Advertisement

Coulomb Modified Faddeev Calculations of Low-Energy P-D Observables

  • G. H. Berthold
  • A. Stadler
  • H. Zankel
Part of the Few-Body Systems book series (FEWBODY, volume 1)

Abstract

A separable representation in the S-waves of the Paris potential was used in an exact momentum space p-d calculation of differential cross sections and some second order polarization observables below breakup threshold. The influence of the three-body doublet S-state was studied in these observables and significant sensitivity was found mainly in the spin correlation parameter Cy’y. The lack of experimental information in this observable prevents a clarification of the inconsistency between model and phase shift analysis doublet S-state effective range function at this stage. An important step to establish exact model results of first order p-d polarizations that are experimentally available has now been made by calculating 3He binding energies where the S- and P-waves and the 3 S 13 D 1 state of the Paris-like potential have been taken into account. Our results compare favourably to results obtained with the Reid potential.

Keywords

Differential Cross Section Paris Potential Channel Calculation Tensor Force Phase Shift Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alt, E.O., Sandhas, W., Zankel, H., Ziegelmann, H.: Phys. Rev. Lett. 37, 1537 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Chandler, C.: in Proceedings of the Eleventh International Conference on Few Body Systems in Particle and Nuclear Physics, Tokyo and Sendai, 1986Google Scholar
  3. 3.
    Friar, J.L., Gibson, B.F., Payne, G.L.: Phys. Rev. C28, 983 (1983);ADSGoogle Scholar
  4. Friar, J.L., Gibson, B.F., Payne, G.L., Chen, C.R.: Phys. Rev. C30, 1121 (1981)ADSGoogle Scholar
  5. 4.
    Kvitsinskii, A.A.: Pis’ma Zk. Eskp. Fiz. 36, 375 (1982);Google Scholar
  6. Merkuriev, S.P.: in Few Body Problems in Physics, edited by Faddeev, L.D., and Kopaleishvilli, T.I., Singapore, 1985, p. 269Google Scholar
  7. 5.
    Kok, L.P.: in Few Body Problems in Physics, edited by Faddeev, L.D., and Kopaleishvilli, T.I., Singapore, 1985, p. 252Google Scholar
  8. 6.
    Kvitsinskii, A.A., Merkuriev, S.P.: Yad. Fiz. 41, 647 (1985);Google Scholar
  9. Kvitsinskii, A.A., Merkuriev, S.P.: Soy. J. Nucl. Phys. 41, 3 (1985)Google Scholar
  10. Kvitsinskii, A.A., Merkuriev, S.P.: Soy. J. Nucl. Phys. 41, 3 (1985)Google Scholar
  11. 8.
    Huttel, E., Arnold, W., Baumgart, H., Berg, H., Clausnitzer, G.: Nucl. Phys. A406, 443 (1983)ADSGoogle Scholar
  12. 9.
    Berthold, G.H., Zankel, H., Mathelitsch, L., Garcilazo, H.: Nuov. Cim. 93A, 89 (1986)ADSCrossRefGoogle Scholar
  13. 10.
    Gruebler, W.: private communicationGoogle Scholar
  14. 11.
    Huttel, E., Arnold, W., Berg, H., Krause, H.H., Ulbricht, J., Clausnitzer, G.: Nucl. Phys. A406, 435 (1983)ADSGoogle Scholar
  15. 12.
    Chen, C.R., Payne, G.L., Friar, J.L., Gibson, B.F.: Phys. Rev. C31, 2266 (1985);ADSGoogle Scholar
  16. Sasakawa, T., Okuno, H., Sawada, T.: Phys. Rev. C23, 905 (1981)ADSGoogle Scholar
  17. 13.
    Payne, G.L., Friar, J.L., Gibson, B.F.: Phys. Rev. C22, 832 (1980)MathSciNetADSGoogle Scholar
  18. 14.
    Sasakawa, T., Ishikawa, S.: Few-Body Sys. 1, 3 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • G. H. Berthold
    • 1
  • A. Stadler
    • 1
  • H. Zankel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GrazGrazAustria

Personalised recommendations