Perylenequinones, together with a few compounds containing a partially reduced perylene skeleton, form a relatively small but rapidly increasing group of chemically interesting, biologically active pigments obtainable from natural sources.


Dimethyl Ether Absolute Configuration Aphid Species Colouring Matter Nuclear Overhauser Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allport, D.C., and J.D. Bu’lock: Pigmentation and Cell-wall Material of Daldinia Sp. J. Chem. Soc. 4090 (1958).Google Scholar
  2. 2.
    — — Biosynthetic Pathways in Daldinia concentrica. J. Chem. Soc. 654 (1960).Google Scholar
  3. 3.
    Anderson, J.M., and J. Murray: Isolation of 4:9-Dihydroxy-perylene-3:10-qui- none from a Fungus. Chem. and Ind. 376 (1956).Google Scholar
  4. 4.
    Arnone, A., L. Camarda, G. Nasini, and L. Merlini: Secondary Mould Metabolites. Part 13. Fungal Perylenequinones: Phleichrome, Isophleichrome, and Their Endoperoxides. J. Chem. Soc. Perkin Trans. I 1387 (1985).Google Scholar
  5. 5.
    Arnone, A., G. Assante, L. Merlini, R. Mondelli, G. Nasini, and U. Weiss: Unpublished work (1986).Google Scholar
  6. 6.
    Arnone, A., G. Nasini, L. Merlini, and G. Assante: Secondary Mould Metabolites. Part 16. Stemphyltoxins, new Reduced Perylenequinone Metabolites from Stemphy- lium botryosum var. lactucum, J. Chem. Soc. Perkin Trans. I 525 (1986).Google Scholar
  7. 7.
    Assante, G., R. Locci, L. Camarda, L. Merlini, and G. Nasini: Screening of the Genus Cercospora for Secondary Metabolites. Phytochemistry 16, 243 (1977).CrossRefGoogle Scholar
  8. 8.
    Bajaj, K.L., P.P. Singh, and G. Kaur: Effect of Cercosporin Toxin on Polyphenol Metabolism in Mungbean (Vigna radiata L. Wilczek) Leaves. Biochem. Physiol. Pflanzen 180, 621 (1985).Google Scholar
  9. 9.
    Balis, C., and M.G. Payne: Triglycerides and Cercosporin from Cercospora beticola: Fungal Growth and Cercosporin Production. Phytopathology 61, 1477 (1971).CrossRefGoogle Scholar
  10. 10.
    Banks, H.J.: Ph.D. Thesis, University of Cambridge, 1969, quoted in refs. 26 and 128.Google Scholar
  11. 11.
    Banks, H.J., and D.W. Cameron: Colouring Matters of the Aphididae. XXXIX. Deoxyprotoaphin. Austral. J. Chem. 25, 2199 (1972).CrossRefGoogle Scholar
  12. 12.
    Banks, H.J., D.W. Cameron, and J.C.A. Craik: Colouring Matters of the Aphididae. Part XXXVII. Some Further Constituents of Tuberolachnus salignus and their Relevance to the Stereochemistry of the Protoaphins. J. Chem. Soc. (C) 627 (1969).Google Scholar
  13. 13.
    Barbetta, M., G. Casnati, and A. Ricca: Aspergillina. Rend. Ist. Lombardo Sci. Lett. (A) 101, 75 (1967).Google Scholar
  14. 14.
    Batterham, T.J., and U. Weiss: The Structure of Elsinochrome A. Proc. Chem. Soc. 89 (1963).Google Scholar
  15. 15.
    Blum, H.F. : “Photodynamic Action and Diseases Caused by Light”.Reinhold Publishing Co., New York 1941.Google Scholar
  16. 16.
    Bowie, J.H., and D.W. Cameron: Colouring Matters of the Aphididae. Part XXV. A Comparison of Aphid Constituents with those of their Host Plants. A Glyceride of Sorbic Acid. J. Chem. Soc. 5651 (1965).Google Scholar
  17. 17.
    — — Colouring Matters of the Aphididae. Part XXVII. Mass Spectra of Aphin Derivatives. J. Chem. Soc. (B) 684 (1966).Google Scholar
  18. 18.
    — — Colouring Matters of the Aphididae. Part XXXII. Rhodoaphin. J. Chem. Soc. (C) 704 (1967).Google Scholar
  19. 19.
    — — Colouring Matters of the Aphididae. Part XXXIV. Rhodo- and Xanthodactynaphins. J. Chem. Soc. (C) 712 (1967).Google Scholar
  20. 20.
    — — Colouring Matters of the Aphididae. Part XXXV. Protodactynaphin. J. Chem. Soc. (C) 720 (1967).Google Scholar
  21. 21.
    Brockmann, H.: Photodynamisch Wirksame Pflanzenfarbstoffe. Fortschr. Chem. Organ. Naturstoffe 14, 141 (1957).Google Scholar
  22. 22.
    Brown, B.R., T. Ekstrand, A.W. Johnson, S.F. Macdonald, and A.R. Todd: Colouring Matters of the Aphididae. Part VI. The Glucosidic Nature of Protoaphin. J. Chem. Soc. 4925 (1952).Google Scholar
  23. 23.
    Brown, B.R., A.W. Johnson, S.F. Macdonald, J.R. Quayle, and A.R. Todd: Colouring Matters of the Aphididae. Part VII. Addition Reactions of Erythroaphin- fb. J. Chem. Soc. 4928 (1952).Google Scholar
  24. 24.
    Brown, B.R., A.W. Johnson, J.R. Quayle, and A.R. Todd: Colouring Matters of the Aphididae. Part VIII. Studies on the Nature of the Aromatic Ring System in the Erythroaphins. J. Chem. Soc. 107 (1954).Google Scholar
  25. 25.
    Brown, B.R., and A.R. Todd: Colouring Matters of the Aphididae. Part IX. Some Reactions of Extended Quinones. J. Chem. Soc. 1280 (1954).Google Scholar
  26. 26.
    Brown, K.S., Jr.: The Chemistry of Aphids and Scale Insects. Chem. Soc. Revs. 4, 263 (1975).CrossRefGoogle Scholar
  27. 27.
    Brown, K.S., Jr., D.W. Cameron, and U. Weiss: Chemical Constituents of the Bright Orange Aphid, Aphis nerii Fonscolombe. I. Neriaphin and 6-Hydroxymusizin 8-O-β-D-Glucoside. Tetrahedron Letters 471 (1969).Google Scholar
  28. 28.
    Cahn, R.S., C. Ingold, and V. Prelog: Specification of Molecular Chirality. Angew. Chem. Int. Ed. 5, 385 (1966).CrossRefGoogle Scholar
  29. 29.
    Calderbank, A., D.W. Cameron, R.I.T. Cromartie, Y.K. Hamied, E. Haslam, D.G.I. Kingston, Lord Todd, and J.C. Watkins: Colouring Matters of the Aphidi- dae. Part XX. The Structure of the Xanthoaphins and Chrysoaphins. J. Chem. Soc. 80 (1964).Google Scholar
  30. 30.
    Calderbank, A., A.W. Johnson, and A.R. Todd : Colouring Matters of the Aphidi- dae. PartX. Preparation and Properties of 4:9-Dihydroxyperylene-3:10-quinone. J. Chem. Soc. 1285 (1954).Google Scholar
  31. 31.
    Cameron, D.W., and H.W.-S. Chan: Colouring Matters of the Aphididae. Part XXVIII. A Coupling Reaction involving Phenols and Quinones. Reconstitution of the Protoaphins, and Synthesis of the Chrysoaphin Chromophore. J. Chem. Soc. (C) 1825 (1966).Google Scholar
  32. 32.
    Cameron, D.W., H.W.-S. Chan, and E.M. Hildyard: Colouring Matters of the Aphididae. Part XXIX. Partial Synthesis of Erythroaphin and Related Systems by Oxidative Coupling. J. Chem. Soc. (C) 1832 (1966).Google Scholar
  33. 33.
    Cameron, D.W., H.W.S. Chan, and D.G.I. Kingston: Colouring Matters of the Aphididae. Part XXIV. The Enzymic Conversion of Protoaphin into Xanthoaphin. J. Chem. Soc. 4363 (1965).Google Scholar
  34. 34.
    Cameron, D.W., H.W.-S. Chan, and M.R. Thoseby: Colouring Matters of the Aphididae. Part XXXVIII. Methylation of Erythroaphin. Cationic Species Derived from Aphins in Acidic Media. J. Chem. Soc. (C) 631 (1969).Google Scholar
  35. 35.
    Cameron, D.W., and J.C.A. Craik: Colouring Matters of the Aphididae. Part XXXVI. The Configuration of the Glucoside Linkage in Protoaphins. J. Chem. Soc. (C) 3068 (1966).Google Scholar
  36. 36.
    Cameron, D.W., R.I.T. Cromartie, Y.K. Hamied, E. Haslam, D.G.I. Kingston, Lord Todd, and J.C. Watkins: Colouring Matters of the Aphididae. Part XXVI. The Chrysoaphins-s/ and their Reaction with Periodate. J. Chem. Soc. 6923 (1965).Google Scholar
  37. 37.
    Cameron, D.W., R.I.T. Cromartie, Y.K. Hamied, B.S. Joshi, P.M. Scott, and Lord Todd: Colouring Matters of the Aphididae. Part XIX. Further Reactions of the Erythroaphins. J. Chem. Soc. 72 (1964).Google Scholar
  38. 38.
    Cameron, D.W., R.I.T. Cromartie, Y.K. Hamied, P.M. Scott, and Lord Todd: Colouring Matters of the Aphididae. Part XVIII. The Structure and Chemistry of the Erythroaphins. J. Chem. Soc. 62 (1964).Google Scholar
  39. 39.
    Cameron, D.W., R.I.T. Cromartie, Y.K. Hamied, P.M. Scott, N. Sheppard, and Lord Todd: Colouring Matters of the Aphididae. PartXXI. Nuclear Magnetic Resonance Evidence for the Structures of the Erythroaphins and their Derivatives. J. Chem. Soc. 90 (1964).Google Scholar
  40. 40.
    Cameron, D.W., R.I.T. Cromartie, D.G.I. Kingston, and Lord Todd: Colouring Matters of the Aphididae. Part XVII. The Structure and Absolute Stereochemistry of the Protoaphins. J. Chem. Soc. 51 (1964).Google Scholar
  41. 41.
    Cameron, D.W., R.I.T. Cromartie, D.G.I. Kingston, and G.B.V. Subramanian: Colouring Matters of the Aphididae. Part XXIII. Synthesis of the Xanthoaphin Chromophore. J. Chem. Soc. 4565 (1964).Google Scholar
  42. 42.
    Cameron, D.W., D.G.I. Kingston, N. Sheppard, and Lord Todd: Colouring Matters of the Aphididae. Part XXII. Nuclear Magnetic Resonance Evidence for the Structures and Conformations of the Naphthoquinone Dimethyl Ethers Derived from the Protoaphins, and of the Erythroaphins. J. Chem. Soc. 98 (1964).Google Scholar
  43. 43.
    Cameron, D.W., and Lord Todd: In: Oxidative Coupling of Phenols (eds. W.I. Taylor and A.R. Battersby), Arnold, London 1967.Google Scholar
  44. 44.
    Cameron, D.W., W.H. Sawyer, and V.M. Trikojus: Colouring Matters of the Aphidoidea. XLII. Purification and Properties of the Cyclising Enzyme [Protoaphin Dehydratase (Cyclising)] concerned with Pigment Transformations in the Woolly Aphid Eriosoma lanigerum Hausmann (Hemiptera: Insecta). Austral. J. Biol. Sci. 30, 173 (1977).Google Scholar
  45. 45.
    Carley, H.E., R.D. Watson, and D.M. Huber: Inhibition of Pigmentation in Aspergillus niger by Dimethylsulfoxide. Canad. J. Botany 45, 1451 (1967).CrossRefGoogle Scholar
  46. 46.
    Cavaluni, L., A. Bindoli, F. Macrî, and A. Vianello: Lipid Peroxidation Inducted by Cercosporin as a Possible Determinant of its Toxicity. Chem.-Biol. Interact. 28, 139 (1979).CrossRefGoogle Scholar
  47. 47.
    Chen, C.-T., K. Nakanishi, and S. Natori: Biosynthesis of Elsinochrome A, the Perylenequinone from Elsinoë spp. I. Chem. Pharm. Bull. 14, 1434 (1966).CrossRefGoogle Scholar
  48. 48.
    Chu, F.S. : Isolation of Altenuisol and Altertoxin I and II, Minor Mycotoxins Elaborated by Altemaria. J. Amer. Oil Chem. Soc. 58, 1006 A (1981).CrossRefGoogle Scholar
  49. 49.
    Cook, J.W., C.L. Hewett, and I. Hieger: The Isolation of a Cancer-producing Hydrocarbon from Coal Tar. Part II. Isolation of 1:2- and 4:5-Benzypyrenes, Pery- lene, and 1,2-Benzanthracene. J.Chem. Soc. 396 (1933).Google Scholar
  50. 50.
    Dallacker, F., and H. Leidig: Darstellung des 4,6,7,9-Tetramethoxy-3,10-perylen- chinons. Chem. Ber. 112, 2672 (1979).CrossRefGoogle Scholar
  51. 51.
    Daub, M.E. : Cercosporin, a Photosensitizing Toxin from Cercospora species. Phytopathology 72, 370 (1982).CrossRefGoogle Scholar
  52. 52.
    — Peroxidation of Tobacco Membrane Lipids by the Photosensitizing Toxin, Cercosporin. Plant Physiol. 69, 1361 (1982).CrossRefGoogle Scholar
  53. 53.
    — A Cell Culture Approach for the Development of Disease Resistance: Studies on the Phytotoxin Cercosporin. HortScience 19, 382 (1984).Google Scholar
  54. 54.
    Daub, M.E., and S.P. Briggs: Changes in Tobacco Cell Membrane Composition and Structure Caused by Cercosporin. Plant Physiol. 71, 763 (1983).CrossRefGoogle Scholar
  55. 55.
    Daub, M.E., and R.P. Hangarter: Light-Induced Production of Singlet Oxygen and Superoxide by the Fungal Toxin, Cercosporin. Plant Physiol. 73, 855 (1983).CrossRefGoogle Scholar
  56. 56.
    de la Vega, J.R., J.H. Busch, J.H. Schäuble, K.L. Kunze, and B.E. Haggert: Symmetry and Tunneling in the Intramolecular Proton Exchange in Naphthazarin, Methylnaphthazarin and Dimethylnaphthazarins. J. Amer. Chem. Soc. 104, 3295 (1982).CrossRefGoogle Scholar
  57. 57.
    Dobrowolski, D.C., and C.S. Foote: Cercosporin, a Singlet Oxygen Generator. Angew. Chem. Int. Ed. Engl. 22, 720 (1983).CrossRefGoogle Scholar
  58. 58.
    Duewell, H., A.W. Johnson, S.F. MacDonald, and A.R. Todd: Colouring Matters of the Aphididae. Part III. Colouring Matters of Tuberolachnus salignus. J. Chem. Soc. 485 (1950).Google Scholar
  59. 59.
    Edwards, R.L., and H.J. Lockett: Constituents of the Higher Fungi. Part XVI. Bulgarhodin and Bulgarein, Novel Benzofluoranthenequinones from the Fungus Bulgaria inquinans (Fries). J. Chem. Soc. Perkin Trans. I, 2149 (1976).Google Scholar
  60. 60.
    Fajola, A.O.: Cercosporin, a Phytotoxin from Cercospora spp. Physiol. Plant Pathol. 13, 157 (1978).CrossRefGoogle Scholar
  61. 61.
    Fatiadi, A.J. : Preparation and Properties of some Oxidation Products of Perylene. J. Res. Nat. Bur. Stand. 72 A, 39 (1968).Google Scholar
  62. 62.
    Fattorusso, E., M. Piattelli, and R.A. Nicolaus: Su alcune melanine naturali. Rend. Accad. Sci. Fis. Mat. (Soc. Naz. Sci. Lett. Arti Napoli) 32, 200 (1965).Google Scholar
  63. 63.
    Feringa, B., and H. Wynberg: Asymmetric Phenol Oxidation. Stereospeciflc and Stereoselective Oxidative Coupling of a Chiral Tetrahydronaphthol. J. Org. Chem. 46, 2547 (1981).CrossRefGoogle Scholar
  64. 64.
    Fredga, A.: Steric Correlations by the Quasi-racemate Method. Tetrahedron 8, 126 (1960).CrossRefGoogle Scholar
  65. 65.
    Hackeng, W.H.L., H. Copier, and C.A. Salemink: On the Structure of Phycaron. Ree. Trav. Chim. Pays-Bas 82, 322 (1963).CrossRefGoogle Scholar
  66. 66.
    Hackeng, W.H.L. : Elsinochroom A. Ph. D. Thesis, Utrecht 1963.Google Scholar
  67. 67.
    Hall, D.M.: Stereochemistry of 2,2′-Bridged Biphenyls. In: Progress in Stereochemistry (B.J. Haylett and W.A. Harris eds.), 4, 1–42, London, Butterworths 1969Google Scholar
  68. 68.
    Harvan, D.J., and R.W. Pero: In: Mycotoxins and Other Fungal Related Food Problems, (J.V. Rodricks ed.), Adv. Chem. Ser. No. 149, p. 344, American Chemical Society, Washington D.C., 1976.CrossRefGoogle Scholar
  69. 69.
    Hughes, K.W., D. Negrotto, M.E. Daub, and R.L. Meeusen: Free-radical Stress Response in Paraquat-sensitive and Resistant Tobacco Plants. Environm. Exp. Bot. 24, 151 (1984).CrossRefGoogle Scholar
  70. 70.
    Human, J.P.E., A.W. Johnson, S.F. Macdonald, and A.R. Todd: Colouring Matters of the Aphididae. Part II. Colouring Matters from Aphis fabae. J. Chem. Soc. 477 (1950).Google Scholar
  71. 71.
    Jenkins, A.E., and A.A. Bitancourt: An Elsinoe causing an Anthracnose on Hick- oria pecan. Phytopathology 28, 75 (1938).Google Scholar
  72. 72.
    — — Studies on the Myriangiales. XIV. Phyllosticta caryae Rand non Pk. as Sphaceloma, including its Separation from Peck’s species. Arquivos do Institute Biológico São Paulo) 32, 61 (1965).Google Scholar
  73. 73.
    Jenkins, A.E. : Private Communication to U. Weiss.Google Scholar
  74. 74.
    Johnson, A.W., J.R. Quayle, T.S. Robinson, N. Sheppard, and A.R. Todd: Colouring Matters of the Aphididae. Part V. Infra-red Spectra. J. Chem. Soc. 2633 (1951).Google Scholar
  75. 75.
    Johnson, A.W., Sir Alexander R. Todd, and J.C. Watkins. Colouring Matters of the Aphididae. Part XV. The Alkaline Inversion of Erythroaphin-sl and its Derivatives. J. Chem. Soc. 4091 (1956).Google Scholar
  76. 76.
    Kurobane, I., L.C. Vining, A.G. McInnes, D.G. Smith, and J.A. Walter: Biosynthesis of Elsinochromes C and D. Pattern of acetate incorporation determined by 13C and 2H nmr. Canad. J. Chem. 59, 422 (1981).CrossRefGoogle Scholar
  77. 77.
    Kuyama, S. : Cercosporin. A Pigment of Cercosporina Kikuchii Matsumoto et To- moyasu. III. The Nature of the Aromatic Ring of Cercosporin. J. Org. Chem. 27, 939 (1962).CrossRefGoogle Scholar
  78. 78.
    Kuyama, S., and T. Tamura: Cercosporin. A Pigment of Cercosporina Kikuchii Matsumoto et Tomoyasu. I. Cultivation of Fungus, Isolation and Purification of Pigment. J. Amer. Chem. Soc. 79, 5725 (1959).CrossRefGoogle Scholar
  79. 79.
    — — Cercosporin. A Pigment of Cercosporina Kikuchii Matsumoto et Tomoyasu. II. Physical and Chemical Properties of Cercosporin and its Derivatives. J. Amer. Chem. Soc. 79, 5726 (1957).CrossRefGoogle Scholar
  80. 80.
    Lousberg, R.J.J.Ch., C.A. Salemink, U. Weiss, and T.J. Batterham: Pigments of Elsinoe Species. Part II. Structure of Elsinochromes A, B, and C. J. Chem. Soc. (C) 1219 (1969).Google Scholar
  81. 81.
    Lousberg, R.J.J.Ch., U. Weiss, and C.A. Salemink: Pigments of Elsinoe Species. Part III. Methylation of Elsinochrome A. Formation of Mono- and Di-methyl Ethers. J. Chem. Soc. (C) 2152 (1970).Google Scholar
  82. 82.
    Lousberg, R.J.J.Ch., C.A. Salemink, and U. Weiss: The Pigments of Elsinoe Species. Part V. The Structure of Elsinochrome D. J. Chem. Soc. 2159 (1970).Google Scholar
  83. 83.
    Lousberg, R.J.J.Ch.: Pigments of Elsinoe Species. Ph. D. Thesis, Utrecht, 1969.Google Scholar
  84. 84.
    Lousberg, R.J.J.Ch., L. Paolillo, H. Kon, U. Weiss, and C.A. Salemink: Pigments of Elsinoe Species. Part IV. Confirmatory Evidence for the Structure of Elsinochrome A and its Ethers from Studies of Nuclear Magnetic Resonance (Solvent and Over- hauser Effects) and Electron Spin Resonance. J. Chem. Soc. (C) 2154 (1970).Google Scholar
  85. 85.
    Lousberg, R.J.J.Ch., U. Weiss, C.A. Salemink, A. Arnone, L. Merlini, and G. Nasini : The Structure of Cercosporin, a Naturally Occurring Quinone. Chem. Commun. 1463 (1971).Google Scholar
  86. 86.
    Lund, N.A., A. Robertson, and W.B. Whalley: The Chemistry of Fungi. Part XXI. Asperxanthone and a Preliminary Examination of Aspergillin. J. Chem. Soc. 2434 (1953).Google Scholar
  87. 87.
    Lynch, F .J., and M J. Geoghegan: Production of Cercosporin by Cercospora Species. Trans. Brit. Mycol. Soc. 69, 496 (1977).CrossRefGoogle Scholar
  88. 88.
    — — Antibiotic Activity of a Fungal Perylene-quinone and some of its Derivatives. Trans. Brit. Mycol. Soc. 72, 31 (1979).CrossRefGoogle Scholar
  89. 89.
    Macdonald, S.F.: Colouring Matters of the Aphididae. Part XI. Pigments from Hamamelistes Species. J. Chem. Soc. 2378 (1954).Google Scholar
  90. 90.
    Macrì, F., and A. Vianello: Photodynamic Activity of Compounds Structurally Related to Cercosporin. Agr. Biol. Chem. 44, 2967 (1980).CrossRefGoogle Scholar
  91. 91.
    — —Photodynamic activity of cercosporin on plant tissues. Plant, Cell and Environna. 2, 267 (1979).CrossRefGoogle Scholar
  92. 92.
    — — Inhibition of K+ Uptake and H+ Extrusion Caused by Non-irradiated Cercosporin. Plant Sci. Letters 22, 29 (1981).CrossRefGoogle Scholar
  93. 93.
    Mahadevan, A., J. Kuč, and E.B. Williams: Biochemistry of Resistance in Cucumber against Cladosporium cucumerinum. I. Presence of a Pectinase Inhibitor in Resistant Plants. Phytopathology 55, 1000 (1965).Google Scholar
  94. 94.
    Matsueda, S.: Private communication (1984).Google Scholar
  95. 95.
    — Influence of light on pigment formation in Cercosporina kikuchii. Seikagaku 41, 714 (1978).Google Scholar
  96. 96.
    — Structure of Neosporin. Chem. and Ind. 233 (1978).Google Scholar
  97. 97.
    Matsueda, S., M. Nagaki, Y. Susuta, K. Tanaka, K. Takagaki, M. Shimoyama, T. Imaizumi, and K. Tsubaki: Cercospora kikuchii (Matsumoto et Tomoyasu) Gardner mut. alba, a Novel Mutant of the Pathogen of the Soybean Purple Speck Disease. Sci. Rep. Hirosaki Univ. 30, 42 (1983).Google Scholar
  98. 98.
    Matsueda, S., R. Takahashi, Y. Masuchi, K. Takagaki, and M. Shimoyama: Studies on Fungal Products. III. Structure of Neocercosporin. Yakugaku Zasshi 98, 1553 (1978).Google Scholar
  99. 99.
    Matsueda, S., Y. Masuchi, K. Takagaki, M. Shimoyama, R. Takahashi, and T. Satomi: Studies on Fungal Products. IV. Antimicrobial Aspects of Neocercosporin. Yakugaku Zasshi 99, 20 (1979).Google Scholar
  100. 100.
    Matsueda, S., K. Takagaki, M. Shimoyama, and A. Shiota: Studies on Fungal Products. V. Antimicrobial Aspects of Quinone Derivatives. Yakugaku Zasshi 100, 900 (1980).Google Scholar
  101. 101.
    Matsueda, S., K. Takagaki, M. Shimoyama, T. Imaizumi, and M. Koreeda: Structure of Amphicercosporin and Protocercosporin. Chem. & Ind. 58 (1982).Google Scholar
  102. 102.
    Mentzafos, D., A. Terzis, and S.E. Filippakis: 1,12-Bis-(2-Hydroxypropyl)-2,11- dimethoxy-6,7-methylenedioxy-4,9-dihydroxyperylen-3,10-quinone. Ethanol. Water. Cryst. Struct. Comm. 11, 71 (1982).Google Scholar
  103. 103.
    Merlini, L., and G. Nasini: Natural Perylenequinones from Moulds. In: “Chemistry and Biotechnology of Biologically Active Natural Products”, Cs. Szàntay ed., Akadémiai Kiadò, Budapest 1983, p. 121.Google Scholar
  104. 104.
    Mino, Y., T. Idonuma, and R. Sakai: Effect of Phleichrome Produced by the Timothy Leaf Spot Fungus, Cladosporium phlei on the Invertase from the Host Leaves. Ann. Phytopathol. Soc. Japan 45, 463 (1979).CrossRefGoogle Scholar
  105. 105.
    Moore, R.E., and P.J. Scheuer: Nuclear Magnetic Resonance Spectra of Substituted Naphthoquinones. Influence of Substituents on Tautomerism, Anisotropy and Stereochemistry in the Naphthazarin System. J. Org. Chem. 31, 3272 (1966).CrossRefGoogle Scholar
  106. 106.
    Mumma, R.O., F.L. Lukezic, and M.G. Kelly: Cercosporin from Cercospora hayii. Phytochemistry 12, 917 (1973).CrossRefGoogle Scholar
  107. 107.
    Mutto, S., and V. D’Ambra: Effetti della Cercosporina su Cellule Fogliari di Beta vulgaris var. saccharifera. Riv. Patologia Vegetale [4], 17, 71 (1981).Google Scholar
  108. 108.
    Nasini, G., L. Merlini, G.D. Andreetti, G. Bocelli, and P. Sgarabotto: Stereochemistry of Cercosporin. Tetrahedron 38, 2787 (1982).CrossRefGoogle Scholar
  109. 109.
    Okubo, A., S. Yamazaki, and K. Fuwa: Biosynthesis of Cercosporin. Agr. Biol. Chem. 39, 1173 (1975).CrossRefGoogle Scholar
  110. 110.
    Okuno, T., I. Natsume, K. Sawai, K. Sawamura, A. Furusaki, and T. Matsumoto: Structure of Antifungal and Phytotoxic Pigments produced by Alternaria sps. Tetrahedron Letters 24, 5653 (1983).CrossRefGoogle Scholar
  111. 111.
    Overeem, J.C., A.K. Sijpesteijn, and A. Fuchs: The Formation of Perylenequinones in Etiolated Cucumber Seedlings infected with Cladosporium cucumerinum. Phyto- chemistry 6, 99 (1967).Google Scholar
  112. 112.
    Quilico, A.: Sulla Natura del Pigmento delle Spore di Aspergillus niger. Nota III sull’Aspergillina. Gazz. Chim. Ital. 63, 400 (1933).Google Scholar
  113. 113.
    Rand, F.V.: Some Diseases of Pecans. J. Agric. Res. 1, 303 (1914).Google Scholar
  114. 114.
    Rawat, A.K.: Some Observations on the Aspergillin of Aspergillus niger. Arch. Biochem. Biophys.124, 418 (1968).CrossRefGoogle Scholar
  115. 115.
    Ray, A.C., and R.E. Eakin: Studies on the Biosynthesis of Aspergillin by Aspergillus niger. Applied Microbiology 30, 909 (1975).Google Scholar
  116. 116.
    Robeson, D., G. Strobel, G.K. Matusumoto, E.L. Fisher, M.H. Chen, and J. Clardy: Alteichin: an Unusual Phytotoxin from Alternaria eichorniae, a Fungal Pathogen of Water Hyacinth. Experientia 40, 1248 (1984).CrossRefGoogle Scholar
  117. 117.
    Sauer, D.B., L.M. Seitz, R. Burroughs, H.E. Möhr, J.L. West, R.J. Milleret, and H.D. Anthony: Toxicity of Alternaria Metabolites Found in Weathered Sorghum Grain at Harvest. J. Agric. Food Chem. 26, 1380 (1980).CrossRefGoogle Scholar
  118. 118.
    Scholl, R., Chr. Seer, and R. Weitzenböck: Perylen, ein hoch kondensierter aromatischer Kohlenwasserstoff C20H12. Ber. dtsch. chem. Ges.43, 2202 (1910).CrossRefGoogle Scholar
  119. 119.
    Scott, P.M., and D.R. Stolz: Mutagens Produced by Alternaria alternata. Mutat. Res. 78, 33 (1980).CrossRefGoogle Scholar
  120. 120.
    Shiau, W.-L, E.N. Duesler, I.C. Paul, D.Y. Curtin, W.G. Blann, and C.A. Fyfe: Investigation of Crystalline Naphthazarin B by 13C NMR Spectroscopy Using “Magic Angle” Spinning Techniques and by X-ray Diffraction: Evidence for a Dynamic Disordered Structure. J. Amer. Chem. Soc. 102, 4546 (1980).CrossRefGoogle Scholar
  121. 121.
    Shimanuki, T., and T. Araki: Phleichrome, a Non-Host Specific Toxin Produced by the Causal Organism Of Timothy Purple Spot, Cladosporium phlei, and its Toxic Influence on Timothy Leaf Blades and Leaf Surface Microorganism. J. Japan. Soc. of Grassland Sci. 28, 426 (1983).Google Scholar
  122. 122.
    Slifkin, M.K., A. Ottolenghi, and H. Brown: Effects of Fungicides on Mycotoxin Production by Alternaria mali. Mycopathol. Mycol. Appl. 50, 241 (1973).CrossRefGoogle Scholar
  123. 123.
    Stack, M.E., E.P. Mazzola, S.W. Page, A.E. Pohland, R.J. Highet, M.S. Tempesta, and D.G. Corley: Mutagenic Perylenequinone Metabolites of Alternaria alternata: Altertoxins I, II, and III. J. Natural Products 49, 866 (1986)CrossRefGoogle Scholar
  124. 124.
    Steinkamp, M.P., S.S. Martin, L.L. Hoefert, and E.G. Ruppel: Ultrastructure of Lesions Produced in Leaves of Beta vulgaris by Cercosporin, a Toxin from Cer- cospora beticola. Phytopathology 71, 1272 (1981).Google Scholar
  125. 125.
    Stinson, E.E., D.D. Bills, S.F. Osman, J. Siciliano, M.J. Ceponis, and F.G. Heisler : Mycotoxin Production by Alternaria Species Grown on Apples, Tomatoes and Blueberries. J. Agric. Food Chem. 28, 960 (1980).CrossRefGoogle Scholar
  126. 126.
    Stinson, E.E., S.F. Osman, E.G. Heisler, J. Siciliano, and D.D. Bills: Mycotoxin Production in Whole Tomatoes, Apples, Oranges and Lemons. J. Agric. Food Chem. 29, 790 (1981).CrossRefGoogle Scholar
  127. 127.
    Stinson, E.E., S.F. Osman, and P.E. Pfeffer: Structure of Altertoxin I, a Mycotoxin from Alternaria. J. Org. Chem.47, 4110 (1982).CrossRefGoogle Scholar
  128. 128.
    Thomson, R.H.: Naturally Occurring Quinones, Second Edition. Academic Press, London and New York, 1971, p. 576.Google Scholar
  129. 129.
    Todd, A.R.: Die Farbstoffe der Blattläuse (Aphididae). Experientia 18, 433 (1962).CrossRefGoogle Scholar
  130. 130.
    — Some New Developments in the Chemistry of Natural Colouring Matters. Chem. Brit. 2, 428 (1966).Google Scholar
  131. 131.
    Treibs, A., R. Wilhelm, and K. Jacob: Der Quincyte-Farbstoff. Liebigs Ann. Chem. 842 (1981).Google Scholar
  132. 132.
    Van der Vijver, L.M., and K.W. Gerritsma: Naphthoquinones from Ebenaceae. Pharm. Weekblad 111, 1273 (1976).Google Scholar
  133. 133.
    Venkataramani, K.: Isolation of Cercosporin from Cercospora per sonata. Phyto- pathol. Z. 58, 379 (1967).Google Scholar
  134. 134.
    Watts, C.D., B.R. Simoneit, J.R. Maxwell, and J.P. Ragot: The Quincyte Pigments: A Novel Series of Fossil “Dyes” from an Eocene Sediment. Adv. Org. Geochem., Proc. 7th Internat. Meeting 223 (1977).Google Scholar
  135. 135.
    Wei-Shin, C., C. Yuan-Teng, W. Xiang-Yi, E. Friedrichs, H. Puff, and E. Breit- maier : Die Struktur der Hypocrellins und seines Photooxidationsproduktes Peroxy- hypocrellin. Liebigs Ann. Chem. 1880 (1981).Google Scholar
  136. 136.
    Weiss, U., and J.M. Edwards: The Biosynthesis of Aromatic Compounds. Wiley- Interscience, New York 1980.Google Scholar
  137. 137.
    Weiss, U., H. Flon, and W.C. Burger: The Photodynamic Pigment of some Species of Elsinoë and Sphaceloma. Arch. Biochem. Biophys.69, 311 (1957).CrossRefGoogle Scholar
  138. 138.
    Weiss, U., H. Ziffer, T.J. Batterham, M. Blumer, W.H.L. Hackeng, H. Copier, and C.A. Salemink: Pigments of Elsinoé Species; Isolation of Pure Elsinochromes A, B, and C. Canad. J. Microbiol. 11, 57 (1965).CrossRefGoogle Scholar
  139. 139.
    Wolfbeis, O.S., and E. Fürlinger: Absorption, Fluorescence and Fluorimetric Detection Limits of Naturally Occurring Quinonoid Antibiotics and Dyes. Mikrochim. Acta 385 (1983 III).Google Scholar
  140. 140.
    Yamazaki, S., and T. Ogawa: The Chemistry and Stereochemistry of Cercosporin. Agr. Biol. Chem. 36, 1707 (1972).CrossRefGoogle Scholar
  141. 141.
    Yamazaki, S., A. Okubo, Y. Akiyama, and K. Fuwa: Cercosporin, a Novel Photodynamic Pigment Isolated from Cercospora kikuchii. Agr. Biol. Chem. 39, 287 (1975).CrossRefGoogle Scholar
  142. 142.
    Yoshihara, T., T. Shimanuki, T. Araki, and S. Sakamura: Phleichrome; a New Phytotoxic Compound Produced by Cladosporium phlei. Agr. Biol. Chem. 39, 1683 (1975).CrossRefGoogle Scholar
  143. 143.
    Youngman, R.J., and E.F. Elstner: Primary Photodynamic Reactions Occurring During the Breakdown of Photosynthetic Pigments. Ber. Deutsch. Bot. Ges. 96, 357 (1983).Google Scholar
  144. 144.
    Youngman, R.J., P. Schieberle, H. Schnabl, W. Grosch, and E.F. Elstner: The photodynamic generation of singlet molecular oxygen by the fungal Phytotoxin, cercosporin. Photobiochem. Photobiophys. 6, 109 (1983).Google Scholar
  145. 145.
    Zinke, A., W. Hirsch, and E. Brozek: Perylen und Derivate. XIX. Monatsh. Chem. 51, 205 (1929).CrossRefGoogle Scholar
  146. 146.
    Zinke, A., and R. Wenger: Perylene and its Derivatives. Degradation of Perylene to Benzanthrone. Monatsh. Chem. 56, 143 (1930) and preceding papers.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • U. Weiss
    • 1
  • L. Merlini
    • 2
  • G. Nasini
    • 3
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Istituto di Biochimica e di Chimica, Facoltà di AgrariaUniversità di MilanoItaly
  3. 3.Centro del C.N.R. per le Sostanze Organiche Naturali, Dipartimento di ChimicaPolitecnico di MilanoItaly

Personalised recommendations