Advertisement

Abstract

Research on iridoids began with the discovery of asperuloside (1) (an iridoid glucoside) in 1848 and gentiopicroside (2) (a secoiridoid glucoside) in 1862. However, it was only in the late 1950’s that the structures of the compounds of this series began to be elucidated. Thus structure elucidation of the non-glycosidic iridoids iridomyrmecin (3) (1, 2, 2a) isoiridomyrmecin (4) (3, 3a, 4) and nepetalactone (5) (5) and that of the iridoid glucoside plumieride (6) (6) gradually led to the unravelling of the structures of other then unknown iridoids. Since then, large numbers of diverse new iridoids have been found and their structures have been elucidated as time progressed.

Keywords

Glycoside Indole Terpene Camptothecin Tryptamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pavan, M.: The Extraction and Crystallization of Iridomyrmecin. Chim. et Ind. 37, 625 (1955).Google Scholar
  2. 2.
    Fusco, R., R. Trave, and A. Vercellone: Constitution of Iridomyrmecin, a Natural Insecticide. Chim. et Ind. 37, 251 (1955).Google Scholar
  3. 2a.
    Fusco, R., R. Trave, and A. Vercellone: Structure of Iridomyrmexin. ibid. 37, 958 (1955).Google Scholar
  4. 3.
    Cavill, G.W.K., D.L. Ford, and H.D. Locksley: Iridodial and Iridolactone. Chem. & Ind. 1956, 465.Google Scholar
  5. 3a.
    Cavill, G.W.K., D.L. Ford, and H.D. Locksley: The Chemistry of Ants I. Terpenoid Constituents of Some Australian Iridomyrmex Species. Austral. J. Chem. 9, 288 (1956).CrossRefGoogle Scholar
  6. 4.
    Cavill, G.W.K., and H.D. Locksley: The Chemistry of Ants II. Structure and Configuration of Iridolactone (Isoiridomyrmecin). Austral. J. Chem. 10, 352 (1957).CrossRefGoogle Scholar
  7. 5.
    Bates, R.B., E.J. Eisenbraun, and S.M. Mcelvain: The Configurations of the Nepetalactones and Related Compounds. J. Amer. Chem. Soc. 80, 3420 (1958).CrossRefGoogle Scholar
  8. 6.
    Halpern, O., and H. Schmid: Zur Kenntnis des Plumierids. Hely. Chim. Acta 41, 1109 (1958).CrossRefGoogle Scholar
  9. 7.
    El-Naggar, L.J., and J.L. Beal: Iridoids, a Review. J. Natl. Prod. 43, 649 (1980).CrossRefGoogle Scholar
  10. 8.
    Barger, G., and C. Scholz: Über Yohimbin. Heiv. Chim. Acta 16, 1343 (1933).CrossRefGoogle Scholar
  11. 9.
    Hahn, G., and H. Werner: Synthese von Tetrahydroharman(4-Carbolin)-Systemen unter physiologischen Bedingungen. III. Mitteilung. Synthese des Yohimbin-Geriístes. Liebig’s Ann. Chem. 520, 123 (1935).Google Scholar
  12. 10.
    Wenkert, E., and N.V. Biungi: A Stereochemical Interpretation of the Biosynthesis of Indole Alkaloids. J. Amer. Chem. Soc. 81, 1474 (1959).CrossRefGoogle Scholar
  13. 11.
    Wenkert, E.: Alkaloid Biosynthesis. Experientia 15, 165 (1959).CrossRefGoogle Scholar
  14. 12.
    Thomas, R.: A Possible Biosynthetic Relationship between the Cyclopentanoid Monoterpenes and the Indole Alkaloids. Tetrahedron Letters 1961, 544.Google Scholar
  15. 13.
    Wenkert, E.: Biosynthesis of Indole Alkaloids. The Aspidosperma and Iboga Bases. J. Amer. Chem. Soc. 84, 98 (1962).CrossRefGoogle Scholar
  16. 14.
    Leete, E., and S. Ghosal: Further Studies on the Biosynthesis of the Non-Tryptophan Derived Portion of Ajmaline and Related Alkaloids. Tetrahedron Letters 1962, 1179.Google Scholar
  17. 15.
    Leete, E., S. Ghosal, and P.N. Edwards: Biosynthesis of the Non-Tryptophan Derived Portion of Ajmaline. J. Amer. Chem. Soc. 84, 1068 (1962).CrossRefGoogle Scholar
  18. 16.
    Money, T., I.G. Wright, F. Mccapra, and A.I. Scott: Biosynthesis of the Indole Alkaloids. Proc. Natl. Acad. Sci. U.S. 53, 901 (1965).CrossRefGoogle Scholar
  19. 17.
    Mccapra, F., T. Money, A.I. Scurf., and I.G. Wright: Biosynthesis of the Indole Alkaloids: Vindoline. Chem. Commun. 1965, 537.Google Scholar
  20. 18.
    Money, T., I.G. Wright, F. Mccapra, E.S. Hall, and A.I. Scott: Biosynthesis of Indole Alkaloids. Vindoline. J. Amer. Chem. Soc. 90, 4144 (1968).CrossRefGoogle Scholar
  21. 19.
    Goeggel, H., and D. Arigoni: The Mevalonoid Nature of Vindoline and Reserpinine. Chem. Commun. 1965, 538.Google Scholar
  22. 20.
    Battersby, A.R., R.T. Brown, R.S. Kapil, A.D. Plunkett, and J.B. Taylor: Biosynthesis of the Indole Alkaloids. Chem. Commun. 1966, 46.Google Scholar
  23. 21.
    Battersby, A.R., R.T. Brown, J.A. Knight, J.A. Martin, and A.O. Plunkett: Biosynthesis of the Indole Alkaloids from a Monoterpene. Chem. Comun. 1966, 346.Google Scholar
  24. 22.
    Battersby, A.R., R.T. Brown, R.S. Kapil, J.A. Knight, J.A. Martin, and A.O. Plunkett. Further Evidence Concerning the Biosynthesis of Indole Alkaloids and Quinine. Chem. Commun. 1966, 810.Google Scholar
  25. 23.
    Loew, P., H. Goeggel, and D. Arigoni: A Monoterpene Precursor in the Biosynthesis of Indole Alkaloids. Chem. Commun. 1966, 347.Google Scholar
  26. 24.
    Hall, E.S., F. Maccapra, T. Money, K. Fukumoto, J.R. Hanson, B.S. Mootoo, G.T. Phillips, and A.I. Scott: Concerning the Terpenoid Origin of Indole Alkaloids: Biosynthetic Mapping by Direct Mass Spectrometry. Chem. Commun. 1966, 348.Google Scholar
  27. 25.
    Leete, E., and S. Ueda: Biosynthesis of the Vinca Alkaloids. The Incorporation of Geraniol-3–14C into Catharanthine and Vindoline. Tetrahedron Letters 1966, 4915.Google Scholar
  28. 26.
    Battersby, A.R., R.T. Brown, R.S. Kapil, J.A. Martin, and A.O. Plunkett: Role of Loganin in the Biosynthesis of Indole Alkaloids. Chem. Commun. 1966, 812.Google Scholar
  29. 26a.
    Battersby, A.R., R.T. Brown, R.S. Kapil, J.A. Martin, and A.O. Plunkett: Role of Loganin in the Biosynthesis of Indole Alkaloids. ibid. 1966, 890.Google Scholar
  30. 27.
    Battersby, A.R., R.S. Kapil, J.A. Martin, and L. Mo: Loganinas Precursor of the Indole Alkaloids. Chem. Commun. 1968, 133.Google Scholar
  31. 28.
    Loew, P., and D. Arigoni: The Biological Conversion of Loganin into Indole Alkaloids. Chem. Commun. 1968, 137.Google Scholar
  32. 29.
    Bobbitt, J.M., and K.P. Segebarmh: Iridoid Glycosides and Similar Substances. In: Cyclopentanoid Terpene Derivatives. p. 1. Edited by Taylor, W.I., and A.R. Battersby. New York: Marcel Dekker, Inc. 1969.Google Scholar
  33. 30.
    Inouye, H.: Biosynthesis of Iridoid-and Secoiridoid Glucosides. In: Pharmacognosy and Phytochemistry 1970, p. 290. Edited by Wagner, H., and L. Hörhammer. Springer, Berlin-Heidelberg-New York:1970.Google Scholar
  34. 31.
    Gross, D.: Die Biosynthese Iridoider Naturstoffe. Fortschritte der Botanik 32, 93 (1970).Google Scholar
  35. 32.
    Plouvier, V., and J. Favre-Bonvin: Phytochemistry 10, 1697 (1971).CrossRefGoogle Scholar
  36. 33.
    Cordell, G.A.: The Biosynthesis of Indole Alkaloids. Lloydia 37, 219 (1974).Google Scholar
  37. 34.
    Inouye, H., S. Ueda, and Y. Takeda: Biosynthesis of Secoiridoid Glucosides. Heterocycles 4, 527 (1976).CrossRefGoogle Scholar
  38. 35.
    Inouye, H.: Neuere Ergebnisse über die Biosynthese der Glucoside der Iridoidreihe. Planta Med. 33, 193 (1978).CrossRefGoogle Scholar
  39. 36.
    Tietze, L.-F.: Secologanin, a Biogenetic Key Compound - Synthesis and Biogenesis of the Iridoid and Secoiridoid Glycosides. Angew. Chem. Int. Ed. 22, 828 (1983).Google Scholar
  40. 37.
    Inouye, H., S. Ueda, Y. Aoki, and Y. Takeda: Studies on Monoterpene Glucosides and Related Natural Products. XVII. The Intermediacy of 7-Desoxyloganic Acid and Loganin in the Biosynthesis of Several Iridoid Glucosides. Chem. Pharm. Bull. (Japan) 20, 1287 (1972).CrossRefGoogle Scholar
  41. 38.
    Inouye, H., S. Ueda, and Y. Takeda: Studies on Monoterpene Glucosides and Related Natural Products. XVIII. Formation Sequences of Iridoid Glucosides in Highly Oxidized Levels. Chem. Pharm. Bull. (Japan) 20, 1305 (1972).CrossRefGoogle Scholar
  42. 39.
    Inouye, H., S. Ueda, and S. Uesato: Zuni Mechanismus der MethylcyclopentanGerüstbildung bei der Biosynthese einiger Iridoidglucoside. Tetrahedron Letters 1977, 709.Google Scholar
  43. 40.
    Inouye, H., S. Ueda, and S. Uesato: Über die Biosynthese des Deutziosids. Tetrahedron Letters 1977, 713.Google Scholar
  44. 41.
    Inouye, H., S. Ueda, and S. Uesato: Intermediacy of Iridodial in the Biosynthesis of Some Iridoid Glucosides. Phytochem. 16, 1669 (1977).CrossRefGoogle Scholar
  45. 42.
    Inouye, H., S. Ueda, S. Uesato, and K. Kobayashi: Studies on Monoterpene Glucosides and Related Natural Products. XXXVII. Biosynthesis of the Iridoid Glucosides in Lamium amplexicaule, Deutzia crenata and Galium spurium var. echinospermon. Chem. Pharm. Bull. (Japan) 26, 3384 (1978)CrossRefGoogle Scholar
  46. 43.
    Damtoft, S.: Biosynthesis of Lamiide and Ipolamiide from 8-epi-Deoxyloganin Studied by 2H N.M.R. Spectroscopy. J.C.S. Chem Comm. 1981, 228.Google Scholar
  47. 44.
