Advertisement

Few Body Hypernuclear Systems: Weak Decays

  • Carl B. Dover
Part of the Few-Body Systems book series (FEWBODY, volume 2)

Abstract

The experimental and theoretical situation regarding mesonic and non-mesonic decays of light hypernuclei is reviewed. Although some models give reasonable results for pionic decays as well as the total weak decay rate, no existing approach explains, even qualitatively, the observed spin-isospin dependence of ΛN → NN non-mesonic weak decays.

Keywords

Decay Width Parity Violate Pionic Decay Weak Decay Final State Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block, M. M. et al.: Proc. Intern. Conf. on Hyperfragments, St. Cergue (1963), CERN Report 64–1, January 1964, p. 63.Google Scholar
  2. 2.
    Prem, R. J., Steinberg, P. H.: Phys. Rev. 136, 1803 (1964).Google Scholar
  3. 3.
    Murphy, C. T.: Proc. Intern. Conf. on Hypernuclear Physics, Argonne (1969), p. 438.Google Scholar
  4. 4.
    Phillips, R. E., Schneps, J.: Phys. Rev. 180, 1309 (1969).Google Scholar
  5. 5.
    McKenzie, J.: in ref. [3].Google Scholar
  6. 6.
    Dalitz, R. H., Liu L.: Phys. Rev. 116, 1312 (1959).Google Scholar
  7. 7.
    Dalitz, R. H., von Hippel, F.: Nuovo Cim. 34, 799 (1964).Google Scholar
  8. 8.
    Block, M. M., Dalitz, R. H.: Phys. Rev. Lett. 11, 96 (1963).Google Scholar
  9. 9.
    Dalitz, R. H.: Hypernuclear Physics, Proc. Intern. School of Physics “Enrico Permi” Varenna (1966), Course 38 ( Academic Press, NY, 1967 ), pp. 89–131.Google Scholar
  10. 10.
    Dover, C. B., Walker, G. E.: Phys. Reports 89, 1–177 (1982); see especially pp 148–156 for a review of hypernuclear weak decays.Google Scholar
  11. 11.
    Szymanski, J. J.: “The weak decay of lambda hypernuclei” PhD thesis, Carnegiej Mellon University, April 1987; Grace, R: Phys. Rev. Lett. 55, 1055 (1985).Google Scholar
  12. 12.
    Miller, H. G., Holland, M. W., Roalsvig, J. P., Sorenson, R. G.: Phys. Rev. 167, 922 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    Kenyon, I. R., et al.: Nuovo Cim. 30, 1365 (1963).CrossRefGoogle Scholar
  14. 14.
    Lagnaux, J. P. et al.: Nucl. Phys. 60, 97 (1964).CrossRefGoogle Scholar
  15. 15.
    Ganguli, S. N., Swami, M. S.: Proc. Indian Acad. Sci. 66A, 77 (1967).Google Scholar
  16. 16.
    Cuevas, J., et al.: Nucl. Phys. B1, 411 (1967).ADSCrossRefGoogle Scholar
  17. 17.
    Bocquet, J. P. et al.: Phys. Lett. B182, 146 (1986).ADSGoogle Scholar
  18. 18.
    McKellar, B. H. J.: Proc. of 1986 INS Intern. Symposium on Hypernuclear Physics Tokyo, Japan, August 1986, Eds. H. Bando, O. Hashimoto and K. Ogawa: Institute for Nuclear Study, University of Tokyo (1986), pp. 146–159.Google Scholar
  19. 19.
    Dubach, J.: Proc. of Intern. Conf. on Intersections Between Particle and Nuclear Physics, Lake Louise, Canada, May 1986, Ed. D. F. Geesaman, AIP Conf. Proc. No. 150, American Institute of Physics, NY (1986), pp. 946–951.Google Scholar
  20. 20.
    Dubach, J.: Weak and Electromagnetic Interactions in Nuclei, Proc. Intern. Symposium, Heidelberg, FRG, July 1986, Ed. H. V. Klapdor: Springer Verlag, Berlin (1986), pp. 576–582.Google Scholar
  21. 21.
    McKellar, B. H. J., Gibson, B. F.: Phys. Rev. C30, 322 (1984).Google Scholar
  22. 22.
    de la Torre, L., Donoghue, J. F., Dubach, J., Holstein, B. R.: to be published.Google Scholar
  23. 23.
    Cheung, C.-Y., Heddle, D. P., Kisslinger, L. S.: Phys. Rev. C27, 335 (1983).ADSGoogle Scholar
  24. 24.
    Heddle, D. P., Kisslinger, L. S.: Phys. Rev. C33, 608 (1986)and preprint (1987).ADSGoogle Scholar
  25. 25.
    Oset, E., Salcedo, L. L.: Nucl. Phys. A443, 704 (1985).ADSGoogle Scholar
  26. 26.
    Takeuchi, K., Takaki, H., Bando, H.: Prog. Theor. Phys. 73, 841 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    I would like to acknowledge discussions with Avraham Gal on this point. The formula (35)reduces to the correct result ΓΛp →npΛn →nn= 2 in the limit where 3S0 widths vanish and 3S1 widths are all equal.Google Scholar
  28. 28.
    Dalitz, R. H.: Phys. Rev. 112, 605 (1958).ADSCrossRefGoogle Scholar
  29. 29.
    Kurihara, Y., Akaishi, Y., Tanaka, H.: Phys. Rev. C31, 971 (1985).ADSGoogle Scholar
  30. 30.
    Bando, H., Takaki, H.: Prog. Theor. Phys. 72, 106 (1984) and Phys. Lett. 150B, 409 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    Motoba, T., Itonaga, K., Bando, H.: Osaka University preprint OUAM 87-6-3 >(1987)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Carl B. Dover
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations