Advertisement

Abstract

Moraceae comprise a large family of sixty genera and nearly 1400 species (1), including important groups such as Artocarpus, Morus, and Ficus. In particular, Morus (mulberry) is a small genus of trees and shrubs found in temperate and subtropical regions of the Northern Hemisphere and has been widely cultivated in China and Japan for its leaves which serve as indispensable food for silkworms. Many varieties of Morus are cultivated in Japan; these varieties are described as belonging to three species: Morus alba l. (“ Karayamaguwa” in Japanese), M. bombycis Koidz. (“ Yamaguwa” in Japanese), and M. lhou (ser.) Koidz. (“ Roguwa” in Japanese) (2). In addition, the root bark of the mulberry tree (Mori Cortex, Morus alba l. and other plants of the genus Morus) has been used as an antiphlogistic, diuretic, and expectorant in Chinese herbal medicine (3, 4), and the crude drug is known as “Sohakuhi” in Japanese. In the pharmaceutical field, a few papers have been published reporting the hypotensive effect of this extract (511). The first of these reports was presented by Fukutome in 1938 who asserted that oral administration of the hot water extract of the mulberry tree showed a remarkable hypotensive effect in rabbits (5). Ohishi reported the hypotensive effect of the ethanol extract of mulberry root bark (6), while Suzuki and Sakuma (7) reported that the hypotensive activity seemed to be due to phenolic substances and that the effect disappeared on acetylation. Later, Katayanagi et al. reported that the ether extract of the root bark given to rabbits (6 mg/ Kg, iv) showed a marked hypotensive effect and that the active constituents seemed to be a mixture of unstable phenolic compounds (8). Tane-Mura ascribed the activity of mulberry tree root bark to acetylcholine and its analogues presumably contained in the alcohol soluble fraction, and that the hypotensive constituents produced a yellowish-brown precipitate on treatment with Dragendorff reagent (9).

Keywords

Circular Dichroism Spectrum Amorphous Powder Absolute Configuration Relate Plant Root Bark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitamura, S., and G. Murata: Coloured Illustrations of Woody Plants of Japan (Genshoku Nihon Shokubutsu Zukan, Mokuhonhen), Vol. II, p 231, Osaka: Hoikusha Publishing Co., 1980.Google Scholar
  2. 2.
    Takagi, K.: “Saisogaku,” pp 39–46, Tokyo: Nihon Gakujutsu Shinkokai, 1952.Google Scholar
  3. 3.
    Nanba, T.: Coloured Illustrations of Wakanyaku (Genshoku Wakanyaku Zukan), Vol. II, pp 154–155, Osaka: Hoikusha Publishing Co., 1980.Google Scholar
  4. 4.
    Kimura, K., and T. Kimura: Medicinal Plants of Japan in Color (Genshoku Nihon Yakuyosyokubutsu Zukan), p 19–20, Oshaka: Hoikusha Publishing Co., 1981.Google Scholar
  5. 5.
    Fukutome, K.: Hypotensive Action of the Extract of Mulberry Tree. Nihon Seirigaku Zasshi (J. Physiolg. Soc. Japan) 3, 172 (1938).Google Scholar
  6. 6.
    Oman, T.: On the Hypotensive Action of Mulberry Root Bark. Sanshi Shikenjo Iho (Technical Bull. Sericultural Experiment Station) 59, 1 (1941).Google Scholar
  7. 7.
    Suzuki, B., and T. Sakuma: On the Hypotensive Components of the Mulbery Tree. Sanshi Shikenjo Iho (Technical Bull. of Sericultural Experiment Station) 59, 9 (1941).Google Scholar
  8. 8.
    Katayanagi, M., H. Wakana, and T. Kimura: Studies on the Hypotensive Constituents of Morus Root Bark, 1, 12th Annual Meeting of Pharmaceutical Society of Japan, Abstract Papers, 289, April, 1959, Osaka, Japan.Google Scholar
  9. 9.
    Tanemura, I.: Studies on the Hypotensive Constituents of Morus Root Bark. Nihon Yakurigaku Zasshi (Folia Pharmacol. Japan) 56, 704 (1960).Google Scholar
  10. 10.
    Hsu, C.-S.: Studies on the Hypotensive Effect of Some Extracts of Cortex Mori Radicis Produced in China and Japan. Kansai Ika Daigaku Zasshi (The J. of Kansai Medical Univ.) 16, 110 (1964).Google Scholar
  11. 11.
    Yamatake, Y., M. Shibata, and M. Nagai: Pharmacological Studies on Root Bark of the Mulberry Tree (Morus alba L.). Japan J. Pharmacol. 26, 461 (1976).Google Scholar
  12. 12.
    Tsukamoto, T., and T. Ohtaki: Components of a Mulberry Bark. I. Yakugaku Zasshi (J. Pharmaceutical Soc. Japan) 68, 287 (1948).Google Scholar
  13. 13.
    Kondo, Y., and T. Takemoto: A New Diglyceride from Root-Barks of Morus alba L. Chem. Pharm. Bull. (Japan) 21, 2265 (1973).CrossRefGoogle Scholar
  14. 14.
    Yagi, M., T. Kouno, Y. Aoyagi, and H. Murai: The Structure of Moranoline, a Piperidine Alkaloid from Morus Species. Nippon Nogeikagaku Kaishi (J. Agri. Chem. Soc. Japan) 50, 571 (1976).Google Scholar
  15. 15.
    Uno, T.: Isolation of Umbelliferone and Scopoletin from the Root Bark of the Mulberry Tree. Sanshi Shikenjo Hokoku (Bull. Sericul. Exp. Sta.) 24, 437 (1970).Google Scholar
  16. 16.
    Uno, T., A. Isogai, A. Suzuki, and A. Shirata: Isolation and Identification of Ethyl ß-Resorcylate (Ethyl 2,4-Dihydroxybenzoate) and 5,7-Dihydroxychromone from the Root Bark of the Mulberry Tree (Morus alba L.) and Their Biological Activity. Nihon Sanshigaku Zasshi (J. Sericul. Sci. Japan) 50, 422 (1981).Google Scholar
  17. 17.
    Shibata, H., I. Mikoshiba, and S. Shianzu: Isolation of ß-Tocopherol from the Root Bark of The Mulberry Tree. Agric. Biol. Chem. 38, 1745 (1974).CrossRefGoogle Scholar
  18. 18.
    Venkataraman, K.: Wood Phenolics in the Chemotaxonomy of the Moraceae. Phytochemistry 11, 1571 (1972).CrossRefGoogle Scholar
  19. 19.
    Venkataraman, K.: Recent Work on Some Natural Phenolic Pigments. Recent Dev. Chem. Nat. Carbon Comp. 7, 39 (1976).Google Scholar
  20. 20.
    Deshpande, V.H., P.C. Parthasarathy, and K. Venkataraman: Four Analogues of Artocarpin and Cycloartocarpin from Morus alba, Tetrahedron Letters 1715 (1968).Google Scholar
  21. 21.
    Deshpande, V.H., P.V. Wakharkar, and A.V. Ramarao: Wood Phenolics of Morus Species: Part V — Isolation of a New Flavone, Mulberranol and a Novel Phenol, Alboctalol from Morus alba. Indian J. Chem. 14B, 647 (1976).Google Scholar
  22. 22.
    Deshpande, V.H., A.V. Ramarao, K. Venkataraman, and P.V. Wakharkar: Wood Phenolics of Morus Species: Part III — Phenolic Constituents of Morus rubra Bark. Indian J. Chem. 12, 431 (1974).Google Scholar
  23. 23.
    Dave, K.G., and K. Venkataraman: The Colouring Matters of the Wood of Artocarpus integrifolia: Part I — Artocarpin. J. Sci. Industr. Res. 15B, 183 (1956).Google Scholar
  24. 24.
    Dave, K.G., R. Mani, and K. Venkataraman: The Colouring Matters of the Wood of Artocarpus integrifolia: Part III — Constitution of Artocarpin and Synthesis of Tetrahydroartocarpin Dimethyl Ether. J. Sci. Industr. Res. 20B, 112 (1961).Google Scholar
  25. 25.
    Radhakrishnan, P.V., and A.V. Ramarao: Colouring Matters of the Wood of Artocarpus heterophyllus: Part IV — Constitution of Artocarpesin and Norartocarpetin, and Synthesis of Dihydroartocarpesin Tetramethyl Ether. Indian J. Chem. 4, 406 (1966).Google Scholar
  26. 26.
    Parthasarathy, P.C., P.V. Radhakrishnan, S.S. Rathi, and K. Venkataraman: Colouring Matters of the Wood of Artocarpus heterophyllus: Part V — Cycloartocarpesin and Oxydihydroartocarpesin, Two New Flavones. Indian J. Chem. 7, 101 (1969).Google Scholar
  27. 27.
    Ramarao, A.V., M. Varadan, and K. Venkataraman: Colouring Matters of the Wood of Artocarpus heterophyllus: Part VI — Cycloheterophyllin, a Flavone Linked to Three Isoprenoid Groups. Indian J. Chem. 9, 7 (1971).Google Scholar
  28. 28.
    Nair, P.M., A.V. Ramarao, and K. Venkataraman: Cycloartocarpin, Tetrahedron Letters 125 (1964).Google Scholar
  29. 29.
    Rama Rao, A.V., M. Varadan, and K. Venkataraman: Colouring Matters of the Wood of Artocarpus heterophyllus: Part VII — Isocycloheterophyllin, a New Flavone. Indian J. Chem. 11, 298 (1973).Google Scholar
  30. 30.
    Rama Rao, A.V., S.S. Rathi, and K. Venkataraman: Chaplasin, a Flavone Containing an Oxepine Ring from the Heartwood of Artocarpus chaplasha Roxb. Indian J. Chem. 10, 905 (1972).Google Scholar
  31. 31.
    Pendse, A.D., R. Pendse, A.V. Rama Rao, and K. Venkataraman: Integrin, Cyclointegrin and Oxyisocyclointegrin, Three New Flavones from the Heartwood of Artocarpus integer. Indian J. Chem. 14B, 69 (1976).Google Scholar
  32. 32.
    Nomura, T., T. Fukai, S. Yamada, and M. Katayanagi: Studies on the Constituents of the Cultivated Mulberry Tree I. Three New Prenylflavones from the Root Bark of Morus alba L. Chem. Pharm. Bull. (Japan) 26, 1394 (1978).CrossRefGoogle Scholar
  33. 33.
    Nomura, T., and T. Fukai: Kuwanon G, a New Flavone Derivative from the Root Barks of the Cultivated Mulberry Tree (Morus alba L.). Chem. Pharm. Bull. (Japan) 28, 2548 (1980).CrossRefGoogle Scholar
  34. 34.
    Nomura, T., T. Fukai, and T. Narita: Hypotensive Constituent, Kuwanon H, a New Flavone Derivative from the Root Bark of the Cultivated Mulberry Tree (Morus alba L.). Heterocycles 14, 1943 (1980).CrossRefGoogle Scholar
  35. 35.
    Fukai, T., Y. Hano, K. Hirakura, T. Nomura, J. Uzawa, and K. Fukushima: Structures of Mulberrofurans F and G, Two Natural Hypotensive Diels-Alder Type Adducts from the Cultivated Mulberry Tree (Morus Thou (Ser.) Koidz.). Heterocycles 22, 473 (1984).CrossRefGoogle Scholar
  36. 36.
    Mabry, T.J., K.R. Markham, and M.B. Thomas: The Systematic Identification of Flavonoids, Chapter V. New York: Springer 1970.Google Scholar
  37. 37.
    Arnone, A., G. Cardillo, L. Merlini, and R. Mondelli: Natural Chromens V. NMR Effects of Acetylation and Long-Range Coupling as a Tool for Structural Elucidation of Hydroxychromenes, Tetrahedron Letters 4201 (1967).Google Scholar
  38. 38.
    Konno, C., Y. Oshima, and H. Hiking: Morusinol, Isoprenoid Flavone from Morus Root Barks. Planta medica 32, 118 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    Markham, K.R., and V.M. Chari (with T.J. Mabry, Section 2.5): Carbon-13 NMR Spectroscopy of Flavonoids In: The Flavonoids, Advances in Research (HARBORNE, J.B., and T.J. MABRY eds.), p 19. New York: Chapman and Hall. 1982.Google Scholar
  40. 40.
    Nomura, T., T. Fukai, and M. Katayanagi: Studies on the Constituents of the Cultivated Mulberry Tree III. Isolation of Four New Flavones, Kuwanon A, B, C, and Oxydihydromorusin from the Root Bark of Morus alba L. Chem. Pharm. Bull. (Japan) 26, 1453 (1978).CrossRefGoogle Scholar
  41. 41.
    Nomura, T., T. Fukai, S. Yamada, and M. Katayanagi: Studies on the Constituents of the Cultivated Mulberry Tree II. Photooxidative Cyclization of Morusin. Chem. Pharm. Bull. (Japan) 26, 1431 (1978).CrossRefGoogle Scholar
  42. 42.
    Nossura, T., and T. Fukai: Constituents of the Cultivated Mulberry Tree. VII. Isolation of Three New Isoprenoid Flavanones, Kuwanon D, E, and F from Root Bark of Morus alba L. Planta medica 42, 79 (1981).CrossRefGoogle Scholar
  43. 43.
    Horowitz, R.M.: Detection of Flavanones by Reduction with Sodium Borohydride. J. Org. Chem. 22, 1733 (1957).CrossRefGoogle Scholar
  44. 44.
    Jefferies, P.R., and G.K. Worth: The Chemistry of the Western Australian Rutaceae - VI. Two Novel Coumarins from Eriostemon brucei. Tetrahedron 29, 903 (1973).CrossRefGoogle Scholar
  45. 45.
    Begley, M.J., L. Crombie, R.W. King, D.A. Slack, and D.A. Whiting: Chromens and Citrans Derived from Phloroacetophenone and Phloroglucinaldehyde by Citral Condensation: Regioselectivity, Mechanism, and X-ray Crystal Structures. J. Chem. Soc. Perkin I, 2393 (1977).Google Scholar
  46. 46.
    Crombie, L., and R. Ponsford: Synthesis of Cannabinoids by Pyridine-Catalysed Citral-Olivetol Condensation: Synthesis and Structure of Cannabicyclol, Cannabichromen, (Hashish Extractives), Citrylidene-Cannabis, and Related Compounds. J. Chem. Soc. (C) 796 (1971).Google Scholar
  47. 47.
    Fukai, T., Y. Hano, K. Hirakura, T. Nomura, and J. Uzawa: Constituents of the Cultivated Mulberry Tree XXVII. Structures of a Novel 2-Arylbenzofuran Derivative and Two Flavone Derivatives from the Cultivated Mulberry Tree (Morus Thou Koidz.). Chem. Pharm. Bull. (Japan) 33, 4288 (1985).CrossRefGoogle Scholar
  48. 48.
    Nomura, T.: Phenolic Constituents of the Root Barks of the Mulberry Tree, 20th Symposium on Phytochemistry, Abstract Papers, p 1, Jan. 1984, Tokyo, Japan.Google Scholar
  49. 49.
    Nomura, T., and T. Fukai: Prenylflavonoids from the Root Bark of the Cultivated Mulberry Tree. Heterocycles 15, 1531 (1981).CrossRefGoogle Scholar
  50. 50.
    Nomura, T., Y. Sawaura, T. Fukai, S. Yamada, and S. Tamura: Studies on the Constituents of the Cultivated Mulberry Tree V. The Synthesis of Tetrahydrokuwanon C Tetramethyl Ether. Heterocycles 9, 1355 (1978).CrossRefGoogle Scholar
  51. 51.
    Finnegan, R.A., B. Gilbert, E.J. Eisenbraun, and C. Djerassi: Naturally Occurring Oxygen Heterocycles VIII. Synthesis of Some Coumarins Related to Mammein. J. Org. Chem. 25, 2169 (1960).CrossRefGoogle Scholar
  52. 52a).
    Mahal, H.S., and K. Venkataraman: Synthetical Experiments in the Chromone Group. Part XIV. The Action of Sodamide on 1-Acyloxy-2-acetonaphthones. J. Chem. Soc. 1767 (1934);Google Scholar
  53. b) Nakazawa, K., and T. Mivata: Synthetic Methods of Organic Compounds (The Society of Synthetic Organic Chemistry Japan, ed.), 13, 111, Tokyo: Giho-do. 1966.Google Scholar
  54. 53.
    Chari, V.M., S. Ahmad, and B.-G. Osterdahl: 13C NMR Spectra of Chromenoand Prenylated Flavones. Structure Revision of Mulberrin, Mulberrochromene, Cyclomulberrin and Cyclomulberrochromene. Z. Naturforsch. 33b, 1547 (1978).Google Scholar
  55. 54.
    Wenkert, E., and H.E. Gottlieb: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances 49. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Flavonoid and Isoflavonoid Compounds. Phytochemistry 16, 1811 (1977).CrossRefGoogle Scholar
  56. 55.
    Nomura, T., and T. Fukai: On the Structures of Mulberrin, Mulberrochromene, Cyclomulberrin, and Cyclomulberrochromene. Heterocycles 12, 1289 (1979).CrossRefGoogle Scholar
  57. 56.
    Bartlett, P.D., and R.R. Hiatt: A Series of Tertiary Butyl Peresters Showing Concerted Decomposition. J. Am. Chem. Soc. 80, 1398 (1958).CrossRefGoogle Scholar
  58. 57.
    Crombie, L., D.E. Games, N.J. Haskins, and G.F. Reed: Extractives of Mammea americana L. Part III. Identification of New Coumarin Relatives of Mammea B/BA, B/BB, and B/BC Having 5,6-Annulation and Higher Oxidation Levels. J. Chem. Soc. Perkin I 2241 (1972).Google Scholar
  59. 58.
    Matsuura, T., and H. Matsushima: Photoinduced Reactions-XXII Photooxidative Cyclozation of 3-Methoxyflavones. Tetrahedron 24, 6615 (1968).CrossRefGoogle Scholar
  60. 59.
    Nakashima, R., K. Okamoto, and T. Matsuura: Photoinduced Reactions. XCIV. Photoreactions of Flavanones. Bull. Chem. Soc. Jpn. 49, 3355 (1976).CrossRefGoogle Scholar
  61. 60.
    Nomura, T., T. Fukai, and M. Amagai: The Photoreaction of Morusin Trimethyl Ether. Heterocycles 12, 1529 (1979).CrossRefGoogle Scholar
  62. 61.
    Nomura, T., and T. Fukai: Studies on the Constituents of the Cultivated Mulberry Tree IV. On the Reaction Mechanism of Photo-oxidative Cyclization of Morusin. Heterocycles 9, 635 (1978).CrossRefGoogle Scholar
  63. 62.
    Matsuura, T., and I. Saito: Photooxidation of Heterocyclic Compounds In: Photochemistry of Heterocyclic Compounds (BUCHARDT, O., ed.), p. 456, New York: John Wiley and Sons, 1976.Google Scholar
  64. 63a).
    Stenberg, V.I., R.D. Olson, C.T. Wang, and N. Kulevsky: The Role of Charge-Transfer Complexes in the Photooxidation of Ethers with Oxygen. J. Org. Chem. 32, 3227 (1967);CrossRefGoogle Scholar
  65. 63b).
    Maeda, K., A. Nakane, and H. Tsubomura: The Photo-oxygenation Reactions of Diethyl Ether, p-Phenylenediamine, and N,N-Dimethylaniline. Bull. Chem. Soc. Jpn. 48, 2448 (1975);CrossRefGoogle Scholar
  66. 63c).
    e) Tsubomura, H., and M. Hri: Electronic Structures and Reactivities of Excited Oxygen Molecules, Yuki Gosei Kagaku Kyokai Shi (J. Syn. Org. Chem. Jpn.) 26, 929 (1968).CrossRefGoogle Scholar
  67. 64.
    Shani, A., and R. Mechoulam: Cannabielsoic acids, Isolation and Synthesis by a Novel Oxidative Cyclization, Tetrahedron 30, 2437 (1974).CrossRefGoogle Scholar
  68. 65.
    Nomura, T., T. Fukai, and M. Katayanagi: Oxidative Cyclization of Morusin with Manganese Dioxide. Heterocycles 6, 1847 (1977).CrossRefGoogle Scholar
  69. 66.
    Nomura, T., and T. Fukai: The Photo-sensitized Oxidation of Morusin. Heterocycles 8, 443 (1977).CrossRefGoogle Scholar
  70. 67.
    Nomura, T., T. Fukai, and J. Matsumoto: Oxidative Cyclization of Morusin, J. Heterocyclic Chem. 17, 641 (1980).CrossRefGoogle Scholar
  71. 68.
    Ouannés, C., and T. Wilson: Quenching of Singlet Oxygen by Tertiary Aliphatic Amines. Effect of DABCO. J. Am. Chem. Soc. 90, 6527 (1968).CrossRefGoogle Scholar
  72. 69.
    Takasugi, M.: Phytoalexins Produced by Mulberry Tree. Kagaku to Seibutsu 19, 161 (1981).Google Scholar
  73. 70.
    Masamune, T., M. Takasugi, and A. Murai: On the Chemistry of Phytoalexins, Yuki Gosei Kagaku Kyokai Shi (J. Syn. Org. Chem. Jpn.) 43, 217 (1985).CrossRefGoogle Scholar
  74. 71.
    Shirata, A., K. Takahashi, M. Takasugi, S. Nagao, S. Ishikawa, S. Ueno, L. Muffroz, and T. Masamune: Antimicrobial Spectra of the Compounds from Mulberry. Sanshi Shikenjo Hokoku (Bull. Sericul. Exp. Sta.) 28, 793 (1983).Google Scholar
  75. 72.
    Takasugi, M., S. Nagao, L. Muoz, S. Ishikawa, T. Masamune, A. Shirata, and K. Takahashi: The Structure of Phytoalexins Produced in Diseased Mulberry. 22nd Symposium on the Chemistry of Natural Products, Symposium Paper, p 275, Oct., 1979, Fukuoka, Japan.Google Scholar
  76. 73.
    Takasugi, M., S. Ishikawa, T. Masamune, A. Shirata, and K. Takahashi: Anti-fungal Substances Produced in the Epidermis of Mulberry Shoots, 42nd Annual Meeting of the Chemical Society of Japan, Abstract Papers, p 352, Sept., 1980, Sendai, Japan.Google Scholar
  77. 74.
    Takasugi, M., S. Ishikawa, S. Nagao, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 8. Albanins F and G, Natural DielsAlder Adducts from Mulberry. Chem. Letters 1577 (1980).Google Scholar
  78. 75.
    Oshima, Y., C. Konno, H. Hiking, and K. Matsushita: Structure of Moracenin B, a Hypotensive Principle of Morus Root Barks. Tetrahedron Letters 21, 3381 (1980).CrossRefGoogle Scholar
  79. 76.
    Oshima, Y., C. Konno, H. Hiking, and K. Matsushita: Structure of Moracenin A, a Hypotensive Principle of Morus Root Barks. Heterocycles 14, 1287 (1980).CrossRefGoogle Scholar
  80. 77.
    Takasugi, M., S. Ishikawa, T. Masamune, A. Shirata, and K. Takahashi: Structure of Antifungal Compounds, Albanin H and Albafuran C, from the Epidermis of Mulberry Shoots, 43rd Annual Meeting of the Chemical Society of Japan, Abstract Papers, p 718, Apr., 1981.Google Scholar
  81. 78.
    Takasugi, M., S. Ishikawa, and T. Masamune: Studies on Phytoalexins of the Moraceae 11. Albafurans A and B, Geranyl 2-Phenylbenzofurans from Mulberry. Chem. Letters 1221 (1982).Google Scholar
  82. 79.
    Takasugi, M., S. Ishikawa, S. Nagao, and T. Masamune: Studies on Phytoalexins of the Moraceae 12. Albafuran C, a Natural Diels-Alder Adduct of a Dehydroprenyl2-phenylbenzofuran with a Chalcone from Mulberry. Chem. Letters 1223 (1982).Google Scholar
  83. 80.
    Takasugi, M., L. Münoz, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 3. Stilbene Phytoalexins from Diseased Mulberry. Chem. Letters 1241 (1978).Google Scholar
  84. 81.
    Takasugi, M., S. Nagao, T. Masamune, A. Shirata, and K. Takahashi: Structure of Moracin A and B, New Phytoalexins from Diseased Mulberry. Tetrahedron Letters 797 (1978).Google Scholar
  85. 82.
    Takasugi, M., S. Nagao, S. Ueno, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of Moraceae 2. Moracin C and D, New Phytoalexins from Diseased Mulberry. Chem. Letters 1239 (1978).Google Scholar
  86. 83.
    Takasugi, M., S. Nagao, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of Moraceae 4. Structures of Moracins E, F, G, and H, New Phytoalexins from Diseased Mulberry. Tetrahedron Letters 4675 (1979).Google Scholar
  87. 84.
    Takasugi, M., S. Nagao, and T. Masamune: Studies on Phytoalexins of Moraceae 10. Structure of Dimoracin, a New Natural Diels-Alder Adduct from Diseased Mulberry. Chem. Letters 1217 (1982).Google Scholar
  88. 85.
    Burke, J.M., and R. Stevenson: Natural Benzofurans. Synthesis of Moracin A and B. J. Chem. Research (S) 34 (1985).Google Scholar
  89. 86.
    Clough, J.M., I.S. Mann, and D.A. Widdowson: Transition Metal Mediated Organic Synthesis: The Synthesis of Moracin M. Tetrahedron Letters 28, 2645 (1987).CrossRefGoogle Scholar
  90. 87.
    Takasugi, M., S. Nagao, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 7. Chalcomoracin, a Natural Diels-Alder Adduct from Diseased Mulberry. Chem. Letters 1573 (1980).Google Scholar
  91. 88.
    Nomura, T., T. Fukai, J. Unto, and T. Arai: Mulberrofuran A, a New Isoprenoid 2-Arylbenzofuran from the Root Bark of the Cultivated Mulberry Tree (Morus alba L.). Heterocycles 9, 1593 (1978).CrossRefGoogle Scholar
  92. 89.
    Fukai, T., T. Fujimoto, Y. Hano, T. Nomura, and J. Uzawa: Constituents of the Cultivated Mulberry Tree XXII. Structures of Mulberrofurans B and L, 2-Arylbenzofuran Derivatives from the Root Bark of the Cultivated Mulberry Tree (Morus Thou Koidz.). Heterocycles 22, 2805 (1984).CrossRefGoogle Scholar
  93. 90.
    Nomura, T., T. Fukai, T. Shimada, and I.-S. Chen: Constituents of the Cultivated Mulberry Tree XIII. Components of Root Bark of Morus australis. 1. Structure of a New 2-Arylbenzofuran Derivative, Mulberrofuran D. Planta medica 49, 90 (1983).PubMedCrossRefGoogle Scholar
  94. 91.
    Hano, Y., H. Kohno, M. Itoh, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXIX. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark) VII. Structures of Three New 2-Arylbenzofuran Derivatives from the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark). Chem. Pharm. Bull. (Japan) 33, 5294 (1985).CrossRefGoogle Scholar
  95. 92.
    Hirakura, K., T. Fujimoto, T. Fulcai, and T. Nomura: Two Phenolic Glycosides from the Root Bark of the Cultivated Mulberry Tree (Morus Thou). J. Nat. Prod. 49, 218 (1986).CrossRefGoogle Scholar
  96. 93.
    Nomura, T.: Constituents of the Root Bark of the Mulberry Tree. Kagaku no Ryoiki 36, 596 (1982).Google Scholar
  97. 94.
    Momose, Y., and T. Nomura: Effect of the Components of Morus Root Bark on Blood Pressure, 99th Annual Meeting of Pharmaceutical Socity of Japan, Abstract Paper, p 162, Aug., 1979, Sapporo, Japan.Google Scholar
  98. 95.
    Nomura, T., T. Fukai, Y. Momose, and R. Takeda: Hypotensive Constituents of the Root Bark of the Mulberry Tree (Morus alba L.) and the Mechanism of Their Actions, Third Symposium on the Development and Application of Naturally Occurring Drug Materials, Symposium Paper, p 13, Aug., 1980, Tokyo, Japan.Google Scholar
  99. 96.
    Nomura, T., T. Fukai, T. Narita, S. Terada, J. Uzawa, Y. Iitaka, M. Takasugi, S. Ishikawa, S. Nagao, and T. Masamune: Confirmation of the Structures of Kuwanons G and H (Albanins F and G) by Partial Synthesis. Tetrahedron Letters 22, 2195 (1981).CrossRefGoogle Scholar
  100. 97.
    Nomura, T., T. Fukai, Y. Momose, and T. Narita: Structures of the Hypotensive Constituents of the Root Bark of the Mulberry Tree (Morus alba L.), 23rd Symposium on the Chemistry of Natural Products, Symposium Paper, p 552, Oct., 1980, Nagoya, Japan.Google Scholar
  101. 98.
    Imashimizu, A.: Studies on the Components of Morus Root Bark, Master’s thesis, Toho University, p 23 (1982).Google Scholar
  102. 99.
    Kutney, J.P., T. Inaba, and D.L. Dreyer: The Structure of Thamnosin. A Novel Dimeric Coumarin System. J. Am. Chem. Soc. 90, 813 (1968).CrossRefGoogle Scholar
  103. 100.
    Bell, A.A., R.D. Stipanovic, D.H. O’brien, and P.A. Fryxell: Sesquiterpenoid Aldehyde Quinones and Derivatives in Pigment Glands of Gossypium. Phytochemistry 17, 1297 (1978).CrossRefGoogle Scholar
  104. 101.
    Mori, I., Y. Nakachi, K. Ueda, D. Uemura, and Y. Hirata: Isolation and Structure of Alflabene from Alpiniaflabellata Ridl. Tetrahedron Letters 2297 (1978).Google Scholar
  105. 102.
    Jurd, L., R.Y. Wong, and M. Benson: The Structures of Paraensidimerin A and C, Two Bisquinolinone Alkaloids from Euxylophora paraensis. Aust. J. Chem. 35, 2505 (1982).CrossRefGoogle Scholar
  106. 103.
    Oshima, Y., C. Konno, H. Hikino, and K. Matsushita: Structure of Moracenin C, a Hypotensive Principle of Morus Root Barks. Heterocycles 14, 1461 (1980).CrossRefGoogle Scholar
  107. 104.
    Oshima, Y., C. Konno, and H. Hiking: Structure of Moracenin D, a Hypotensive Principle of Morus Root Barks. Heterocycles 16, 979 (1981).CrossRefGoogle Scholar
  108. 105.
    Nomura, T., T. Fuicai, E. Sato, and K. Fukushima: The Formation of Moracenin D from Kuwanon G. Heterocycles 16, 983 (1981).CrossRefGoogle Scholar
  109. 106.
    Sauer, J.: Diels-Alder-Reaktionen I: Präparative Aspekte. Angew. Chem. 78, 233 (1966).CrossRefGoogle Scholar
  110. 107.
    Sauer, J.: Diels-Alder-Reaktionen II: Zum Reaktionsmechanismus. Angew. Chem. 79, 76 (1967).CrossRefGoogle Scholar
  111. 108.
    Taiceuchi, S., J. Uzawa, H. Seto, and H. Yonehara: New 13C-NMR Techniques Applied to the Pentalenolactone Structure. Tetrahedron Letters 2943 (1977).Google Scholar
  112. 109.
    Seto, H., T. Sasaki, H. Yonehara, and J. Uzawa: Studies on the Biosynthesis of Pentalenolactone. Part I. Application of Longrange Selective Proton Decoupling (LSPD) and Selective 13C-{1H} NOE in the Structure Elucidation of Pentalenolactone G. Tetrahedron Letters 923 (1978).Google Scholar
  113. 110.
    Uzawa, J., T. Nomura, and T. Fukai: LSPD Technique on Kuwanon G, H, and Related Compounds, 101st Annual Meeting of Pharmaceutical Society of Japan, Abstract Paper, p 509, Apr., 1981, Kumamoto, Japan.Google Scholar
  114. 111.
    Nomura, T., T. Fukai, J. Matsumoto, and T. Ohmoiu: Constituents of the Cultivated Mulberry Tree. VIII. Components of Root Barks of Morus bombycis. Planta medica 46, 28 (1982).PubMedCrossRefGoogle Scholar
  115. 112.
    Fukai, T., Y. Hano, K. Hirakura, T. Nomura, J. Uzawa, and K. Fukushima: Constituents of the Cultivated Mulberry Tree XXV. Structures of Two Natural Hypotensive Diels-Alder Type Adducts, Mulberrofurans F and G, from the Cultivated Mulberry Tree (Morus Thou Koidz.). Chem. Pharm. Bull. (Japan) 33, 3195 (1985).CrossRefGoogle Scholar
  116. 113.
    Sherw, E.A., R.K. Gupta, and M. Krishnamurti: Anomalous AICI, Induced U.V. Shift of C-Alkylated Polyphenols. Tetrahedron Letters 21, 641 (1980).CrossRefGoogle Scholar
  117. 114.
    Hirakura, K., Y. Hano, T. Fukai, T. Nomura, J. Uzawa, and K. Fukushima: Constituents of the Cultivated Mulberry Tree XXI. Structure of Three New Natural Diels-Alder Type Adducts, Kuwanons P and X, and Mulberrofuran J, from the Cultivated Mulberry Tree (Morus Thou Koidz.). Chem. Pharm. Bull. (Japan) 33, 1088 (1985).CrossRefGoogle Scholar
  118. 115.
    Rama Rao, A.V., V.H. Deshpande, R.K. Shastri, S.S. Tavale, and N.N. Dhaneshwar: Structures of Albanols A and B, Two Novel Phenols from Morus alba Bark, Tetrahedron Letters 24, 3013 (1983).CrossRefGoogle Scholar
  119. 116.
    Hano, Y., T. Fukai, T. Nomura, J. Uzawa, and K. Fukushima: Structure Of Mulberrofuran I, a Novel 2-Arylbenzofuran Derivative from the Cultivated Mulberry Tree (Morus bombycis Koidz.). Chem. Pharm. Bull. (Japan) 32, 1260 (1984).CrossRefGoogle Scholar
  120. 117.
    Hang, Y., T. Fukai, H. Tsubura, and T. Nomura: Some Pigments and Related Compounds of Morus Root Bark, 27th Symposium on the Chemistry of Natural Products, Abstract Paper, p 710, Oct. Hiroshima, Japan, 1985.Google Scholar
  121. 118.
    Hang, Y., M. Itoh, and T. Nomura: Structures of Kuwanols A and B, Two Novel Stilbene Derivatives from the Cultivated Mulberry Tree (Morus bombycis Koidz.). Heterocycles 23, 819 (1985).CrossRefGoogle Scholar
  122. 119.
    Hano, Y., and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXVI. Structure of Mulberrofuran P, a Novel 2-Arylbenzofuran Derivative from the Cultivated Mulberry Tree (Morus alba L.). Heterocycles 24, 1381 (1986).CrossRefGoogle Scholar
  123. 120.
    Hano, Y., K. Hirakura, T. Someya, and T. Nomura: Structure of Mulberrofuran M, a Novel 2-Arylbenzofuran Derivative from the Cultivated Mulberry Tree (Morus alba L.). Heterocycles 24, 1251 (1986).CrossRefGoogle Scholar
  124. 121.
    Hano, Y., H. Tsubura, and T. Nomura: Structure of Mulberrofuran Q, a Novel 2-Arylbenzofuran Derivative from the Cultivated Mulberry Tree (Morus alba L.), Heterocycles 24, 1807 (1986).CrossRefGoogle Scholar
  125. 122.
    Uzawa, J., and S. Takeuchi: Application of Selective 13C-{1H} Nuclear Overhauser Effects with Low-power ‘H-Irradiation in Carbon-13 NMR Spectroscopy. Org. Mag. Reson. 11, 502 (1978).CrossRefGoogle Scholar
  126. 123.
    Hano, Y., H. Tsubura, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXVIII. Structures of Kuwanons Y and Z, Two New Stilbene Derivatives from the Cultivated Mulberry Tree (Morus alba L.). Heterocycles 24, 2603 (1986).CrossRefGoogle Scholar
  127. 124.
    Afzal, M., and G. Aloriquat: Biosynthesis of Isoflavonoid and Related Phytoalexins. Heterocycles 19, 1295 (1982).CrossRefGoogle Scholar
  128. 125.
    Narasimhan, R., B. Dhruva, S.V. Paranjpe, D.D. Kulkarni, A.F. Mascarenhas, and S.B. Davis: Tissue Culture of Some Woody Species. Proc. Indian Acad. Sci. 71B, 204 (1970).Google Scholar
  129. 126.
    Kulkarni, D.D., D.D. Ghugale, and R. Narasimhan: Chemical Investigations of Plant Tissues Grown in vitro. Isolation of (3-Sitosterol from Morus alba Callus Tissue. Indian J. Exp. Biol. 8, 347 (1970).Google Scholar
  130. 127.
    Seki, H., M. Takeda, K. Tsutsumi, and Y. Ushiki: Callus Culture of the Mulberry Tree. I. Effect of Concentrations of Auxin and Kinetin on the Callus Culture of the Mulberry Stem. Nihon Sanshigaku Zasshi (J. Sericul. Sci. Japan) 40, 81 (1971).Google Scholar
  131. 128.
    Ueda, S., K. Inoue, Y. Shiobara, I. Kimura, and H. Inouye: Quinones and Related Compounds in Higher Plants. X. Naphtoquinone Derivatives of the Callus Culture of Catalpa ovata. Planta medica 40, 168 (1980).CrossRefGoogle Scholar
  132. 129.
    Ueda, S., T. Nomura, T. Fukai, and J. Matsumoto: Kuwanon J, a New Diels-Alder Adduct and Chalcomoracin from Callus Culture of Morus alba L. Chem. Pharm. Bull. (Japan) 30, 3042 (1982).CrossRefGoogle Scholar
  133. 130.
    Ueda, S., J. Matsumoto, and T. Nomura: Four New Natural Diels-Alder Type Adducts. Mulberrofuran E, Kuwanon Q, R, and V from Callus Culture of Morus alba L. Chem. Pharm. Bull. (Japan) 32, 350 (1984).CrossRefGoogle Scholar
  134. 131.
    J., T. Fukai, T. Nomura, and S. Ueda: Constituents of the Cultivated Mulberry Tree XXXV. Constituents of Morus alba L. Cell Cultures. (1). Structures of Four New Natural Diels-Alder Type Adducts, Kuwanons J, Q, R, and V. Chem. Pharm. Bull. (Japan) 34, 2471 (1986).Google Scholar
  135. 132.
    Nomura, T., T. Fukai, J. Matsumoto, A. Imashimizu, S. Terada, and M. Hama: Constituents of the Cultivated Mulberry Tree X. Structure of Kuwanon I, a New Natural Diels-Alder Adduct from the Root Bark of Morus alba. Planta medica 46, 167 (1982).PubMedCrossRefGoogle Scholar
  136. 133.
    Nomura,T., T. Fukai, Y. Hano, K. Nemoto, S. Terada, and T. Kuramoci-n: Constituents of the Cultivated Mulberry Tree XII. Isolation of Two New Natural DielsAlder Adducts from Root Bark of Morus alba. Planta medica 47, 151 (1983).PubMedCrossRefGoogle Scholar
  137. 134.
    Hano, Y., K. Hirakura, T. Nomura, S. Terada, and K. Fukushima: Constituents of the Cultivated Mulberry Tree XVI. Components of Root Bark of Morus lhou. 1. Structures of Two New Natural Diels-Alder Adducts, Kuwanons N and O. Planta medica 50, 127 (1984).CrossRefGoogle Scholar
  138. 135.
    Hirakura, K., T. Fukai, Y. Hano, and T. Nomura: Constituents of the Cultivated Mulberry Tree 20. Constituents of the Root Bark of Morus lhou. 2. Kuwanon W, a Natural Diels-Alder Type Adduct from the Root Bark of Morus Thou. Phytochemistry 24, 159 (1985).CrossRefGoogle Scholar
  139. 136.
    Nomuitn, T., T. Fukai, Y. Hano, and H. Ixuta: Kuwanon M, a New Diels-Alder Adduct from the Root Barks of the Cultivated Mulberry Tree (Morus Thou (Ser.) Koidz.). Heterocycles 20, 585 (1983).Google Scholar
  140. 137.
    Kohno, H., T. Takaba, T. Fukai, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXIX. Structure of Mulberrofuran R, a Novel 2-Arylbenzofuran Derivative from the Cultivated Mulberry Tree (Morus Thou Koidz.). Heterocycles 26, 759 (1987).CrossRefGoogle Scholar
  141. 138.
    Hirakura, K., I. Saida, T. Fukai, and T. Nomura: Mulberroside B, a New CGlucosylcoumarin from the Cultivated Mulberry Tree (Morus thou Koidz.). Heterocycles 23, 2239 (1985).CrossRefGoogle Scholar
  142. 139.
    Nomura, T., T. Fulcra, and Y. Hano: Constituents of the Cultivated Mulberry Tree IX. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark) I. Structure of a New Flavanone Derivative, Sanggenon A, Planta medica 47, 30 (1983).PubMedCrossRefGoogle Scholar
  143. 140.
    Nomura, T., T. Fukai, Y. Hano, and J. Uzawa: Structure of Sanggenon C, a Natural Hypotensive Diels-Alder Adduct from Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Barks). Heterocycles 16, 2141 (1981).CrossRefGoogle Scholar
  144. 141.
    Nomura, T., T. Fuxai, Y. Hano, and J. Uzawa: Structure of Sanggenon D, a Natural Hypotensive Diels-Alder Adduct from Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Barks). Heterocycles 17, 381 (1982).CrossRefGoogle Scholar
  145. 142.
    Sun, J.-Y., J.-Y. Lou, S. Suzuki, Y. Hano, and T. Nomura: On the Components of the Chinese Morus Root Bark. 2., 34th Annual Meeting of the Japanese Society of Pharmacognosy, Abstract Papers, p 155, Oct., 1987, Osaka, Japan.Google Scholar
  146. 143.
    Hano, Y., M. Itoh, N. Koyama, and T. Nomura: Constituents of the Cultivated Mulberry Tree XIX. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Boot Bark) V. Structures of Three New Flavanones, Sanggenons L, M, and N. Heterocycles 22, 1791 (1984).CrossRefGoogle Scholar
  147. 144.
    Nomura, T., T. Fukai, Y. Hano, and K. Tsukamoto: Constituents of the Cultivated Mulberry Tree XIV. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Barks) III. Structure of a New Flavanone Derivative, Sanggenon F. Heterocycles 20, 661 (1983).CrossRefGoogle Scholar
  148. 145.
    Hano, Y., and T. Nomura: Constituents of the Cultivated Mulberry Tree. XV. Constituents of the Cultivated Mulberry Tree. XV. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Barks) IV. Structures of Four New Flavonoids, Sanggenon H, I, J and K. Heterocycles 20, 1071 (1983).CrossRefGoogle Scholar
  149. 146.
    Hano, Y., M. Itoh, T. Fuicm, T. Nomura, and S. Urano: Constituents of the Cultivated Mulberry Tree XXVIII. Constituents of the Chinese Crude Drug “SangBai-Pi” (Morus Root Bark) VI. Revised Structure of Sanggenon B. Heterocycles 23, 1691 (1985).CrossRefGoogle Scholar
  150. 147.
    Hano, Y., H. Koxxo, S. Suzuxt, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXVII. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark) VIII. Structures of Sanggenons E and P, Two New Diels-Alder Type Adducts from the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark). Heterocycles 24, 2285 (1986).CrossRefGoogle Scholar
  151. 148.
    Fukai, T., Y. Hano, T. Fujimoto, and T. Nomura: Structure of Sanggenon G, a New Diels-Alder Adduct from the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Barks). Heterocycles 20, 611 (1983).CrossRefGoogle Scholar
  152. 149.
    Hano, Y., and T. Nomura: Structure of Sanggenon O, a Natural Diels-Alder Type Adduct from Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark). Heterocycles 23, 2499 (1985).CrossRefGoogle Scholar
  153. 150.
    Nomura, T., T. Fukai, Y. Hano, and S. Urano: Constituents of the Cultivated Mulberry Tree XI. Constituents of the Chinese Crude Drug “Sang-Bai-Pi” (Morus Root Bark). II. Structure of a New Flavanone Derivative, Sanggenon B. Planta medica 47, 95 (1983).PubMedCrossRefGoogle Scholar
  154. 151.
    Hano, Y., H. Koxxo, T. Fukai, and T. Nomura: Absolute Configuration of DielsAlder Type Adducts from the Morus Root Bark, 28th Symposium on the Chemistry of Natural Products, Abstract Papers, p 1, Oct., 1986, Sendai, Japan.Google Scholar
  155. 152.
    Hano, Y., S. Suzuki, H. Kohno, and T. Nomura: Absolute Configuration of Kuwanon L, a Natural Diels-Alder Type Adduct from the Morus Root Bark, Heterocycles 27, 75 (1988).CrossRefGoogle Scholar
  156. 153.
    Hang, Y., S. Suzuki, T. Nomura, and Y. Iitaka: Absolute Configuration of Natural Diels-Alder Type Adducts from the Morus Root Bark, Heterocycles, in press.Google Scholar
  157. 154.
    Harada, N., and K. Nakanishi: “Circular Dichroism Spectroscopy - Exciton - Coupling in Organic Stereochemistry”. Tokyo: Tokyokagakudojin. 1982.Google Scholar
  158. 155.
    Yang, Z.-Y.: Identification of Cortex Mori Radicis and its Adulterants Root Barks of Cudrania tricuspidata and Broussonetia papyrifera. Chinese J. Pharmaceutical Analysis 1, 94 (1981).Google Scholar
  159. 156.
    Akamatsu, K.: “Wakanyaku”, p 511. Tokyo: Ishiyaku Shuppan. 1970.Google Scholar
  160. 157.
    Fujimoto, T., Y. Hano, and T. Nomura: Constituents of the Cultivated Mulberry Tree. XVII. Components of Root Bark of Cudrania tricuspidata 1. Structures of Four New Isoprenylated Xanthones, Cudraxanthones A, B, C and D. Planta medica 50, 218 (1984).PubMedCrossRefGoogle Scholar
  161. 158.
    Fujimoto, T., Y. Hano, T. Nomura, and J. Uzawa: Constituents of the Cultivated Mulberry Tree. XVIII. Components of Root Bark of Cudrania tricuspidata 2. Structures of Two New Isoprenylated Flavones, Cudraflavones A and B. Planta medica 50, 161 (1984).PubMedCrossRefGoogle Scholar
  162. 159.
    Fujimoto, T., and T. Nomura: Constituents of the Cultivated Mulberry Tree XXIV. Components of Root Bark of Cudrania tricuspidata 3. Isolation and Structure Studies on the Flavonoids. Planta medica 190 (1985).Google Scholar
  163. 160.
    Matsumoto, J., T. Fujimoto, C. Takino, M. Saitoh, Y. Hang, T. Fukai, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXVI. Components of Broussonetia papyrifera (L.) Vent. 1. Structures of Two New Isoprenylated Flavonols and Two Chalcone Derivatives. Chem. Pharm. Bull. (Japan) 33, 3250 (1985).CrossRefGoogle Scholar
  164. 161.
    Ikuta (nee MATSUMOTO), J., Y. Hano, and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXI. Components of Broussonetia papyrifera (L.) Vent. 2. Structures of Two New Isoprenylated Flavans, Kazinols A and B. Heterocycles 23, 2835 (1985).CrossRefGoogle Scholar
  165. 162.
    Fukai, T., J. Ikuta (nee MATSUMOTO), and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXIII. Components of Broussonetia papyrifera (L.) Vent. III. Structures of Two New Isoprenylated Flavonols, Broussoflavonols C and D. Chem. Pharm. Bull. (Japan) 34, 1987 (1986).Google Scholar
  166. 163.
    Ikuta (nee MATSUMOTO), J., Y. Hano, T. Nomura, Y. Kawakami, and T. Sato: Constituents of the Cultivated Mulberry Tree XXXII. Components of Broussonetia kazinoki Sieb. 1. Structures of Two New Isoprenylated Flavans and Five New Isoprenylated 1,3-Diphenylpropane Derivatives. Chem. Pharm. Bull. (Japan) 34, 1968 (1986).CrossRefGoogle Scholar
  167. 164.
    Kato, S., Y. Hano, T. Fukai, and T. Nomura: Studies on the Components of Broussonetia sp. 3., 106th Annual Meeting of the Pharmaceutical Society of Japan, Abstract Papers, p 162, Apr., 1986, Chiba, Japan.Google Scholar
  168. 165.
    Kato, S., T. Fukai, J. Ikuta (nee MATSUMOTO), and T. Nomura: Constituents of the Cultivated Mulberry Tree XXXIV. Components of Broussonetia kazinoki Sieb. (2). Structures of Four New Isoprenylated 1,3-Diphenylpropane Derivatives, Kazinols J, L, M, and N. Chem. Pharm. Bull. (Japan) 34, 2448 (1986).CrossRefGoogle Scholar
  169. 166.
    Kato, S., Y. Hano, T. Fukai, Y. Kosuge, and T. Nomura: Kazinol P, a Novel Isoprenylated Spiro-compound from Broussonetia kazinoki Sieb. Heterocycles 24, 2141 (1986).CrossRefGoogle Scholar
  170. 167.
    Kato, S., Y. Hano, T. Fukai, T. Nomura, and J.-Y. Sun: Studies on the Components of Broussonetia sp. (4), 107th Annual Meeting of Pharmaceutical Society of Japan, Abstract Paper, p 348, Apr., 1987, Kyoto, Japan.Google Scholar
  171. 168.
    Shirata, A., K. Takahashi, M. Takasugi, M. Anetai, and T. Masamune: Production of Phytoalexins in Shoot Cortex of Paper Mulberry and Their Antimicrobial Spectra. Sanshi Shikenjo Hokoku (Bull. Sericul. Exp. Stat.) 28, 781 (1983).Google Scholar
  172. 169.
    Takasugi, M., M. Anetai, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 5. Broussonins A and B, New Phytoalexins from Diseased Paper Mulberry. Chem. Letters 339 (1980).Google Scholar
  173. 170.
    Takasugi, M., Y. Kumagai, S. Nagao, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae. 6. The Co-occurrence of Flavan and 1,3-Diphenylpropane Derivatives in Wounded Paper Mulberry. Chem. Letters 1459 (1980).Google Scholar
  174. 171.
    Takasugi, M., N. Niino, S. Nagao, M. Anetai, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 13. Eight Minor Phytoalexins from Diseased Paper Mulberry. Chem. Letters 689 (1984).Google Scholar
  175. 172.
    Takasugi, M., N. Niino, M. Anetai, T. Masamune, A. Shirata, and K. Takahashi: Studies on Phytoalexins of the Moraceae 14. Structure of Two Stress Metabolites, Spirobroussonin A and B, from Diseased Paper Mulberry. Chem. Letters 693 (1984).Google Scholar
  176. 173.
    Ishitsuka, H., C. Ohsawa, T. Ohiwa, I. Umeda, and Y. Suhara: Antipicornavirus Flavone Ro 09–0179, Antimicrob. Agents Chemother. 22, 611 (1982).Google Scholar
  177. 174.
    Nikaido, T., T. Ohmoto, T. Nomura, T. Fuicai, and U. Sankawa: Inhibition of Adenosine 3’,5’-Cyclic Monophosphate Phosphodiesterase by Phenolic Constituents of Mulberry Tree. Chem. Pharm. Bull. (Japan) 32, 4929 (1984).CrossRefGoogle Scholar
  178. 175.
    Kimura, Y., H. Okuda, T. Nomura, T. Fukai, and S. Arichi: Effects of Flavonoids and Related Compounds from Mulberry Tree on Arachidonate Metabolism in Rat Platelet Homogenates. Chem. Pharm. Bull. (Japan) 34, 1223 (1986).CrossRefGoogle Scholar
  179. 176.
    Kimura, Y., H. Okuda, T. Nomura, T. Fuicai, and S. Arichi: Effects of Phenolic Constituents from the Mulberry Tree on Arachidonate Metabolism in Rat Platelets. J. Nat. Prod. 49, 639 (1986).PubMedCrossRefGoogle Scholar
  180. 177.
    Funkl, H., T. Horiuchi, K. Yamashita, H. Hakii, M. Suganuma, H. Nishino, A. Iwashima, Y. Hirata, and T. Sugimura: Inhibition of Tumor Promotion by Flavonoids In: Progress in Clinical and Biological Research, Vol. 213. Plant Flavonoids in Biology and Medicine. Biochemical Pharmacological, and Structure — Activity Relationships (V. Cody, E. Middleton, JR., J.B. Harborne, eds.), p. 429. New York: Alan R. Liss, Inc. 1986.Google Scholar
  181. 178.
    Nomura, T., T. Fukai, and H. Funicl: Chemistry and Biological Activity of Morus Flavonoids, 2nd International Symposium of Plant Flavonoids in Biology and Medicine, Abstract Papers, p 29, Aug., 1987, Strasbourg, France.Google Scholar
  182. 179.
    Nomura, T., T. Fukai, Y. Hano, S. Yoshizawa, M. Suganuma, and H. Fukki: Chemistry and Anti-tumor Promoting Activity of Morus Flavonoids In: Plant Flavonoids in Biology and Medicine II. Biochemical, Cellular and Medicinal Properties. (V. Cody, E. Middleton, JR. and J.B. Harborne, eds.). New York: Alan R. Liss, Inc. 1988, in press.Google Scholar

Copyright information

© Springer-Verlag/Wien 1988

Authors and Affiliations

  • T. Nomura
    • 1
  1. 1.Faculty of Pharmaceutical SciencesToho UniversityMiyama, Funabashi, Chiba 274Japan

Personalised recommendations