Skip to main content

Vaccinia Growth Factor: Newest Member of the Family of Growth Modulators Which Utilize the Membrane Receptor for EGF

  • Conference paper

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 41))

Summary

A computer-aided search for structural homology between epidermal growth factor (EGF), transforming growth factor alpha (TGF-α) and sequences of proteins contained in the Dayhoff data base reveals a statistically significant homology with a peptide predicted to be encoded by an early gene of vaccinia virus (VV), a member of the poxvirus family. Fifteen residues of a 50 amino acid portion of this 140 residue VV polypeptide match residues in TGF-α; after insertion of a single gap, the vaccinia encoded polypeptide shares 19 residues with both EGF and urogastrone. Homologous regions contain six residues that correspond to the six cysteine residues of EGF and TGF-α that form disulphide bond mediated loop structures. A 25,000 Mr (apparent molecular weight) glycosylated polypeptide with the predicted functional activity, competing with EGF for binding to EGF membrane receptors, has been purified to homogeneity from VV infected Cercopithecus monkey kidney cell culture supernatants. This peptide, like both EGF and TGF-α, is a potent mitogen for appropriate target cells. Demonstration of a growth factor encoded by a DNA virus is unprecedented and may expand our understanding of DNA virus-host interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blomquist MC, Hunt LJ, Barker WC (1984) Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proc Natl Acad Sci USA 81: 7363–7367.

    Article  PubMed  CAS  Google Scholar 

  2. Brown JP, Twardzik Dr, Marquardt H et al (1985) Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature 313: 491–492.

    Article  PubMed  CAS  Google Scholar 

  3. Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48: 193–216.

    Article  PubMed  CAS  Google Scholar 

  4. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237: 1555–1561.

    PubMed  CAS  Google Scholar 

  5. Cohen S, Carpenter G (1975) Human epidermal growth factor: isolation and chemical and biological properties. Proc Natl Acad Sci USA 72: 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen S, Carpenter G, King L Jr (1980) Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255: 4834–4842.

    PubMed  CAS  Google Scholar 

  7. DeLarco JE, Todaro GJ (1978) Growth factors from murine sarcoma virustransformed cells. Proc Natl Acad Sci USA 75: 4001–4005.

    Article  CAS  Google Scholar 

  8. Derynck R, Roberts AB, Winkler ME et al (1984) Human transforming growth factor-alpha: precursor structure and expression in E. coli. Cell 38: 287–297.

    CAS  Google Scholar 

  9. Doolittle RF, Hunkapiller MW, Hood LE et al (1984) Simian sarcoma virus oncogene v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277.

    Article  Google Scholar 

  10. Gray A, Dull TJ, Ullrich A (1983) Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature 303: 722–725.

    Article  PubMed  CAS  Google Scholar 

  11. Gregory H (1975) Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature 257: 325–327.

    Article  PubMed  CAS  Google Scholar 

  12. King CS, Cooper JA, Moss B, Twardzik DR (1986) Vaccinia virus growth factor stimulates tyrosine protein kinase activity of A 431 cell epidermal growth factor receptors. Mol Cell Biol 6: 332–335.

    PubMed  CAS  Google Scholar 

  13. Lee DC, Rose TM, Webb NR et al (1985) Cloning and sequence analysis of a cDNA for rat transforming growth factor-alpha. Nature 313: 489–491.

    Article  PubMed  CAS  Google Scholar 

  14. Marquardt H, Hunkapiller MW, Hood LE et al (1983) Transforming growth factors produced by retrovirus-transformed rodent fibroblasts and human melanoma cells: amino acid sequence homology with epidermal growth factor. Proc Natl Acad Sci USA 80: 4684–4688.

    Article  PubMed  CAS  Google Scholar 

  15. Marquardt H, Hunkapiller MW, Hood LE et al (1984) Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 223: 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  16. Moss B (1985) Replication of poxvirus. In: Fields BN, Chanock RM, Roizman B (eds) Human viral disease. Raven Press, New York, pp 685–703.

    Google Scholar 

  17. Reisner AH (1985) Similarity between the vaccinia virus 19 K early protein and epidermal growth factor. Nature 313: 801–803.

    Article  PubMed  CAS  Google Scholar 

  18. Reynolds FH Jr, Todaro GJ, Fryling C et al (1981) Human transforming growth factors induce tyrosin phosphorylation of EGF receptors. Nature 292: 259–262.

    Article  PubMed  CAS  Google Scholar 

  19. Savage CR Jr, Inagami R, Cohen S (1972) The primary structure of epidermal growth factor. J Biol Chem 247: 7612–7621.

    PubMed  CAS  Google Scholar 

  20. Stroobant P, Rice AP, Gullick WJ et al (1985) Purification and characterization of vaccinia virus growth factor. Cell 42: 383–393.

    Article  PubMed  CAS  Google Scholar 

  21. Tarn JP, Marquardt H, Rosberger DF, Wang TW, Todaro GJ (1984) Synthesis of biologicall active rat transforming growth factor I. Nature 309: 376–378.

    Article  Google Scholar 

  22. Todaro GJ, Fryling CM, DeLarco JE (1980) Transformation induced by Abelson murine leukemia virus involves production of a polypeptide growth factor. Proc Natl Acad Sci USA 77: 5258–5262.

    Article  PubMed  CAS  Google Scholar 

  23. Todaro GJ, Marquardt H, Twardzik DR et al (1982) Transforming growth factors produced by viral-transformed and human tumour cells. In: Weinstein IB, Vogel HJ (eds) Genes and proteins in oncogenesis. Academic Press, New York, pp 165–182.

    Google Scholar 

  24. Twardzik DR, Brown JP, Ranchalis et al (1985) Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proc Natl Acad Sci USA 82: 5300–5304.

    Article  PubMed  CAS  Google Scholar 

  25. Twardzik DR, Todaro GJ, Marquardt H et al (1982) Transformation induced by Abelson murine leukemia virus involves production of a polypeptide growth factor. Science 216: 894–897.

    Article  PubMed  CAS  Google Scholar 

  26. Venkatesan S, Gershowi TZ, Moss B (1982) Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. J Virol 44: 637–646.

    PubMed  CAS  Google Scholar 

  27. Waterfield MD, Scrace GT, Whittle N et al (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28 sis of simian sarcoma virus. Nature 304: 35–39.

    Article  PubMed  CAS  Google Scholar 

  28. Wittek R, Cooper JA, Banbosa E, Moss B (1980) Expression of the vaccinia virus genome: analysis and mapping of mRNAs encoded within the inverted terminal repetition. Cell 21: 487–493.

    Article  PubMed  CAS  Google Scholar 

  29. Weir JP, Bajszar G, Moss B (1982) Mapping of the vaccinia virus thymidine kinase gene by marker rescue and by cell-free translation of selected mRNA. Proc Natl Acad Sci USA 79: 1210–1214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this paper

Cite this paper

Twardzik, D.R., Ranchalis, J.E., Moss, B., Todaro, G.J. (1987). Vaccinia Growth Factor: Newest Member of the Family of Growth Modulators Which Utilize the Membrane Receptor for EGF. In: Sano, K., Ishii, S. (eds) Plasticity of the Central Nervous System. Acta Neurochirurgica Supplementum, vol 41. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8945-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8945-0_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8947-4

  • Online ISBN: 978-3-7091-8945-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics