Resonating Group Method and Pauli Repulsion of Clusters

  • H. Walliser
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 1)


In few body physics, a major task of the resonating group method is to provide effective interactions between composite particles or clusters. These interactions contain information about the internal structure of the clusters, the forces between their constituents and most importantly about the antisymmetrization of these constituents. Conventional resonating group calculations usually span, because of so-called forbidden states, a restricted relative motion space. However, these forbidden states appear only in a very singular case. The consideration of the complete relative motion space leads to effective interactions describing the short ranged Pauli repulsion more appropriately. It will be shown that this improvement may have decisive consequences in few body systems, taking the 3α system as an example.


Pauli Repulsion Resonate Group Method Shell Model State Hadronic Cluster Small Relative Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wildermuth, K., Tang, Y.C.: A Unified Theory of the Nucleus. Braunschweig: Vieweg 1977.CrossRefGoogle Scholar
  2. 2.
    Fliessbach, T., Walliser, H.: Nucl. Phys. A377 84 (1982).Google Scholar
  3. 3.
    Saito, S., Okai, S., Tamagaki, R., Yasuno, M.: Prog. Theor. Phys. 50, 1561 (1973).Google Scholar
  4. 4.
    Fliessbach, T.: Z. Phys. A272 39 (1975).Google Scholar
  5. 5.
    Buck, B., Friedrich, H., Wheatley, C.: Nucl. Phys. A275 246 (1977).Google Scholar
  6. 6.
    Saito, S.: Prog. Theor. Phys. Suppl. 62, 11 (1977).Google Scholar
  7. 7.
    Fiebig, H.R., Stingl, M., Timm, W.: J. Phys. G4, 1291 (1978).Google Scholar
  8. 8.
    Schmid, E.W.: Z. Phys. A297 105 (1980).Google Scholar
  9. 9.
    Horiuchi, H.: Prog. Theor. Phys. Suppl. 62/III (1977).Google Scholar
  10. 10.
    Walliser, H., Nakaichi-Maeda, S.: preprint 1986, to be published in Nucl. Phys. A.Google Scholar
  11. 11.
    Brown, R.E., Tang, Y.C.: Phys. Rev. 176, 1235 (1968).Google Scholar
  12. 12.
    Ali, S., Bodmer, A.R.: Nucl. Phys. 80, 99 (1966).Google Scholar
  13. 13.
    Tohsaki-Suzuki, A., Kamimura, M.,Ikeda, K.: Prog. Theor. Phys. Suppl. 68, 359 (1980).Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • H. Walliser
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations