, Okazaki H, Yaksh TL, Ahlskog JE, Stoddard SL, Tyce GM (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism. N Engl J Med 318: 254PubMedGoogle Scholar
  8. Danielczyk W (1973) Die Behandlung von akinetischen Krisen. Med Welt 24: 1278–1282PubMedGoogle Scholar
  9. Dexter DT, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet ii: 639–640Google Scholar
  10. Ehringer H, Hornykiewicz 0 (1960) Verteilung von Noradrenalin and Dopamin im Gehirn des Menschen and ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38: 1236–1239Google Scholar
  11. Goldstein M, Lieberman A, Meller EA (1985) A possible molecular mechanism for the antiparkinsonian action of bromocriptine in combination with levodopa. TIPS: 436–437Google Scholar
  12. Guttman M, Seeman P, Reynolds GP, Riederer P, Jellinger K, Tourtellotte WW (1986) Dopamine D 2 receptor density remains constant in treated Parkinson’s disease. Ann Neurol 19: 487–492PubMedCrossRefGoogle Scholar
  13. Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven Press, New York, pp 19–34Google Scholar
  14. Ito K, Sato A, Suzuki H (1986) Increases in adrenal catecholamine secretion and adrenal sympathetic nerve unitary activities with aging in rats. Neurosci Lett 69: 263–268PubMedCrossRefGoogle Scholar
  15. Jellinger K (1986) Overview of morphological changes in Parkinson’s disease. In: Yahr MD, Bergmann KJ (eds) Advances in neurology, vol 45. Raven press, New York, pp 19–34Google Scholar
  16. Lloyd KG, Davidson L, Hornykiewicz 0 (1975) The neurochemistry of Parkinson’s disease: effect of 1-DOPA therapy. J Pharmacol Exp Ther 195: 453–464Google Scholar
  17. McGeer PL, McGeer EG (1976) Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 26: 65–76PubMedGoogle Scholar
  18. Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Transm 72: 77–81PubMedCrossRefGoogle Scholar
  19. Quik H, Sourkes TL (1977) Central dopaminergic and serotoninergic systems in the regulation of adrenal tyrosine hydroxylase. J Neurochem 28: 137–147PubMedCrossRefGoogle Scholar
  20. Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50: 202–208PubMedCrossRefGoogle Scholar
  21. Riederer P, Sofic E, Konradi C (1986) Neurobiochemische Aspekte zur Progression der Parkinson-Krankheit: Postmortem Befunde und MPTPModell. In: Fischer PA (Hrsg) Spätsyndrome der Parkinson-Krankheit Editiones Roche, Basel, pp 37–48Google Scholar
  22. Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W (1988) Biochemical fundamentals of Parkinson’s disease. Mount Sinai J Med 55 l: 21–28Google Scholar
  23. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1988) Transition metals, ferritin, glutathione and ascorbic acid in parkinsonian brains. J Neurochem (in press)Google Scholar
  24. Seeman P, Bzowej NH, Guan HC, Bergeron C, Reynolds GP, Bird ED, Riederer P, Jellinger K, Tourtellotte WW (1987) Human brain D 1 and D 2 dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s and Huntington’s diseases. Neuropsychopharmacology 11: 5–15Google Scholar
  25. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G (1988) Increased iron (III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74/3 (in press)Google Scholar
  26. Sullivan JM, Nakano KK, Tyler HR (1973) Plasma renin activity during levodopa therapy. Significance of long and short-term treatment. J Am Med Ass 224: 1726–1727Google Scholar
  27. Wesemann W (1984) Aspekte zum Wirkmechanismus von Amantadine. In: Danielczyk W, Wesemann W (eds) Amantadin workshop. Socio-Medico Verlag, Gräfelfing (Edition Materia Medica, pp 15–23 )Google Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • P. Riederer
    • 1
  • E. Sofic
    • 1
  • W. D. Rausch
    • 2
  • G. Hebenstreit
    • 3
  • J. Bruinvels
    • 4
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgFederal Republic of Germany
  2. 2.Medical ChemistryVet.-Med. UniversityWienAustria
  3. 3.Geriatric HospitalMauer-ÖhlingAustria
  4. 4.Department of PharmacologyUniversity of RotterdamThe Netherlands

Personalised recommendations