N-Hydroxyamino acids should, at present, be treated as a new, separate, characteristic group of amino acids. This is necessitated by the particular biological action of these compounds and their derivatives. Although α-N-hydroxyamino acids were first discovered by Miller and Plöchl (1) as early as 1893, they have aroused particular interest mainly in the last twenty years.


Hydroxamic Acid Phosphonic Acid Amino Acid Ester Tetrahedron Letter Hydroxyamino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







diethyl azodicarboxylate


monoperphtalic acid


trifluoroacetic acid
























p-hydroxybenzyl and other acc. IUPAC rules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Miller, W., and J. Plöchl: Ueber Amidoxylsäuren. Ber. dtsch. chem. Ges. 26, 1545 (1893).Google Scholar
  2. 2.
    IUPAC-IUB Commission on Biochemical Nomenclature. Symbols for Amino Acid Derivatives and Peptides. Recommendations 1971. J. Biol. Chem. 247, 977 (1972).Google Scholar
  3. 3.
    Chimiak, A.: N-Hydroxyamino Acids and Their Derivatives. Wiad. Chem. 19, 803 (1965); Chem. Abstr. 64, 4881 (1966).Google Scholar
  4. 4.
    Moller, B.L.: The Involvement of N-Hydroxyamino Acids as Intermediates in Metabolic Transformations. In: Cyanide Biol. Academic: London U.K., 1981, p. 197; Chem. Abstr. 96, 176229 c (1982).Google Scholar
  5. 5.
    Akiyama, M.: Syntheses and Reactions of Compounds Containing the N-Hydroxyamide Functionality. J. Synth. Org. Chem. Japan 40, 1189 (1982).Google Scholar
  6. 6.
    Fischer, B., W. Keller-Schierlein, H. Kneifel, W.A. König, W. Loeffler, A. Moller, R. Muntwyler, and H. Zähner: Stoffwechselprodukte von Mikroorganismen. 118. S-N-Hydroxy-L-arginin, ein Aminosäure-Antagonist aus Nannizzia grypsea. Arch. Mikrobiol. 91, 203 (1973).Google Scholar
  7. 7.
    Maehr, H., J.F. Blount, D.L. Pruess, L.Yarmchuk, and M. Kellett’ Antimetabolites Produced by Microorganisms. VIII. N5-Hydroxy-L-arginine, a New Naturally Occuring Amino Acid. J. Antibiotics 26, 284 (1973).Google Scholar
  8. 8.
    Maehr, H.: Antibiotics and Other Naturally Occurring Hydroxamic Acid and Hydroxamates. Pure Appl. Chem. 28, 603 (1971).Google Scholar
  9. 9.
    Neilands, J.B.: Microbial Iron Transport Compounds. In: Inorganic Biochemistry, 1, p. 167. Amsterdam: Elsevier Scientific Pub. Comp. 1978.Google Scholar
  10. 10.
    Neilands, J.B.: Hydroxamic Acids in Nature. Sophisticated Ligands Play a Role in Iron Metabolism and Possibly in Other Processes in Microorganisms. Science 156, 1443 (1967).PubMedGoogle Scholar
  11. 11.
    Neilands, J.B.: Microbial Iron Compounds. Annu. Rev. Biochem. 50, 715 (1981).PubMedGoogle Scholar
  12. 12.
    Neilands, J.B.: Iron Absorption and Transport in Microorganisms. Ann. Rev. Nutr. 1981, 27.Google Scholar
  13. 13.
    Neilands, J.B.: Methodology of Siderophores. Structure and Bonding (Berlin) 58, 1 (1984).Google Scholar
  14. 14.
    Bergeron, R.J.: Synthesis and Solution Structure of Microbial Siderophores. Chem. Rev. 84, 587 (1984).Google Scholar
  15. 15.
    Chimiak, A.: Siderophores - Carriers of Ferric Ion. Postgpy Biochemii 30, 435 (1984);Google Scholar
  16. Chimiak, A.: Siderophores - Carriers of Ferric Ion. Chem. Abstr. 104, 144041 c (1986).Google Scholar
  17. 16.
    Hider, R.C.: Siderophore Mediated Absorption of Iron. Structure and Bonding (Berlin) 58, 25 (1984).Google Scholar
  18. 17.
    Snow, C.A.: Mycobactins: Iron-chelating Growth Factors from Mycobacteria. Bacteriol. Rev. 34, 99 (1970).PubMedGoogle Scholar
  19. 18.
    Schmidt, U., J. Hausler, E. Ohler, and H. Poisel: Dehydroamino Acids, a-Hydroxy-a-amino Acids and a-Mercapto-a-amino Acids. Fortschr. Chem. organ. Naturstoffe 37, 251 (1979).Google Scholar
  20. 19.
    Birch, A.J., R.A. Massay-Westropp, and R.W. Rickards: Studies in Relation to Biosynthesis. Part VIII. The Structure of Mycelianamide. J. Chem. Soc. ( London ) 1956, 3717.Google Scholar
  21. 20.
    Oxford, A.E., and H. Raistrick: Studies in the Biochemistry of Microorganisms. 76. Mycelianamide, C22H28O5N2 a Metabolic Product of Penicillium griseofulvum Dierck X. Part 1. Preparation, Properties and Breakdown Products. Biochem. J. 42, 323 (1948).Google Scholar
  22. 21.
    Perlman, D., A.J. Vlietinck, H.W. Matthews, and F.F. Lo: Microbial Production of Vitamin B12 Antimetabolites. I. N5-Hydroxy-L-arginine from Bacillus cereus 439. J. Antibiotics 27, 826 (1974).Google Scholar
  23. 22.
    Mccullough, W.G., and R.S. Merkal: Iron - chelating Compound from Mycobacterium avium. J. Bacteriol. 128, 15 (1976).PubMedGoogle Scholar
  24. 23.
    Mccullough, W.G., and R.S. Merkal: Tripeptide Hydroxamate from Corynebacterium kutscheri. J. Bacteriol. 137, 243 (1979).PubMedGoogle Scholar
  25. 24.
    Fugmann, B., and W. Steglich: Unusual Components of the Toadstool Lyophyllum connatum (Agaricales). Angew. Chem., Int. Ed. Engl. 23, 72 (1984).Google Scholar
  26. 25.
    Stevens, R.L., and T.F. Emery: The Biosynthesis of Hadacidin. Biochemistry 5, 74 (1966).PubMedGoogle Scholar
  27. 26.
    Dulaney, E.L., and R.A. Gray: Penicillia that Make N-Formyl Hydroxyaminoacetic Acid, a New Fungal Product. Mycologia 54, 476 (1962).Google Scholar
  28. 27.
    Gitterman, C.O., E.L. Dulaney, E.A. Kaczka, D. Hendlin, and H.B.Woodruff: The Human Tumor-egg Host System. II. Discovery and Properties of a New Antitumor Agent, Hadacidin. Proc. Soc. Exptl. Biol. Med. 109, 852 (1962).Google Scholar
  29. 28.
    Gray, R.A., G.W. Gauger, E.L. Dulaney, E.A. Kaczka, and H.B. Woodruff: Hadacidin, a New Plant Growth Regulator Produced by Fermentation. Plant Physiol. 39, 204 (1964).PubMedGoogle Scholar
  30. 29.
    Kaczka, E.A., C.O. Gitterman, E.L. Dulaney, and K. Folkers: Hadacidin, a New Growth — Inhibitory Substance in Human Tumor Systems. Biochemistry 1, 340 (1962).PubMedGoogle Scholar
  31. 30.
    Dutcher, J.: Aspergillic Acid: an Antibiotic Substance Produced by Aspergillus flavus. I. General Properties; Formation of Desoxyaspergillic Acid; Structural Conclusions. J. Biol. Chem. 171, 321 (1947).Google Scholar
  32. Dutcher, J.: Aspergillic Acid: an Antibiotic Substance Produced by Aspergillus flavus. II. Bro- mination Reactions and Reduction with Sodium and Alcohol. J. Biol. Chem. 171, 341 (1947).Google Scholar
  33. Dutcher, J.: Aspergillic Acid: an Antibiotic Substance Produced by Aspergillus flavus. III. The Structure of Hydroxyaspergillic Acid. J. Biol. Chem. 232, 785 (1958).PubMedGoogle Scholar
  34. 31.
    Cook, A.H., and C.A. Slater: The Structure of Pulcherrimin. J. Chem. Soc. ( London ) 1956, 4133.Google Scholar
  35. 32.
    Cook, A.H., and C.A. Slater: Metabolism of “Wild ” Yeasts. I. The Chemical Nature of Pulcherrimin. J. Inst. Brew. 60, 213 (1954).Google Scholar
  36. 33.
    Kluyver, A.J., J.P. van der Walt, and A.J. Van Triet: Pulcherrimin, the Pigment of Candida pulcherrima. Proc. Nat. Acad. Sci. (USA) 39, 583 (1953).Google Scholar
  37. 34.
    Gibson, F., and D.J. Magrath: Isolation and Characterization of a Hydroxamic Acid (Aerobactin) Formed by Aerobacter aerogenes 62–1. Biochim. Biophys. Acta 192, 175 (1969).PubMedGoogle Scholar
  38. 35.
    Macham, L.P., C. Ratledge, and J.C. Nocton: Extracellular Iron Acquisition by Mycobacteria: Role of the Exochelins and Evidence Against the Participation of Mycobactin. Infect. Immun. 12, 1242 (1975).PubMedGoogle Scholar
  39. Macham, L.P., and C. Ratledge: A New Group of Water-soluble Iron-binding Compounds from Mycobacteria: the Exochelins. J. Gen. Microbiol. 89, 379 (1975).PubMedGoogle Scholar
  40. 36.
    Snow, G.A.: Mycobactin. A Growth Factor for Mycobacterium johnei. II. Degradation, and Identification of Fragments. J. Chem. Soc. ( London ) 1954, 2588.Google Scholar
  41. 37.
    Ratledge, C., and G.A. Snow: Isolation and Structure of Nocobactin NA, a Lipid-soluble Iron-binding Compound from Nocardia asteroides. Biochem. J. 139, 407 (1974).PubMedGoogle Scholar
  42. 38.
    Engwilmot, D.L., A. Rahman, J.V. Mendenhall, S.L. Grayson, and D. Van Der Helm: Molecular Structure of Ferric Neurosporin, a Minor Siderophore-like Compound Containing Ns-Hydroxy-D-ornithine. J. Amer. Chem. Soc. 106, 1285 (1984).Google Scholar
  43. 39.
    Yang, CH.CH., and J. Leong: Structure of Pseudobactin 7SR1, a Siderophore from a Plant-Deleterius Pseudomonas. Biochemistry 23, 3534 (1984).PubMedGoogle Scholar
  44. 40.
    Teintze, M., M.B. Hossain, C.L. Barens, J. Leong, and D. Van Der Helm: Structure of Ferric Pseudobactin: a Siderophore from a Plant Growth Promoting Pseudomonas. Biochemistry 20, 6446 (1981).PubMedGoogle Scholar
  45. 41.
    Maurer, B., A. Muller, W. Keller-Schierlein, and H. Zähner: Metabolic Products of Microorganisms. LXI. Ferribactin, a Siderochrome from Pseudomonas fluorescens. Arch. Mikrobiol. 60, 326 (1968).PubMedGoogle Scholar
  46. 42.
    Philson, S.B., and M. Lianas: Siderochromes from Pseudomonas fluorescens. I. Isolation and Characterization. J. Biol. Chem. 257, 8081 (1982).PubMedGoogle Scholar
  47. 43.
    Neilands, J.B.: A Crystalline Organo-iron Pigment from a Rust Fungus (Ustalago sphaerogena). J. Amer. Chem. Soc. 74, 4846 (1952).Google Scholar
  48. 44.
    Garibaldi, J.A., and J.B. Neilands: Isolation and Properties of Ferrichrome A. J. Chem. Soc. 77, 2429 (1955).Google Scholar
  49. 45.
    Atkin, C.L., J.B. Neilands, and H. Paff: Rhodotorulic Acid from Species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a New Alanine-containing Ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103, 722 (1970).PubMedGoogle Scholar
  50. 46.
    Keller-Schierlein, W., and A. Deer: 215. Stoffwechselprodukte von Mikroorganismen. 44 Mitt. Zur Konstitution von Ferrichrysin und Ferricrocin. Helv. Chim. Acta 46, 1907 (1963).Google Scholar
  51. 47.
    Jalal, M.A.F., R. Mocharla, C.L. Barnes, M.B. Hossain, D.R. Powell, D.L. Engwilmot, S.L. Grayson, B.A. Benson, and D. Van Der Helm: Extracellular Siderophores from Aspergillus ochraceus. J. Bacteriol. 158, 683 (1984).PubMedGoogle Scholar
  52. 48.
    Frederick, C.B., P.J. Szaniszlo, P.E. Vickrey, M.D. Bentley, and W. Shive: Production and Isolation of Siderophores from the Soil Fungus Epicoccum purpurascens. Biochemistry 20, 2432 (1981).PubMedGoogle Scholar
  53. Frederick, C.B., M.D. Bentley, and W. Shive: Structure of TIiornicm, a New Siderophore. Biochemistry 20, 2436 (1981).PubMedGoogle Scholar
  54. Frederick, C.B., M.D. Bentley, and W. Shive: The Structure of the Fungal Siderophore Isotriomicin. Biochem. Biophys. Res. Comm. 105, 133 (1982).PubMedGoogle Scholar
  55. 49.
    Charlang, G., N.G. Bradford, N.H. Horowitz, and R.M. Horowitz: Cellular and Extracellular Siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol. Cell. Biol. 1, 94 (1981).PubMedGoogle Scholar
  56. 50.
    Keller-Schierlein, W.: 216. Stoffwechselprodukte von Mikroorganismen. 45 Mitt. Über die Konstitution von Ferrirubin, Ferrirhodin und Ferrichrom A. Helv. Chim. Acta 46, 1920 (1963).Google Scholar
  57. 51.
    Deml, G., K. Voges, G. Jung, and G.Winkelmann: Tetraglycylferrichrome — the First Heptapeptide Ferrichrome. FEBS Letters 173, 53 (1984).Google Scholar
  58. 52.
    Tadenuma, M., and S. Sato: Studies on the Colorants in Sake. The Presence of Ferrichrysin as Iron Containing Colorant in Sake. Agr. Biol. Chem. 31, 1482 (1967).Google Scholar
  59. 53.
    Gauze, G.F., and M.G. Braznikova: The Action of Albomycin on Bacteria. Novosti Med. Acad. Med. Sci. USSR 23, 3 (1951).Google Scholar
  60. 54.
    Benz, G., T. Schröder, J. KÜRZ, C. Wünsche, W. Karl, G. Steffens, J. Pfitzner, and D. Schmidt: Constitution of the Deferriform of Albomycins S1, 62, and E. Angew. Chem., Int. Ed. Engl. 21, 527 (1982).Google Scholar
  61. 55.
    Emery, T.: Malonichrome, a New Iron Chelate from Fusarium roseum. Biochim. Biophys. Acta 629, 382 (1980).PubMedGoogle Scholar
  62. 56.
    Jalal, M.A.F., R. Mocharla, and D. Van Der Helm: Separation of Ferrichromes and Other Hydroxamate Siderophores of Fungal Origin by Reversed-phase Chromatography. J. Chromatogr. 301, 247 (1984).PubMedGoogle Scholar
  63. 57.
    Emery, T.: Aspartase-catalyzed Synthesis of N-Hydroxyaspartic acid. Biochemistry 2, 1041 (1963).PubMedGoogle Scholar
  64. 58.
    Emery, T.F.: Isolation, Characterization, and Properties of Fusarinine, a S-Hydroxamic Acid Derivative of Omithine. Biochemistry 4, 1410 (1965).PubMedGoogle Scholar
  65. 59.
    Sayer, J.M., and T.F. Emery: Structures of the Naturally Occurring Hydroxamic Acids, Fusarinines A and B. Biochemistry 7, 184 (1968).PubMedGoogle Scholar
  66. 60.
    Diekmann, H.: Stoffwechselprodukte von Mikroorganismen. 56 Mitt. Fusigen — ein neues Sideramin aus Pilzen. Arch. Mikrobiol. 58, 1 (1967).PubMedGoogle Scholar
  67. 61.
    Charlang, G., R.M. Horowitz, P.H. Lowy, N.G. Bradford, S.M. Poling, and N.H. Horowitz: Extracellular Siderophores of Rapidly Growing Aspergillus nidulans and Penicillium chrysogenum. J. Bacteriol. 150, 785 (1982).PubMedGoogle Scholar
  68. 62.
    Moore, R.E., and T. Emery: N°-Acetylfusarinines: Isolation, Characterization, and Properties. Biochemistry 15, 2719 (1976).PubMedGoogle Scholar
  69. 63.
    Anke, H.: Metabolic Products of Microorganisms. 163. Desferritriacetylfusigen, an Antibiotics from Aspergillus deflectus. J. Antibiotics 30, 125 (1977).Google Scholar
  70. 64.
    Wendenbaum, S., P. Demange, A. Dell, J.M. Meyer, and M.A. Abdallah: The Structure of Pyoverdine Pa, the Siderophore Pseudomonas aeruginosa. Tetrahedron Letters 24, 4877 (1983).Google Scholar
  71. 65.
    Atkin, C.L., and J.B. Neilands: Rhodotorulic Acid, a Diketopiperazine Dihydroxamic Acid with Growth Factor Activity. I. Isolation and Characterization. Biochemistry 7, 3734 (1968).PubMedGoogle Scholar
  72. 66.
    Akers, H.A., and J.B. Neilands: A Hydroxamic Acid Present in Rhodotorula pilimanae. Cultures Growth at Low pH and Its Metabolic Relation to Rhodotorulic Acid. Biochemistry 12, 1006 (1973).PubMedGoogle Scholar
  73. 67.
    Diekmann, H.: Metabolic Products of Microorganisms. 81. Occurrence and Structure of Coprogen and Dimerum Acid. Arch. Mikrobiol. 73, 65 (1970).PubMedGoogle Scholar
  74. 68.
    Harrington, G.J., and J.B. Neilands: Isolation and Characterization of a Dihydroxamic Acid Siderophore from Verticillium dahliae. Int. Symp. Iron Nutrition and Interaction in Plants; Brigham Young University, 1981.Google Scholar
  75. 69.
    Hesseltine, C.W., C. Pidacks, A.R. Whitehill, N. Bohonos, B.L. Hutchings, and J.H. Williams: Coprogen, a New Growth Factor for Coprophilic Fungi. J. Amer. Chem. Soc. 74, 1362 (1952).Google Scholar
  76. 70.
    Pidacks, C., A.R. Whitehill, L.M. Pruess, C.W. Hesseltine, B.L. Hutchings, N. Bononos, and J.H. Williams: Coprogen, the Isolation of a New Growth Factor Required Pilobolus Species. J. Amer. Chem. Soc. 75, 6064 (1953).Google Scholar
  77. 71.
    Horowitz, N.H., G. Charlang, G. Horn, N.P. Williams: Isolation and Identification of the Conidial Germination Factor of Neurospora crassa. J. Bacteriol. 127, 135 (1976).PubMedGoogle Scholar
  78. 72.
    Kanai, F., T. Sawa, M. Hamada, H. Naganawa, T. Takeuchi, and H. Umezawa: Vanoxonin, a New Inhibitor of Thimidylate Synthetase. J. Antibiotics 36, 656 (1983).Google Scholar
  79. 73.
    Coronelli, C., C.R. Pasqualucci, G.Tamoni, and G.G. Gallo: Isolation and Structure of Alanosine, a New Antibiotic. Il Farmaco, Ed. Sci. 21, 269 (1966).Google Scholar
  80. 74.
    Murthy, Y.K.S., J.E.Thiemann, C. Coronelli, and P. Sensi: Alanosine, a New Antiviral and Antitumour Agent Isolated From a Streptomyces. Nature 211, 1198 (1966).PubMedGoogle Scholar
  81. 75.
    Bayer, E., and H. Kneifel: Isolation of Amavadin, a Vanadium Compound Occuring in Amanita muscaria. Z. Naturforsch. 27b, 207 (1972).Google Scholar
  82. 76.
    Okuhara, M., Y. Kuroda, T. Goto, M. Okamoto, H.Terano, M. Kohsaka, H. Aoki, and H. Imanaka: Studies on New Phosphonic Acid Antibiotics. 1. FR-900098, Isolation and Characterization. J. Antibiotics 33, 13 (1980).Google Scholar
  83. 77.
    Kuroda, Y., M. Okuhara, T. Goto, M. Okamoto, H.Terano, M. Kohsaka, H. Aoxt, and H. Imanaka: Studies on New Phosphonic Acid Antibiotics. IV. Structure Determination of FR-33289, FR-31564 and FR-32863. J. Antibiotics 33, 29 (1980).Google Scholar
  84. 78.
    Okuhara, M., Y. Kuroda, T. Goto, M. Okamoto, H. Terano, M. Kohsaka, H. Aoki, and H. Imanaka: Studies on New Phosphonic Acid Antibiotics. III. Isolation and Characterization of FR-31564, FR-32863 and FR-33289. J. Antibiotics 33, 24 (1980).Google Scholar
  85. 79.
    Neelakantan, L., and W.H. Hartung: a-Hydroxylamino Nitriles and a-Hydroxylamino Acids. J. Organ. Chem. (USA) 23, 964 (1958).Google Scholar
  86. 80.
    Chimiak, A.: Esters of N-Hydroxyamino Acids. Polish J. Chem. 42, 225 (1968).Google Scholar
  87. 81.
    Spenser, I.D., and A. Ahmad: a-Amino Acids and a-Keto Acid Oximes from aHydroxylamino Acids: a New Disproportionation Reaction. Proc. Chem. Soc. ( London ) 1961, 375.Google Scholar
  88. 82.
    Von Miller W., and J. Plöchl: Ueber Schifesche Basen. Ber. dtsch. chem. Ges. 25, 2020 (1892).Google Scholar
  89. 83.
    Maeitr, H., and M. Leach: Antimetabolites Produced by Microorganisms. XVI. Synthesis of N5-Hydroxy-2-methylarginine and N5-Hydroxy-2-methylornithine. J. Antibiotics 31, 165 (1978).Google Scholar
  90. 84.
    Brachtel, G., and M. Jansen: On the Reaction Between Hydroxylamine and Acrylic Acid. Z. Naturforsch. 40b, 574 (1985).Google Scholar
  91. 85.
    Giguere, P.A., and J.D. Liu: Infrared Spectrum, Molecular Structure, and Thermodynamic Functions of Hydroxylamine. Canad. J. Chem. 30, 948 (1952).Google Scholar
  92. 86.
    Karczyi Ski, F., B. Liberek, and Z. Palacz: Complex of Compounds of N-Hydroxyglycine and N-Hydroxy-(3-alanine with Cu(II). Zeszyty Naukowe Wydz. Mat. Fiz. Chem. UG 1, 77 (1971).Google Scholar
  93. 87.
    Kneufel, H., and E. Bayer: Determination of the Structure of the Vanadium Compound, Amavadine, from Fly Agaric. Angew. Chem., Int. Ed. Engl. 12, 508 (1973).Google Scholar
  94. 88.
    Krauss, P., E. Bayer, and H. Kneifel: Electron Spin Resonance Investigations of Amavadine, a Natural Product Containing Vanadium. Z. Naturforsch. 39b, 829 (1984).Google Scholar
  95. 89.
    Felcman, J., M. Candida, T.A.Vaz, and J.J.R. Fraùsto da Silva: Metal Complexes of N-Hydroxy-imino-di-a-propionic Acid and Related Ligands. Inorg. Chim. Acta 93, 101 (1984).Google Scholar
  96. 90.
    Duynstee, E.F.J., and M.E.A.H. Mevis: Decomposition of Dimeric a-Nitrosocarboxylic Acids in Sulfuric Acid. Rec. tray. chim. Pay-Bas 86, 715 (1967).Google Scholar
  97. 91.
    Emery, T.F., and J.B. Neilands: Further Observations Concerning the Periodic Acid Oxidation of Hydroxylamine Derivatives. J. Organ. Chem. (USA) 27, 1075 (1962).Google Scholar
  98. 92.
    Ahmad, A.: The Chemistry of a-N-Hydroxyamino Acids. Bull. Chem. Soc. Japan 47, 2583 (1974).Google Scholar
  99. 93.
    Ahmad, A., and I.D. Spenser: The Conversion of a-Keto Acids and of a-Keto Acid Oximes to Nitriles in Aqueous Solution. Canad. J. Chem. 39, 1340 (1961).Google Scholar
  100. 94.
    Steiger, R.E.: N-Hydroxy-a-amino Acid as Possible Intermediates in the Oxidative Degradation of a-Amino Acids. J. Biol. Chem. 153, 691 (1944).Google Scholar
  101. 95.
    Miller, B.L., I.J. Mcfarlane, and E.E. Conn: Chemical Synthesis and Disproportionation of N-Hydroxytyrosine. Acta Chem. Scand. B 31, 343 (1977).Google Scholar
  102. 96.
    Pinza, M., G. Pifferi, and F. Nasi: A New Synthesis of 3-Oxazolin-5-ones (5-oxo2,5-dihydro-1,3-oxazoles). Synthesis 1980, 55.Google Scholar
  103. 97.
    Tomlinson, G., and T. Viswanatha: Synthesis and Properties of a-N-Hydroxyornithine. Canad. J. Biochem. 51, 754 (1973).Google Scholar
  104. 98.
    Turkowa, J., O. Mikes, and F. Sorm: Chemical Composition of the Antibiotic Albomycin. VI. Determination of the Structure of the Peptide Moiety of the Antibiotic Albomycin. Collect. Czech. Chem. Comm. 29, 280 (1964).Google Scholar
  105. 99.
    Cooper, A.J.L., and O.W. Griffith: N-Hydroxyamino Acids. Irreversible Inhibitors of Pyridoxal 5’ Phosphate Enzymes and Substrates of D- and L-Amino Acids Oxidases. J. Biol. Chem. 254, 2748 (1979).PubMedGoogle Scholar
  106. 100.
    Cook, A.H., and C.A. Slater: Pulcherrimin: A Synthesis of 1,4-Dihydroxy-2,5dioxopiperazines. J. Chem. Soc. ( London ) 1956, 4130.Google Scholar
  107. 101.
    Nagasawa, M.T., J.G. Kohlhoff, P.S. Fraser, and A.A. Mikhail: Synthesis of 1-Hydroxy-L-proline and Related Cyclic N-Hydroxyamino Acids. Metabolic Disposition of 14C-Labeled 1-Hydroxy-L-proline in Rodents. J. Med. Chem. 15, 483 (1972).PubMedGoogle Scholar
  108. 102.
    Neunhoeffer, O.: Proof of N-Hydroxypeptide Groups in the Protein of Cancer. Z. Naturforsch. 25b, 299 (1970).Google Scholar
  109. 103.
    Huheey, J.E.: The Biochemistry of Iron. In: Inorganic Chemistry: Principles of Structure and Reactivity, p. 895. New York: Harper 8888 Row, Pub., Inc., 1984.Google Scholar
  110. 104.
    Huheey, J.E.: Report of the Commission on Enzymes of the International Union of Biochemistry, p. 137. New York: Pergamon Press, 1962.Google Scholar
  111. 105.
    Mikhal, G.: Table. Biochemical Pathways. Boehringer Mannheim, 1982.Google Scholar
  112. 106.
    Shigeura, H.T., and C.N. Gordon: Hadacidin, a New Inhibitor of Purine Biosynthesis. J. Biol. Chem. 237, 1932 (1962).PubMedGoogle Scholar
  113. Shigeura, H.T., and C.N. Gordon: The Mechanism of Action of Hadacidin. J. Biol. Chem. 237, 1937 (1962).PubMedGoogle Scholar
  114. 107.
    Shigeura, H.T.: Structural Modifications of Hadacidin and Their Effects on the Activity of Adenylosuccinate Synthetase. J. Biol. Chem. 238, 3999 (1963).PubMedGoogle Scholar
  115. 108.
    Rasnick, D., and J.C. Powers: Active Site Directed Irreversible Inhibition of Thermolysin. Design of Potent Reversible Inhibitors for Thermolysin. Biochemistry 17, 4363 (1978).PubMedGoogle Scholar
  116. 109.
    Nishino, N., and J.C. Powers: Peptides Containing Zinc Coordinating Ligands and Their Use in Affinity Chromatography. Biochemistry 18, 4340 (1979).PubMedGoogle Scholar
  117. 110.
    Holmes, M.A., D.E. Tronrud, and B.W. Matthews: Structural Analysis of the Inhibition of Thermolysin by an Active-Site-Directed Irreversible Inhibitor. Biochemistry 22, 236 (1983).PubMedGoogle Scholar
  118. 111.
    Nisxmo, N., and J.C. Powers: Pseudomonas aeruginosa Elastase. Development of a New Substrate, Inhibitors, and an Affinity Ligand. J. Biol. Chem. 255, 3482 (1980).Google Scholar
  119. 112.
    Lammers, M., and H. Follmann: The Ribonucleotide Reductases a Unique Group of Metalloenzymes Essential for Cell Proliferation. Structure and Bonding (Berlin) 54, 27 (1983).Google Scholar
  120. 113.
    Rozantsev, E.G., and V.D. Sholle: Synthesis and Reactions of Stable Nitroxyl Radicals. I. Synthesis. Synthesis 1971, 191.Google Scholar
  121. 114.
    Akiyama, M., K. Iesaki, A. Katoh, and K. Shimizu: N-Hydroxy Amides. Part 5. Synthesis and Properties of N-Hydroxypeptides Having Leucine Enkephalin Sequences. J. Chem. Soc. Perkin Trans. I (London) 1986, 851.Google Scholar
  122. 115.
    Emery, T.: Biosynthesis and Mechanism of Action of Hydroxamate-type Siderochromes. In: Microbial Iron Metabolism. ( NEILANDS, J.B., ed.). New York: Academic Press 1974, p. 107.Google Scholar
  123. 116.
    Emery, T.: Initial Steps in the Biosynthesis of Ferrichrome Incorporation of S-N-Hydroxyornithine and S-N-Acetyl-S-N-hydroxyornithine. Biochemistry 5, 3694 (1966).PubMedGoogle Scholar
  124. 117.
    Emery, T.F.: Hadacidin. In: Antibiotics. (Gottlieb, D., and P.D. Shaw, eds.,) Berlin: D., and P.D. 1967, vol. 2, p. 17.Google Scholar
  125. 118.
    Parniak, M.A., G.E.D. Jackson, G.J. Murray, and T. Viswanatha: Studies On the Formation of N6-Hydroxylysine in Cell-Free Extracts of Aerobacter aerogenes 62–1. Biochim. Biophys. Acta 569, 99 (1979).PubMedGoogle Scholar
  126. 119.
    Dulaney, E.L.: Formation of N-Formylhydroxyaminoacetic Acid by Penicillium. Mycologia 55, 211 (1963).Google Scholar
  127. 120.
    Mac Donald, J.C.: Biosynthesis of Aspergillic Acid. J. Biol. Chem. 236, 512 (1961).Google Scholar
  128. Micetich, R.G., and J.C. Mac Donald: Biosynthesis of Neoaspergillic and Neohydroxyaspergillic Acids. J. Biol. Chem. 240, 1692 (1965).PubMedGoogle Scholar
  129. 121.
    Akers, H.A., and J.B. Neilands: Biosynthesis of Rhodotorulic Acid and Other Hydroxamate Type Siderophores. In: Biological Oxidation of Nitrogen. ( Gorrad, J.W., ed.). Amsterdam: Biomedical Press 1978, p. 429.Google Scholar
  130. 122.
    Miller, B.L., and E.E. Conn: N-Hydroxyamino Acids as Intermediates in the Biosynthesis of Cyanogenic Glucosides in Plants. In: Biological Oxidation of Nitrogen. ( Gorrad, J.W., ed.). Amsterdam: Biomedical Press 1978, p. 437.Google Scholar
  131. 123.
    Miller, B.L., and E.E. Conn: The Biosynthesis of Cyanogenic Glucosides in Higher Plants. N-Hydroxytyrosine as an Intermediate in the Biosynthesis of Dhurrin by Sorghum bicolor (LINN) Moench. J. Biol. Chem. 254, 8575 (1979).Google Scholar
  132. 124.
    Scott, A.I., S.E. Yoo, S.K. Chung, and J.A. Lacadie: Reactivity of Peptide Hydroxamates: a Model for the Biosynthesis of ß-Lactam Antibiotics. Tetrahedron Letters 1976, 1137.Google Scholar
  133. 125.
    Barter, R.L., G. A. Thomson, and A.I. Scott: Synthesis and Biological Activity of 8-(L-a-Aminoadipoy1)-L-cysteinyl-N-hydroxy-D-valine: a Proposed in the Biosynthesis of the Penicillins. J. Chem. Soc. Chem. Commun. ( London ) 1984, 32.Google Scholar
  134. 126.
    Ottenheijm, H.C.J., R. Plate, J.H. Noordik, and J.D.M. Herscheid: Synthesis of Natural Products Containing Oxidized Dioxopiperazines. An Approach to the Neoechinulin and Sporidesmin Series. J. Organ. Chem. (USA) 47, 2147 (1982).Google Scholar
  135. 127.
    Herscheid, J.D.M., R.J.F. Nivard, M.W. Tuhuis, and H.C.J. Ottenheijm: Biosynthesis of Gliotoxin. Synthesis of Sulfur — Bridged Dioxopiperazines from N-Hydroxyamino Acids. J. Organ. Chem. (USA) 45, 1885 (1980).Google Scholar
  136. 128.
    Traube, W.: Ueber Isonitramine. Ber. dtsch. chem. Ges. 27, 1507 (1894).Google Scholar
  137. Traube, W.: Ueber Isonitramin-und Oxazo-Fettsäuren. Ber. dtsch. chem. Ges. 28, 1785 (1895).Google Scholar
  138. 129.
    Traube, W.: Ueber die Constitution der Isonitramine. Ber. dtsch. chem. Ges. 28, 2297 (1895).Google Scholar
  139. 130.
    Hurd, CH.D., and J.M. Longfellow: Preparation and Reactions of a-Hydroxylamino Nitriles. J. Organ. Chem. (USA) 16, 761 (1951).Google Scholar
  140. 131.
    Porter, C.C., and L. Helkerman: a-Hydroxylaminoisobutylonitrile an Intermediate in the Synthesis of Porphyrexide and Porphyrindine. J. Amer. Chem. Soc. 61, 754 (1939).Google Scholar
  141. 132.
    Porter, C.C., and L. Helkerman: Porphyrexide and Porphyrindine Analogs Derived from 1-Hydroxyaminocyclohexyl Cyanide. J. Amer. Chem. Soc. 66, 1652 (1944).Google Scholar
  142. 133.
    Lillevik, H.A., R.L. Hossfeld, H.V. Lindstrom, R.T. Arnold, and R.A. Gortner: Technics in the Synthesis of Porphyrindin. J. Organ. Chem. (USA) 7, 164 (1942).Google Scholar
  143. 134.
    Duynstee, E.F.J., J.L.J.P. Hennekens, and M.E.A.H. Mevcs: Decarbonylation of a-Hydroxylaminocarboxylic Acids. Rec. tray. chim. Pays-Bas 84, 1442 (1965).Google Scholar
  144. 135.
    Weisbalt, D.I., and D.A. Lyttle: Synthesis of Ethyl a-Nitro-ß-(3-indole)-propionate from Gramine and Ethyl Nitromalonate. J. Amer. Chem. Soc. 71, 3079 (1949).Google Scholar
  145. 136.
    Emery, T., and J.B. Neilands: Contribution to the Structure of the Ferrichrome Compounds: Characterization of the Acyl Moieties of the Hydroxamate Functions. J. Amer. Chem. Soc. 82, 3658 (1960).Google Scholar
  146. Emery, T., and J.B. Neilands: Structure of the Ferrichrome Compounds. J. Amer. Chem. Soc. 83, 1626 (1961).Google Scholar
  147. 137.
    Rogers, S., and J.B. Neilands: The a-Amino-a-Hydroxyamino Acids. Biochemistry 2, 6 (1963).Google Scholar
  148. 138.
    Makajejenina, L.G., and N.A. Poddubnaja: Studies on the Structure of the Antibiotic Albomycin. XIII. Synthesis of 8-N-Hydroxyornithine. Zhurn. Obshchei. Khimii 36, 1755 (1966).Google Scholar
  149. 139.
    Black, D.S.C., R.F.C. Brown, and A.M. Wade: Synthetic Studies Related to Mycobactins. II. Formation of Mycobactin Hydroxamic Acid Units by Malonic Esters Synthesis. Austral. J. Chem. 25, 2155 (1972).Google Scholar
  150. 140.
    Shin, C., M. Masaki, and M. Ohta: The Synthesis and Reaction of a, 3-Unsaturated a-Nitrocarboxylic Esters. Bull. Chem. Soc. Japan 43, 3219 (1970).Google Scholar
  151. 141.
    Maurer, B., and W. Keller-Schierlein: Stoffwechselprodukte von Mikroorganismen 74. Mitt. Synthese des Ferrichroms; 1 Teil. (S)-a-Amino-S-nitrovaleriansaure (5-Nitro-L-norvalin). Helv. Chim. Acta 52, 388 (1969).Google Scholar
  152. 142.
    Keller-Schierlein, W., and B. Maurer: Stoffwechselprodukte von Mikroorganismen 74. Mitt. Synthese des Ferrichroms; 2. Teil. Helv. Chim. Acta 52, 603 (1969).Google Scholar
  153. 143.
    Widmer, J., and W. Keller-Schierlein: Synthesen in der Sideramin-Reine: Rhodotorulasäure und Dimerumsäure. Helv. Chim. Acta 57, 1904 (1974).Google Scholar
  154. 144.
    Ahmad, A.: Syntheses of a-Hydroxyamino Acids from a-Keto Acids. Bull. Chem. Soc. Japan 47, 1819 (1974).Google Scholar
  155. 145.
    Herscheid, J.D.M., and H.C.J. Ottenheijm: A Practical Synthesis of N-Hydroxy-aamino Acid Esters. Tetrahedron Letters 1978, 5143.Google Scholar
  156. 146.
    Tijhuis, M.W., J.D.M. Herscheid, and H.C.J. Ottenheijm: A Practical Synthesis of N-Hydroxy-a-amino Acid Derivatives. Synthesis 1980, 890.Google Scholar
  157. 147.
    Lee, B.H., and M.J. Miller: Constituents of Microbial Iron Chelators. The Synthesis of Optically Active Derivatives of 8-N-Hydroxy-L-ornithine. Tetrahedron Letters 25, 927 (1984).Google Scholar
  158. 148.
    Posner, T.: Beiträge zur Kenntnis der ungesättigten Verbindungen. IX. Ueber die Addition von Hydroxylamin an ungesättigte Säuren und Ester der Zimmtsäurereine sowie an analoge Verbindungen. Liebigs Ann. Chem. 389, 1 (1912).Google Scholar
  159. 149.
    Fountain, K.R., R. Erwin, T. Early, and H. Kehl: The Mechanism of Hydroxyl-amine Addition to a,13-Unsaturated Esters. Tetrahedron Letters 1975, 3027.Google Scholar
  160. 150.
    Steiger, R.E.: dl-ß-Amino-1-phenylpropionic Acid. Organic Syntheses; Wiley: New York, 3, p. 91 (1955).Google Scholar
  161. 151.
    Posner, T.: Beiträge zur Kenntnis der ungesättigten Verbindungen. II. Ueber die Anlagerung von freiem Hydroxylamin an Zimmtsäure. Constitution und Derivate der a-Hydroxylamino-3-phenylopropionsäure. Ber. dtsch. chem. Ges. 39, 3519 (1906).Google Scholar
  162. Posner, T.: Beiträge zur Kenntnis der ungesättigten Verbindungen. I. Ueber die Einwirkung von freiem Hydroxylamin auf ungesättigte Säuren. Ber. dtsch. chem. Ges. 36, 4314 (1903).Google Scholar
  163. 152.
    Harries, C., and W. Haarmann: Ueber die Einwirkung von Hydroxylamin auf ungesättigte Säureester. Ber. dtsch. chem. Ges. 37, 253 (1904).Google Scholar
  164. Becke, F., and G. Mutz: Über die Reaktion von Hydroxylamin mit Acrylsäurederivaten. Chem. Ber. 98, 1322 (1965).Google Scholar
  165. 153.
    Sayigh, A.A.R., H. Ulrich, and M. Green: Michael Addition of Hydroxylamines to Activated Double Bonds. A Convenient Synthesis of N,N-Dialkyl Hydroxyl-amines. J. Organ. Chem. (USA) 29, 2042 (1964).Google Scholar
  166. 154.
    Grossowicz, N., and Y. Lichtenstein: Enzymic Binding of Hydroxylamine by Fumaric Acid. Nature 191, 412 (1961).PubMedGoogle Scholar
  167. 155.
    Hantzsch, A., and W. Wild: Ueber Oxime aus a-halogenisierten Aldehyden, Ketonen und Säuren sowie über Oximessigsäuren. Liebigs Ann. Chem. 289, 285 (1896).Google Scholar
  168. 156.
    Barry, R.H., and W.H. Hartung: a-Oximino Acid Intermediates for the Synthesis of a-Amino Acids. J. Organ. Chem. (USA) 12, 460 (1947).Google Scholar
  169. 157.
    Organon, N.V.: Hydroxyamine Solutions and Their Use for Hydroxyamino Acids Preparation. Belgium Patent 660,703, 1965; Chem. Abstr. 64, 2164a (1966).Google Scholar
  170. 158.
    La Noce, T., E. Bellasio, and E. Testa: Synthesis of a-N-Hydroxyamino Acids. Part 1. Ann. chimie 58, 393 (1968).Google Scholar
  171. 159.
    Kaminski, K., and T. Sokolowska: Synthesis of Optically Active, Aromatic N-Hydroxyamino Acids, Analogues of Phenylalanine and Tyrosine. Polish. J. Chem. 47, 653 (1973).Google Scholar
  172. 160.
    Shin, C., K. Nanjo, E. Ando, and J.Yoshimura: a, 3-Unsaturated Carboxylic Acid Derivatives. VI. New Synthesis of N-Acyl-a-dehydroamino Acid Esters. Bull. Chem. Soc. Japan 47, 3109 (1974).Google Scholar
  173. 161.
    Lancini, G.C., A. Diena, and E. Lazzari: The Synthesis of Alanosine [L-2-Amino3-(N-nitrosohydroxylamino)propionic Acid]. Tetrahedron Letters 1966, 1769.Google Scholar
  174. 162.
    Lancini, G.C., E. Lazzari, and A. Diena: Synthesis of Homologues of the Antibiotic Alanosine. Il Farmaco 24, 169 (1969).Google Scholar
  175. 163.
    Kolasa, T., and A. Chimiak: 0-Protected Derivatives of N-Hydroxyamino Acids. Tetrahedron 30, 3591 (1974).Google Scholar
  176. Chimiak, A., and T. Kolasa: N-Alkoxyamino Acids - Key Substrates for N-Hydroxypeptides. In: Peptides 1972. p. 118. (Hanson, H., and H.D. Jakubke, eds.). 12th European Peptide Symposium. Reinhardsbraunn Castle 1972. Amsterdam: Elsevier 1973.Google Scholar
  177. 164.
    Kolasa, T.: Synthetic Study of N-Hydroxyaspartic Acid. Canad. J. Chem. 65, 2139 (1985).Google Scholar
  178. 165.
    Kolasa, T., and A. Chimiak: Unambiguous Synthesis of N-Hydroxypeptides. Tetrahedron 33, 3285 (1977).Google Scholar
  179. 166.
    Isowa, Y., T. Takashima, M. Ohmori, H. Kurita, M. Sato, and K. Mori: Acylation of N5-Benzyloxyornithine. Bull. Chem. Soc. Japan 45, 1464 (1972).Google Scholar
  180. 167.
    Isowa, Y., T. Takashima, M. Ohmori, H. Kurita, M. Sato, and K. Mori: Synthesis of N5-Hydroxyornithine. Bull. Chem. Soc. Japan 45, 1461 (1972).Google Scholar
  181. 168.
    Isowa, Y., T. Takashima, M. Ohmori, H. Kurita, M. Sato, and K. Mori: N5-Hydroxyornithine. Japan Patent 7234314, 1972; Chem. Abstr. 78, 98013 p (1973).Google Scholar
  182. 169.
    Isowa, Y., and M. Ohmori: Synthesis of N-Hydroxy-L-lysine. Bull. Chem. Soc. Japan 47, 2672 (1974).Google Scholar
  183. 170.
    Isowa, Y., H. Kurita, M. Ohmori, M. Sato, and K. Mori: Synthesis of Alanosine. Bull. Chem. Soc. Japan 46, 1847 (1973).Google Scholar
  184. 171.
    Isowa, Y., and H. Kurita: A New Reagent for the Syntheses of N-Monoalkylated Hydroxylamines; N-Tosy1-O-2,4,6-trimethyl-benzylhydroxylamine. Bull. Chem. Soc. Japan 47, 720 (1974).Google Scholar
  185. 172.
    Funi, T., and Y. Hatanaka: A Synthesis of Rhodotorulic Acid. Tetrahedron 29, 3825 (1973).Google Scholar
  186. 173.
    Isowa, Y., M. Ohmori, and H. Kurita: Total Synthesis of Ferrichrome. Bull. Chem. Soc. Japan 47, 215 (1974).Google Scholar
  187. 174.
    Kamiya, T., K. Hemmi, H. Takeno, and M. Hashimoto: Studies on Phosphonic Acid Antibiotics. I. Structure and Synthesis of 3-(N-Acetyl-N-hydroxyamino)propylphosphonic Acid (FR-900098) and Its N-Formyl Analogue (FR-31564). Tetrahedron Letters 21, 95 (1980).Google Scholar
  188. 175.
    Hashimoto, M., K. Hemmi, H. Takeno, and T. Kamiya: Studies on Phosphonic Acid Antibiotics. II. Synthesis of 3-(N-Acetyl-N-hydroxyamino)-2(R)-hydroxypropylphosphonic Acid (FR-33289) and 3-(N-Formyl-N-hydroxyamino)-1-trans-propenylphosphonic Acid (FR-32863). Tetrahedron Letters 21, 99 (1980).Google Scholar
  189. 176.
    Hemmi, K., H. Takeno, M. Hashimoto, and T. Kamiya: Studies on Phosphonic Acid Antibiotics. III. Structure and Synthesis of 3-(N-Acetyl-N-hydroxyamino)propylphosphonic Acid (FR-900098) and 3-(N-Acetyl-N-hydroxyamino)-2(R)-hydroxypropylphosphonic Acid (FR-33289). Chem. Pharm. Bull. Japan 29, 646 (1981).Google Scholar
  190. 177.
    Buehler, E.: Alkylation of syn-and anti-Benzaldoximes. J. Organ. Chem. (USA) 32, 261 (1967).Google Scholar
  191. 178.
    Buehler, E., and G.B. Brown: A General Synthesis of N-Hydroxyamino Acids. J. Organ. Chem. (USA) 32, 265 (1967).Google Scholar
  192. 179.
    Hurd, C.D., and J.M. Longfellow: Phenyl-N-(1-carboxyethyl)-nitrone. J. Amer. Chem. Soc. 73, 2395 (1951).Google Scholar
  193. 180.
    Maehr, H., and M. Leach: Antimetabolites Produced by Microorganisms. IX. Chemical Synthesis of N5-Hydroxyornithine and N5-Hydroxyarginine. J. Organ. Chem. (USA) 39, 1166 (1974).Google Scholar
  194. 181.
    Neunhoeffer, O., G. Lehmann, D. Haberer, and G. Steinle: Die Hydroxylaminolyse N-substituierter Phthalimide, ein Verfahren zur Darstellung von Peptiden und N-Hydroxypeptiden. Liebigs Ann. Chem. 712, 208 (1968).Google Scholar
  195. 182.
    Bellasio, E., F. Parravicini, T. LA Noce, and E. Testa: a-N-Hydroxyamino Acids and Their Derivatives. Part II. Ann. chimie 58, 407 (1968).Google Scholar
  196. 183.
    Poloivski, T., and A. Chimiak: Nitrones as Intermediates in the Synthesis of NHydroxyamino Acid Esters. J. Organ. Chem. (USA) 41, 2092 (1976).Google Scholar
  197. 184.
    Lau, H.H., and U. Schöllkopf: Synthesis of N-Hydroxy-a-amino Acids by Alkylation of N-Benzylidene-a-amino Acid Methyl Ester N-Oxides. Liebigs Ann. Chem. 1981, 1378.Google Scholar
  198. 185.
    Bentley, P.H., and G. Brooks: Semi-synthetic Penicillins and Cephalosporins Incorporating a Hydroxyamino Group. Tetrahedron Letters 1976, 3735.Google Scholar
  199. 186.
    Ross-Petersen, K.J., and H. Hjeds: Syntheses of Some Derivatives of a-Hydroxycarboxylic Acids. Dansk. Tidsskr. Farm. 43, 188 (1969).Google Scholar
  200. 187.
    Bellasio, E., F. Parravicini, A. Vigevani, and E. Testa: Synthesis and Properties of 3-N-Hydroxyamino Acids. Part III. Gazz. chim. ital. 98, 1014 (1968).Google Scholar
  201. 188.
    Liberek, B, and Z. Palacz: Steric Course of Synthesis of N-Hydroxyamino Acids from Optically Active Amino Acids. Polish J. Chem. 45, 1173 (1971).Google Scholar
  202. 189.
    Schoenewaldt, E.F., R.B. Kinnel, and P. Davis: Improved Synthesis of anti-Benzaldoxime. Concomitant Cleavage and Formylation of Nitrones. J. Organ. Chem. (USA) 33, 4271 (1968).Google Scholar
  203. 190.
    Eaton, C.N., G.H. Denny JR., M.A. Ryder, M.G. Ly, and R.D. Babson: Improved Synthesis of DL-Alanosine. J. Med. Chem. 16, 289 (1973).PubMedGoogle Scholar
  204. 191.
    Chimiak, A., and T. Poloiski: Application of Nitron Group for the Synthesis of N-Hydroxydipeptides and N,N’-Dihydroxyaminodicarboxylic Acids. Proceeding of Meeting of Polish Chem. Soc., Gliwice 1972, 175.Google Scholar
  205. 192.
    Poloński, T., and A. Chimiak: Oxaziridines as Intermediates in the Oxidation of Amino Acid Esters into N-Hydroxyamino Acid Derivatives. Bull. Acad. Polon. Sci. Ser. Chem. 27, 459 (1979).Google Scholar
  206. 193.
    Poloński, T., and A. Chimiak: Oxidation of Amino Acid Esters into N-Hydroxyamino Acid Derivatives. Tetrahedron Letters 1974, 2453.Google Scholar
  207. 194.
    Widmer, J., and W. Keller-Schierlein: Stoffwechselprodukte von Mikroorganismen. 130 Mitt. Synthese des 6-N-Hydroxy-L-arginins. Helv. Chim. Acta 57, 657 (1974).PubMedGoogle Scholar
  208. 195.
    Naegeli, H.U., and W. Keller-Schierlein: Stoffwechselprodukte von Mikroorganismen. 174 Mitt. Eine neue Synthese des Ferrichroms; enantio-Ferrichrom. Helv. Chim. Acta 61, 2088 (1978).Google Scholar
  209. 196.
    Maurer, P.J., and M.J. Miller: Myobactins: Synthesis of (—)-Cobactin T from aHydroxynorleucine. J. Organ. Chem. (USA) 13, 2835 (1981).Google Scholar
  210. 197.
    Mitsunobu, O.: The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis 1981, 1.Google Scholar
  211. 198.
    Olsen, R.K., K. Ramasamy, and T. Emery: Synthesis of N°,N5-Hydroxy-L-ornithine from L-Glutamic Acid. J. Organ. Chem. (USA) 49, 3527 (1984).Google Scholar
  212. 199.
    Maurer, P.J., and M.J. Miller: Total Synthesis of a Mycobactin: Mycobactin S2. J. Amer. Chem. Soc. 105, 240 (1983).Google Scholar
  213. 200.
    Maurer, P.J., and M.J. Miller: Microbial Iron Chelators: Total Synthesis of Aerobactin and Its Constituent Amino Acid, N6-Acetyl-N6-hydroxylysine. J. Amer. Chem. Soc. 104, 3096 (1982).Google Scholar
  214. 201.
    Kanal, F., K. Isshiki, Y. Umezawa, H. Morishima, H. Naganawa, T. Takita, T. Takeuchi, and H. Umezawa: Vanoxonin, a New Inhibitor of Thymidylate Synthetase. II. Structure Determination and Total Synthesis. J. Antibiotics 38, 31 (1985).Google Scholar
  215. 202.
    Lee, B.H., G.J. Gerfen, and M.J. Miller: Constituents of Microbial Iron Chelators. Alternate Syntheses of S-N-Hydroxy-a-ornithine Derivatives and Applications to the Synthesis of Rhodotorulic Acid. J. Organ. Chem. (USA) 49, 2418 (1984).Google Scholar
  216. 203.
    Kolasa, T., A. Chimiak, and A. Kitowska: Esters of N-Benzyloxyamino Acids. J. prakt. Chem. 317, 252 (1975).Google Scholar
  217. 204.
    Herscheid, J.D.M., J.H. Colstee, and H.C.J. Ottenheijm: 1,4-Dihydro-2,5-dioxopiperazines from Activated N-Hydroxyamino Acids. J. Organ. Chem. (USA) 46, 3346 (1981).Google Scholar
  218. 205.
    Benz, G.: Albomycine, III. Synthese von N5-Acetyl-N5-hydroxy-L-ornithin aus LGlutaminsäure. Liebigs Ann. Chem. 1984, 1424.Google Scholar
  219. 206.
    Neilands, J.B., and P. Azari: Synthesis and Reactions of the to-N-Hydroxyamino Acids. Acta Chem. Scand. 17S, 190 (1963).Google Scholar
  220. 207.
    Shin, C., M. Hayakawa, T. Suzuki, A. Ohtsuka, and J. Yoshimura: a,(3-Unsaturated Carboxylic Acid Derivatives. XIII. The Synthesis and Configuration of Alkyl 2-Acylamino-2-alkenoates and Their cyclized 2,5-Piperazinedione Derivatives. Bull. Chem. Soc. Japan 51, 550 (1978).Google Scholar
  221. 208.
    Shin, C., K. Nanjo, and J.Yoshimura: Cyclization Reaction of N-(Haloacyl)- or N-(Phthaloylglycyl)-hydroxyamino Acid Esters with Ammonia. Chem. Letters (Japan) 1973, 1039.Google Scholar
  222. 209.
    Shin, C., K. Nanjo, M. Kato, and J. Yoshimura: a,ß-Unsaturated Carboxylic Acid Derivatives. IX. The Cyclization of a-(N-Acyl-hydroxyamino) Acid Esters with Ammonia or Hydroxylamine. Bull. Chem. Soc. Japan 48, 2584 (1975).Google Scholar
  223. 210.
    Shinmon, N., and M.P. Cava: Total Synthesis of (±)-Mycelianamide. J. Chem. Soc. Chem. Commun. ( London ) 1980, 1020.Google Scholar
  224. 211.
    Herscheid, J.D.M., R.J.F. Nivard, M.W. Tijhuis, M.P.H. Scholten, and H.C.J. Ottenheijm: a-Functionalized Amino Acid Derivatives. A Synthetic Approach of Possible Biogenetic Importance. J. Organ. Chem. (USA) 45, 1880 (1980).Google Scholar
  225. 212.
    Chimiak, A., and T. Polonski: The Use of o-Nitrophenylsulfenyl-N-carboxyanhydrides in N-Hydroxypeptide Synthesis. J. prakt. Chem. 322, 669 (1980).Google Scholar
  226. 213.
    Jencks, W.P.: The Reaction of Hydroxylamine with Activated Acyl Groups. II. Mechanism of the Reaction. J. Amer. Chem. Soc. 80, 4585 (1958).Google Scholar
  227. 214.
    Zvilichovsky, G., and L. Heller: The synthesis of N-Hydroxy Peptides. Tetrahedron Letters 1969, 1159.Google Scholar
  228. 215.
    Shimizu, K., M. Hasegawa, and M. Akiyama: N-Hydroxy Amides. I. Synthesis of N-Benzyloxy and N-Hydroxy Peptides via Polymerization of N-Benzyloxy DL-aAmino Acid N-Carboxy Anhydrides. Bull. Chem. Soc. Japan 57, 495 (1984).Google Scholar
  229. 216.
    Smmwzu, K., K. Nakayama, and M. Akiyama: N-Hydroxy Amides. II. N-Benzyloxy-a-Amino Acid N-Hydroxysuccinimide Esters and Synthesis of a Hexapeptide Having an Alternating N-Hydroxy Amide — Amide Sequence. Bull. Chem. Soc. Japan 57, 2456 (1984).Google Scholar
  230. 217.
    Palacz, Z.: N-Benzylideneamino Acid N-Oxides and Their Use in the Synthesis of N-Benzylidenepeptide N-Oxide Esters and in the Synthesis of Optically Active N-Hydroxyamines. Ph. D. Thesis, University of Gdansk 1978.Google Scholar
  231. 218.
    Akiyama, M., M. Hasegawa, H.Takeuchi, and K. Shimizu: N-Hydroxypeptides. I. Preparation of N-Benzyloxy-a-amino Acid Anhydrides and Their Use in Peptide Synthesis. Tetrahedron Letters 1979, 2599.Google Scholar
  232. 219.
    Kolasa, T.: An Effective Synthesis of a,ß-Dehydro-a-amino Acid Derivatives from N-Acyl-N-hydroxy-a-amino Acid. Synthesis 1983, 539.Google Scholar
  233. 220.
    Ottenheijm, H.C., and J.D.M. Herscheid: N-Hydroxy-a-amino Acids in Organic Chemistry. Chem. Rev. 86, 697 (1986).Google Scholar
  234. 221.
    Jalal, M.A.F., J.L. Galles, and D. Van Der Helm Structure of Des(diserylglycyl)ferrirhodin, DDF, a Novel Siderophore from Aspergillus ochraceous. J. Organ. Chem. (USA) 50, 5642 (1985).Google Scholar
  235. 222.
    Feenstra, R.W., E.H.M. Stokkingreef, R.J.F. Nivard, and H.C.J. Ottenheum: An Efficient Synthesis of N-Hydroxy-a-amino Acid Derivatives of High Optical Purity. Tetrahedron Letters 28, 1215 (1987).Google Scholar
  236. 223.
    Milewska, M.J., and A. Chimiak: Oxidation of Amino Acids. V. A Novel Synthesis of N6-Acetyl-N6-hydroxylysine from Lysine. Tetrahedron Letters 28, 1817 (1987).Google Scholar
  237. Milewska, M.J., and A. Chimiak: Reaction of Dibenzoyl Peroxide with w-Amino Acid Esters and Novel Synthesis of N6-Acetyl-N6-hydroxylysine and N5-Acetyl-N5-hydroxyornithine. 31st Int. Congress of Pure and Applied Chemistry, Sec. 6, Sofia, 1987, 6. 126.Google Scholar
  238. 224.
    Milewska, M.J., T. Kolasa, and A. Chimiak: Oxidation of Amino Acid Esters with Acyl Peroxides. Polish J. Chem. 55, 2215 (1981).Google Scholar
  239. 225.
    Shimizu, K., K. Nakayama, and M. Akiyama: N-Hydroxy Amides. IV. Synthesis and Properties of a Trihydroxamic Acid Anilide as a Model for Ferrioxamines. Bull. Chem. Soc. Japan 59, 2421 (1986).Google Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • Andrzej Chimiak
    • 1
  • Maria J. Milewska
    • 1
  1. 1.Department of Organic ChemistryTechnical UniversityGdańskPoland

Personalised recommendations