Probing the Quantum Analog of Chaos with Atoms in External Fields

  • J. C. Gay
  • D. Delande
Part of the Few-Body Systems book series (FEWBODY, volume 2)


For a few years, considerable interest arises in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, we demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. We finally indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials.


Random Matrix Theory Dynamical Symmetry Rydberg Atom Quantum Analog Approximate Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    For example J.C. Gay in Progress Atomic Spectroscopy. Vol. C.; H.J. Beyer and H. Kleinpoppen Ed. (Plenum 1984 ).Google Scholar
  2. [2]
    R.S. Garton and F.S. Tomkins, Astrop. J. 158, 83 (1969).CrossRefGoogle Scholar
  3. [3]
    A. Einstein, Ver. Deut. Phys. Ger. 19, 82 (1917).Google Scholar
  4. [4]
    D.R. Herrick, Phys. Rev. A 26, 323 (1982).MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    P. Kustaanheimo and E. Stiefel, J. Ang. Bath. 218, 204 (1963).MathSciNetGoogle Scholar
  6. [6]
    A.O. Barut and C. Fronsdal, Proc. Roy. Soc. A 287, 53 (1965).MathSciNetGoogle Scholar
  7. [7]
    A more detailed discussion can be found in: J.C. Gay in Atoms in Unusual Situations, J.P. BRIAND Ed. (PLENUM 1986 ).Google Scholar
  8. [8]
    A.R. Edmonds and R.A. Pullen, Preprints, Imperial College 79 - 801 (1981).Google Scholar
  9. [9]
    M.P. Strand and W.P. Reinhardt, J. Chem. Phys. 70, 3812 (1979).ADSCrossRefGoogle Scholar
  10. [10]
    D. Delande and J.C. Gay, J. Phys. B 17, L 335 (1984).Google Scholar
  11. [11]
    D. Delande and J.C. Gay, J. Phys. B 19, L 173 (1986).Google Scholar
  12. [12]
    See for example O. Bohigas and M.J. Giannoni in “Mathematical and Computational methods in nuclear Physics” J.S. Dehesa et al. Ed. (SPRINGER 1984 ).Google Scholar
  13. [13]
    D. Wintgen and H. Friedrich, Phys. Rev. Lett. 57, 571 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    D. Delande and J.C. Gay, Phys. Rev. Lett. 57, 2006 (1986).Google Scholar
  15. [15]
    G. Wunner et al., Phys. Rev. Lett. 57, 3261 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    D. Delande and J.C. Gay, Com. At. Mol. Phys. 19, 35 (1986).CrossRefGoogle Scholar
  17. [17]
    D. Delande and J.C. Gay, submitted Phys. Rev. Lett.Google Scholar
  18. [18]
    E.J. Heller, Phys. Rev. Lett. 16, 1515 (1984).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D. Delande, unpublished (1987).Google Scholar
  20. [20]
    J. Main, G. Wiebusch, A. Holle and K.H. Welge, Phys. Rev. Lett. 57, 2789 (1986).ADSCrossRefGoogle Scholar
  21. [21]
    D. Wintgen, Phys. Rev. Lett. 58, 1589 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. C. Gay
    • 1
  • D. Delande
    • 1
  1. 1.Laboratoire de Spectroscopie Hertzienne de l’E.N.S.Paris Cedex 05France

Personalised recommendations