Skip to main content

Regeneration of the Cerebellofugal Projection After Transection of the Superior Cerebellar Peduncle in the Cat

  • Conference paper
Plasticity of the Central Nervous System

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 41))

Summary

In contrast to the current concept of abortive regeneration of mammalian central axons, the occurrence of marked, functionally active, regeneration of the cerebellofugal projection was proved in the cat after complete transection of the decussation of the brachium conjunctivum (BCX). Because the BCX is a complete crossing it was transected completely by pushing down an edged U-shaped wire to the base of the brain stem in the midline, and the wire was left in situ to mark the lesion. Later, horseradish peroxidase was injected into the cerebellar lateral and interpositus nuclei to label the cerebellofugal projection arising from these nuclei; axonal regeneration was proved by demonstration of labelled fibres passing through the area enclosed by the U-shaped wire. By this procedure the origin, course, and destination of the regenerated fibres were identified unambiguously. Most of the regenerated axons took a course similar to that of the normal projection and terminated in the normal projection areas, whereas a small proportion of fibres showed an aberrant course and termination. Functional connectivity of the regenerated cerebello-thalamic projection was tested electrophysiologically in the same animals examined morphologically. In all animals in which marked axonal regeneration occurred, cerebellocerebral responses, as in intact animals, were evoked in the frontal motor and parietal associated cortices. Study of the time-course of regeneration revealed that the cut ends of axons began to swell as early as 15min after transection, produced terminals tipped by growth cones in 14–24 hours, grew to cross the lesion in 3 days, and distributed dense terminals in the thalamus by 19 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

3N:

Oculomotor nerve

BCX:

decussation of brachium conjunctivum

Caj:

interstitial nucleus of Cajal

CL:

central lateral nucleus of thalamus

CM:

cetromedian nucleus of thalamus

CN:

cerebellar nuclei

Da:

nucleus of Darkschewitsch

FF:

Forel’s field

FTC:

central tegmental field of the brain stem

INT:

interpositus nucleus of cerebellum

IO:

inferior olivary nucleus

Ip:

interpeduncular nucleus

LAT:

lateral nucleus of cerebellum

LP:

lateral posterior nucleus of thalamus

M.E.:

microelectrode

NCM:

central medial nucleus of thalamus

NPC:

nucleus of posterior commissure

PAG:

periaqueductal grey

Pc:

paracentral nucleus of thalamus

PN:

pontine nucleus

PRT:

pretectum

PTN:

pontine tegmental nucleus

Pul:

pulvinar nucleus of thalamus

RN:

red nucleus

SC:

superior colliculus

S.E.:

stimulating electrode

VA:

ventral anterior nucleus of thalamus

VL:

ventral lateral nucleus of thalamus

VPL:

ventral posterolateral nucleus of thalamus

ZI:

zona incerta

References

  1. Aguayo AJ, Benfey M, David S (1983) A potential for axonal regeneration in neurons of the adult mammalian nervous system. Birth Defects 19: 327–340.

    PubMed  CAS  Google Scholar 

  2. Björklund A, Stenevi U (1979) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol Rev 59: 62–100.

    PubMed  Google Scholar 

  3. Björklund A, Stenevi U (1984) Intracerebral neural implants: Neuronal replacement and reconstitution of damaged circuitries. Ann Rev Neurosci 7: 279–308.

    Article  PubMed  Google Scholar 

  4. Cajal S, Ramón y (1959) Degeneration and regeneration in the nervous system (1928), May RM (transl). Hafner, New York, 1959.

    Google Scholar 

  5. Clemente CD (1964) Regeneration in the vertebrate central nervous system. Int Rev Biol 6: 257–301.

    CAS  Google Scholar 

  6. Foerster AP (1982) Spontaneous regeneration of cut axons in adult rat brain. J Comp Neurol 210: 335–356.

    Article  PubMed  CAS  Google Scholar 

  7. Gage FH, Dunnett SB, Stenevi U et al (1983) Aged rats: recovery of motor impairments by intrastriatal nigral grafts. Science 221: 966–969.

    Article  PubMed  CAS  Google Scholar 

  8. Guth L (1975) History of central nervous system regeneration research. Exp Neurol 48 (Part 2): 3–15.

    Article  PubMed  CAS  Google Scholar 

  9. Kalil K, Reh T (1979) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections. Science 205: 1158–1160.

    Article  PubMed  CAS  Google Scholar 

  10. Kalil K, Reh T (1982) A light and electron microscopic study of regrowing pyramidal tract fibers. J Comp Neurol 211: 265–275.

    Article  PubMed  CAS  Google Scholar 

  11. Kao CC, Chang LW, Bloodworth JMB (1977) Axonal regeneration across transected mammalian spinal cords: An electron microscopic study of delayed microsurgical nerve grafting. Exp Neurol 54: 591–615.

    Article  PubMed  CAS  Google Scholar 

  12. Kawaguchi S, Miyata H, Kawamura M. et al (1981) Morphological and electrophysiological evidence for axonal regeneration of axotomized cerebellothalamic neurons in kittens. Neurosci Lett 25: 13–18.

    Article  PubMed  CAS  Google Scholar 

  13. Kawaguchi S, Miyata H, Kato N (1982) Axonal regeneration of axotomized cerebellothalamic projection neurons in adult cats. J Physiol Soc Japan 44: 383.

    Google Scholar 

  14. Kawaguchi S, Miyata H, Kato N (1984) Mechanical guidance for axonal regeneration of cerebellothalamic neurons in the cat. Neurosci Lett Suppl 17: S. 20.

    Google Scholar 

  15. Kawaguchi S, Miyata H, Kato N (1986) Regeneration of the cerebellofugal projection after transection of the superior cerebellar peduncle in kittens: morphological and electrophysiological studies. J Comp Neurol 245: 258–273.

    Article  PubMed  CAS  Google Scholar 

  16. Kawaguchi S, Samejima A, Yamamoto T (1983) Post-natal development of the cerebello-cerebral projection in kittens. J Physiol (Lond) 343: 215–232.

    CAS  Google Scholar 

  17. Kawaguchi S, Yamamoto, Samejima A (1979) Electrophysiological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy. Exp Brain Res 36: 21–39.

    Article  PubMed  CAS  Google Scholar 

  18. Kawaguchi S, Yamamoto, T., Samejima A et al (1979) Morphological evidence for axonal sprouting of cerebellothalamic neurons in kittens after neonatal hemicerebellectomy. Exp Brain Res 35: 511–518.

    Article  PubMed  CAS  Google Scholar 

  19. Marx JL (1980) Regeneration in the central nervous system. Science 209: 378–380.

    Article  PubMed  CAS  Google Scholar 

  20. Puchala E, Windle WF (1977) The possibility of structural and functional restitution after spinal cord injury. A review. Exp Neurol 55: 1–42.

    Article  CAS  Google Scholar 

  21. Richardson PM, McGuiness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284: 264–265.

    Article  PubMed  CAS  Google Scholar 

  22. So K-F, Aguayo AJ (1985) Lengthy growth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328: 349–354.

    Article  PubMed  CAS  Google Scholar 

  23. Tsukahara N (1981) Synaptic plasticity in the mammalian central nervous system. Ann Rev Neurosci 4: 351–379.

    Article  PubMed  CAS  Google Scholar 

  24. Windle WF (1956) Regeneration of axons in the vertebral central nervous system. Physiol Rev 36: 427–440.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this paper

Cite this paper

Kawaguchi, S. (1987). Regeneration of the Cerebellofugal Projection After Transection of the Superior Cerebellar Peduncle in the Cat. In: Sano, K., Ishii, S. (eds) Plasticity of the Central Nervous System. Acta Neurochirurgica Supplementum, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8945-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8945-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8947-4

  • Online ISBN: 978-3-7091-8945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics