Advertisement

Baryon Properties with Three-Quark Forces

  • D. Drechsel
  • M. M. Giannini
  • L. Tiator
Part of the Few-Body Systems book series (FEWBODY, volume 2)

Abstract

The Constituent Quark Model (CQM) is very useful for the description of many baryon properties, leading to a fair agreement with the experimental data, especially in the case of the baryon spectrum 1) and of the electromagnetic processes involving baryons2,3). The model is based on a non relativistic QCD-inspired dynamics, which includes a confinement potential and a spin-dependent short-range part, the so called hyperfine interaction4,1). The confinement potential contains as its major part a harmonic oscillator (h.o.) interaction, which has however a too degenerate spectrum with respect to the experimental one and leads to an unreasonable damping of the form factors even at moderate momentum transfers. Nevertheless, the h.o. potential is commonly used because it provides a simple basis and allows an analytical evaluation of practically all the quantities of interest.

Keywords

Form Factor Ground State Wave Function Constituent Quark Model Confinement Potential Charge Form Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); Phys. Rev. D19, 2653 (1979)ADSGoogle Scholar
  2. 2).
    R. Koniuk and N. Isgur, Phys. Rev. D21, 1868 (1980)ADSGoogle Scholar
  3. 3).
    M.M. Giannini, preprint TK 86 11 (Bonn University, 1986 )Google Scholar
  4. 4).
    A. De Rujula, H. Georgi and S.L. Glashow, Phys. Rev. D12, 14 (1975)Google Scholar
  5. 5).
    P. Hasenfratz, R.R. Horgan, J. Kuti and J.M. Richard, Phys. Lett. B94, 401 (1980)Google Scholar
  6. 6).
    L. Heller, in “Quarks and Nuclear Forces” (D.C. Vries and B. Zeitnitz eds) Springer Tracts in Modern Physics 100, 214 (1982)Google Scholar
  7. 7).
    J.L. Ballot and M. Fabre de la Ripelle, Ann. Phys. (N.Y.) 127, 62 (1980)ADSCrossRefGoogle Scholar
  8. 8).
    D. Drechsel, M.M. Giannini and L. Tiator, Lecture Notes in Physics 260 (B.L. Berman and B.F. Gibson eds ), Springer 1986, p 509Google Scholar
  9. 9).
    D. Drechsel, Il Nuovo Cimento 76A, 388 (1983)ADSGoogle Scholar
  10. 10).
    M.M. Giannini, Il Nuovo Cimento 76A, 455 (1983)ADSGoogle Scholar
  11. 11).
    N. Isgur, G. Karl and D.W.L. Sprung, Phys. Rev. D25, 2395 (1982)ADSGoogle Scholar
  12. 12).
    M. Beyer, D. Drechsel and M.M. Giannini, Phys. Lett. B122, 1 (1983)ADSGoogle Scholar
  13. 13).
    S. Barshay, Phys. Lett. B100, 376 (1981)ADSGoogle Scholar
  14. 14).
    Proceedings of the Washington Symposium, Lecture Notes in Physics 260 (B.L. Berman and B.F. Gibson eds ), Springer 1986Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • D. Drechsel
    • 1
  • M. M. Giannini
    • 2
    • 3
  • L. Tiator
    • 1
  1. 1.Institut für Kernphysik der UniversitätMainzDeutschland
  2. 2.Dipartimento di FisicaUniversità di GenovaItaly
  3. 3.Sezione di GenovaIstituto Nazionale di Fisica NucleareItaly

Personalised recommendations