Skip to main content

Effect of Nimodipine on Mitochondrial Respiration in Different Rat Brain Areas After Subarachnoid Haemorrhage

  • Conference paper
Proceedings of the 8th European Congress of Neurosurgery, Barcelona, September 6–11, 1987

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 43))

Summary

The mitochondrial respiration was evaluated in three different rat brain areas (cerebral cortex, hippocampus and brain stem) after experimental subarachnoid haemorrhage (SAH). The haemorrhage was induced by injecting 0.35 ml of autologous arterial blood into cisterna magna. Intravenous administration of Nimodipine (2 µg/kg/min for 30 minutes) was started immediately after the haemorrhage induction. At the set time (1 hour after SAH procedure), animals were sacrificed and non-synaptic mitochondria from the above mentioned areas were isolated. The following respiratory parameters were evaluated utilizing glutamate plus malate and succinate plus rotenone as substrates: state 3, state 4, uncoupled state, respiratory control ratio (RCR) and ADP/O ratio. SAH significantly influences respiratory parameters, mainly RCR; the cerebral cortex and brain stem seem to be more sensitive during the acute phase of vasospasm which follows SAH procedure. Nimodipine treatment significantly ameliorates mitochondrial respiratory conditions.

This experimental work was supported in part by a Grant of Regione Lombardia, Milano, Italy, 1985, and by Bayer Italia S.p.A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackrell BAC, Kearney EB (1975) Mammalian succinate dehydrogenase. In: Fleischer S, Packer L (eds) Methods in enzymology. Academic Press Inc, New York London, pp 466–483

    Google Scholar 

  2. Allen GS, Banghart SB (1979) Cerebral arterial spasm: Part 9. In vitro effects of nifedipine on serotonin-, phenylephrine-, and potassium-induced contractions of canine basilar and femoral arteries. Neurosurgery 40: 433–441

    Article  Google Scholar 

  3. Allen GS, Ahn HS, Preziosi TJ, Battye R et al (1983) Cerebral arterial spasm–a controlled trial of nimodipine in patients with subarachnoid haemorrhage. New Engl J Med 303: 619–524

    Article  Google Scholar 

  4. Auer LM, Brandt L, Ebeling U, Gilsbach J, Groeger U, Harders A, Ljunggren B, Oppel F, Reulen HJ, Saeveland H (1986) Nimodipine and early operation in good condition SAH patients. Acta Neurochir (Wien) 82: 7–13

    Article  CAS  Google Scholar 

  5. Barry KJ, Mikkelsen RB, Schucart W, Keough EM, Gavris V (1985) The isolation and characterization of Ca -accumulating subcellular membrane fractions from cerebral arteries. J Neurosurg 62: 729–736

    Article  CAS  PubMed  Google Scholar 

  6. Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria. Preparation and characterization. J Biol Chem 245: 4724–4731

    CAS  PubMed  Google Scholar 

  7. Delgado TJ, Brismar J, Svengaard NA (1985) Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16: 595–602

    Article  CAS  PubMed  Google Scholar 

  8. Delgado TJ, Arbab MA-R, Diemer NH, Svengaard NA (1986) Subarachnoid haemorrhage in the rat: cerebral blood flow and glucose metabolism during the late phase of cerebral vasospasm. J Cereb Blood Flow Metabol 6: 590–599

    Article  CAS  Google Scholar 

  9. Fein JM (1975) Cerebral energy metabolism after subarachnoid haemorrhage. Stroke 6: 1–8

    Article  CAS  PubMed  Google Scholar 

  10. Fein JM (1976) Brain energetics and circulatory control after subarachnoid haemorrhage. J Neurosurg 45: 498–506

    Article  CAS  PubMed  Google Scholar 

  11. Ginsberg MD, Mela L, Wrobel-Kuhl K (1977) Mitochondrial metabolism following bilateral cerebral ischaemia in the gerbil. Ann Neurol 1: 519–527

    Article  CAS  PubMed  Google Scholar 

  12. Gioia AE, White RP, Bakthian B, Robertson JT (1985) Evaluation of efficacy on intratecal nimodipine in canine models of chronic cerebral vasospasm. J Neurosurg 62: 721–728

    Article  CAS  PubMed  Google Scholar 

  13. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. J Neurochem 13: 655–669

    Article  CAS  PubMed  Google Scholar 

  14. Heffez DS, Passoneau JV (1985) Effect of nimodipine on cerebral metabolism during ischaemia and recirculation in the mongolian gerbil. J Cereb Blood Flow Metabol 5: 523–528

    Article  CAS  Google Scholar 

  15. Hillered L, Siesjo BK, Arfors KE (1984) Mitochondrial response to transient forebrain ischaemia and recirculation in the rat. J Cereb Blood Flow Metabol 4: 438–446

    Article  CAS  Google Scholar 

  16. Hubschmann OR, Nathanson DC (1985) The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid haemorrhage. J Neurosurg 62: 698–703

    Article  CAS  PubMed  Google Scholar 

  17. Kazda S, Mayer D (1985) Postischaemic impaired reperfusion and tissue damage: Consequence of calcium-dependent vaso-spasm? In: Godfraind T, Vanhoutte PH, Govoni S, Paoletti R (eds) Calcium entry blockers and tissue protection. Raven Press, New York, pp 129–138

    Google Scholar 

  18. Lai JCK, Clark JB (1976) Preparation and properties of mitochondria from synaptosomes. Biochem J 154: 423–432

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Lai JCK, Walsh JM, Dennis SC, Clark JB (1977) Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem 28: 625–631

    Article  CAS  PubMed  Google Scholar 

  20. Ljunggren B, Sonesson B, Saaveland H, Brandt L (1985) Cognitive impairment and adjustement in patients without neurological deficits after aneurysmal SAH and early operation. J Neurosurg 62: 973–979

    Google Scholar 

  21. Lowry OH, Rosebrough BJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  22. Mabe H, Nagai H, Takagi T, Umemura S, Ohno M (1986) Effect of nimodipine on cerebral functional and metabolic recovery following ischaemia in the rat brain. Stroke 17: 501–505

    Article  CAS  PubMed  Google Scholar 

  23. Ozawa K, Seta K, Araki H, Handa H (1967) The effect of ischaemia on mitochondria] metabolism. J Biochem 61: 512–515

    CAS  PubMed  Google Scholar 

  24. Rehncrona S, Mela L, Siesjo BK (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischaemia. Stroke 10: 437–446

    Article  CAS  PubMed  Google Scholar 

  25. Ropper AH, Zervas NT (1984) Outcome 1 year after SAH from cerebral aneurysm. Management morbidity, mortality, and functional status in 112 consecutive goodrisk patients. J Neurosurg 60: 909–915

    Article  CAS  PubMed  Google Scholar 

  26. Sahlin C, Delgado T, Owman C, Svengaard NA (1986) Changes in cerebral blood flow and metabolism following intraarterial or local administration of Nimodipine, before and after experimental subarachnoid haemorrhage in baboons. Stroke 17: 220–224

    Article  CAS  PubMed  Google Scholar 

  27. Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702

    Article  CAS  PubMed  Google Scholar 

  28. Solomon RA, Lobo Antunes J, Chen RYZ, Bland L, Chien S (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid haemorrhage: a new model. Stroke 16: 58–64

    Article  CAS  PubMed  Google Scholar 

  29. Towart R (1981) The selective inhibition of serotonine contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine. Circ Res 48: 650–657

    Article  CAS  PubMed  Google Scholar 

  30. Van Rempts G, Haseldonckx M, Van Demen B, Wanters L, Borgers M (1986) Structural damage of ischaemic brain: involvement of calcium and effects of post-ischaemic treatment with calcium entry blockers. Drug Develop Res 8: 387–395

    Article  Google Scholar 

  31. Vilbulsresth S, Dietrich DW, Busto R, Ginsberg MD (1987) Failure of nimodipine to prevent ischaemic neuronal damage in rats. Stroke 18: 210–216

    Article  Google Scholar 

  32. Voldby B, Enevoldsen EM, Jensen FT (1985) Regional CBF, intraventricular pressure, and cerebral metabolism in patients with ruptured intracranial aneurysms. J Neurosurg 62: 48–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Rodriguez y Baena, R., Gaetani, P., Silvani, V., Spanu, G., Marzatico, F. (1988). Effect of Nimodipine on Mitochondrial Respiration in Different Rat Brain Areas After Subarachnoid Haemorrhage. In: Isamat, F., Jefferson, A., Loew, F., Symon, L. (eds) Proceedings of the 8th European Congress of Neurosurgery, Barcelona, September 6–11, 1987. Acta Neurochirurgica, vol 43. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8978-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8978-8_38

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8980-1

  • Online ISBN: 978-3-7091-8978-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics