Parkinson’s disease studied using PET

  • K. L. Leenders
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)


Positron emission tomography makes it possible to measure quantitatively certain aspects of regional brain tissue energy metabolism and dopaminergic neurotransmitter activity in vivo in man. It has been shown that this method can be applied in the study of pathophysiology of Parkinson’s disease and other conditions. Striatal influx of the radiolabelled tracer L-18F-fluoro-dopa is related to the clinical severity of the disease. A pre-clinical diagnosis of Parkinson’s disease should in principle be possible, although no PET studies with this particular aim have been undertaken yet.

Combination with a tracer for the dopamine D2 receptors may help in making the diagnosis. In Parkinson’s disease dopamine turnover is markedly decreased while the density of dopamine D2 receptors is essentially unchanged compared to age-matched controls. On the other hand in neurodegenerative conditions accompanied by parkinsonism both “pre-” and “post-synaptic” binding of tracers seem to be impaired.


Positron Emission Tomography Positron Emission Tomography Study Positron Emission Tomography Scanning Striatal Dopamine Nigrostriatal Dopaminergic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aquilonius SM, Bergström K, Eckernäs SA, Hartvig P, Leenders KL, Lundqvist H, Antoni G, Gee A, Rimland A, Uhlin J, Lângström B (1987) In vivo evaluation of striatal dopamine reuptake sites using 11C-nomifensine and positron emission tomography. Acta Neurol Scand 76: 283–287PubMedCrossRefGoogle Scholar
  2. Baron JC, Maziere B, Loc’h C, Sgouropoulos P, Bonnet AM, Agid Y (1985) Progressive supranuclear palsy: loss of striatal dopamine receptors demonstrated in vivo by positron tomography. Lancet ii: 1163–1164Google Scholar
  3. Bokobza B, Ruberg M, Scatton B, Javoy-Agid F, Agid Y (1984) (3 H)spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy. Eur J Pharmacol 99: 167–175Google Scholar
  4. Boyes RE, Cumming P, Martin WRW, McGeer EG (1986) Determination of plasma [18F]-6-fluorodopa during positron emission tomography: elimination and metabolism in carbidopa trated subjects. Life Sci 39: 2243–2252PubMedCrossRefGoogle Scholar
  5. Eckernäs SA, Aquilonius SM, Hartvig P, Hägglund J, Jundgvist H, Nâgren K, Lângström B (1987) Positron emission tomography (PET) in the study of dopamine receptors in the primate brain: evaluation of a kinetic model using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 168–178PubMedCrossRefGoogle Scholar
  6. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G (1985) Substituted benzamides as ligands for visualisation of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867PubMedCrossRefGoogle Scholar
  7. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258–261PubMedCrossRefGoogle Scholar
  8. Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-[F-18]Fluoro-L-dopa in the primate. J Neurochem 48: 1077–1082PubMedCrossRefGoogle Scholar
  9. Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner Jr HN (1987) In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40: 987–995PubMedCrossRefGoogle Scholar
  10. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualised in the basal ganglia of living man. Nature: 305: 137–138PubMedCrossRefGoogle Scholar
  11. Hägglund J, Aquilonius SM, Eckernäs, SA, Hartvig P, Lundquist H, Gull-berg P, Lângström B (1987) Dopamine receptor properties in Parkinson’s disease and Huntington’s chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone. Acta Neurol Scand 75: 87–94PubMedCrossRefGoogle Scholar
  12. Leenders KL, Herold S, Palmer AJ, Turton D, Quinn N, Jones T, Frackowiak RSJ, Marsden CD (1985) Human cerebral dopamine system measured in vivo using PET. J Cereb Blood Flow Metabol 5 [Suppl]: S 517–518CrossRefGoogle Scholar
  13. Leenders KL, Frackowiak RJS, Quinn N, Marsden CD (1986 a) Brain energy metabolism and dopaminergic function in Huntington’s disease measured in vivo using positron emission tomography. Movement Disorders 1: 69–77Google Scholar
  14. Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986 b) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatr 49: 853–856Google Scholar
  15. Leenders KL, Poewe WH, Palmer AJ, Brenton DP, Frackowiak RSJ (1986 c) Inhibition of L-[18F]fluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol 20: 258–262 Google Scholar
  16. Leenders KL (1987) Parkinson’s disease. Clinical and experimental advances. J Libbey, London Paris, pp 21–32Google Scholar
  17. Leenders KL, Aquilonius SM, Bergstr?m K, Bjurling P, Crossman AR, Eckern?s SA, Gee AG, Hartvig P, Lundqvist H, L?ngstr?m B, Rimland A, Tedroff J (1988 a) Unilateral MPTP lesion in a Rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers. Brain Research 445: 61–67Google Scholar
  18. Leenders KL, Frackowiak RJS, Lees AJ (1988 b) Steele-Richardson-Olszewski syndrome: brain energy metabolism, blood flow and fluorodopa uptake measured by positron emission tomography. Brain 111: 615–630Google Scholar
  19. Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22: 457–468PubMedCrossRefGoogle Scholar
  20. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of Blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metabol 3: 1–7CrossRefGoogle Scholar
  21. Phelps ME, Mazziotta JC, Schelbert HR (eds) (1986) Positron emission tomography and autoradiography. Principles and applications for the brain and heart. Raven Press, New YorkGoogle Scholar
  22. Scatton B, Dubois A, Dubocovitch ML, Zahniser NR, Fage D (1984) Quantitative autoradiography of 3 H-nomifensine binding sites in rat brain. Life Sciences 36: 815–822CrossRefGoogle Scholar
  23. Slater P, Crossman AR (1984) Nomifensine. A pharmacological and clinical profile. The Royal Society of Medicine, London, pp 15–19Google Scholar
  24. Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 1264–1266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1989

Authors and Affiliations

  • K. L. Leenders
    • 1
  1. 1.MRC Cyclotron UnitHammersmith HospitalLondonUK

Personalised recommendations