    Damtoft, Biosynthesis of the Iridoids Aucubin and Antirrinoside from 8-Epi-Deoxyloganic Acid. Phytochem 22, 1929 (1983).CrossRefGoogle Scholar
  48. 45.
    Uesato, S., S. Ueda, K. Kobayashi, and H. Inouye: Mechanism of Iridane Skeleton Formation in the Biosynthesis of Iridoid Glucosides in Gardenia jasminoides Cell Cultures. Chem. Pharm. Bull. (Japan) 31, 4185 (1983).CrossRefGoogle Scholar
  49. 46.
    Uesato, S., S. Ueda, K. Kobayashi, M. Miyauchi, and H. Inouye: Biosynthetic Pathway of Iridoid Glucosides in Gardenia jasminoides f. grandiflora Cell Suspension Cultures after Iridodial Cation Formation. Tetrahedron Letters 25, 573 (1984).CrossRefGoogle Scholar
  50. 47.
    Kobayashi, K., S. Uesato, S. Ueda, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. LV. Iridane Skeleton Formation from Acyclic Monoterpenes in the Biosynthesis of Iridoid Glucosides in Gardenia jasminoides f. grandiflora Cell Suspension Cultures. Chem. Pharm. Bull. (Japan) 33, 4228 (1985).CrossRefGoogle Scholar
  51. 48.
    Uesato, S., S. Ueda, K. Kobayashi, M. Miyauchi, H. Itox, and H. Inouye: Intermediacy of 8-Epiiridodial in the Biosynthesis of Iridoid Glucosides of Gardenia jasminoides Cell Cultures. Phytochem. 25, 2309 (1986).CrossRefGoogle Scholar
  52. 49.
    Uesato, S., M. Miyauchi, H. Prof, and H. Inoun: Biosynthesis of Iridoid Glucosides in Galium mollugo, Galium spurium var. echinospermon and Deutzia crenata. 25 in press (1986).Google Scholar
  53. 50.
    Bellesia, F., U.M. Pagnoni, A. Pinetti, and R. Trave: The Biosynthesis of Dolichodial in Teucrium marum. Phytochem. 22, 2197 (1983).CrossRefGoogle Scholar
  54. 51.
    Grandi, R., U.M. Pagnoni, A. Pinetn, and R. Trave: Biosynthesis of Dolicholactone in Teucrium marum. Phytochem. 22, 2723 (1983).CrossRefGoogle Scholar
  55. 52.
    Bellesia, F., U.M. Pagnoni, A. Pmern, and R. Trave: Teucrein, a New Iridolactol from Teucrium marum, and its Biosynthetic Relationship with Dolichodial. J. Chem Research(s) 1983, 328.Google Scholar
  56. 53.
    Bellesia, F., U.M. Pagnoni, A. Pmern, and R. Trave: The Intermediacy of Iridodial in the Biosynthesis of Dolicholactone in Teucrium marum. J. Chem. Research(s) 1984, 192.Google Scholar
  57. 54.
    Bellesia, F., R. Grandi, U.M. Pagnoni, A. Pinern, and R. Trame: Biosynthesis of Nepetalactone in Nepeta cataria. Phytochem. 23, 83 (1984).CrossRefGoogle Scholar
  58. 55.
    Grandi, R., U.M. Pagnoni, A. Pinerri, and R. Trave: The Possible Role of Photocitral-A in the Biosynthesis of Cyclopentane Monoterpenes. J. Chem. Research(s) 1984, 194.Google Scholar
  59. 56.
    Murai, F., M. Tagawa, S. Damtoft, S.R. Jensen, and B.J. Nielsen, (1R,5R,8S,9S)Deoxyloganic Acid from Nepeta cataria. Chem. Pharm. Bull. (Japan) 32, 2809 (1984).CrossRefGoogle Scholar
  60. 57.
    Tagawa, M., and F. Murai: A New Iridoid Glucoside from Actinidia polygama. Abstract Papers (II) of the 50th Annual Meeting of the Chemical Society of Japan, p. 918 (1985).Google Scholar
  61. 58.
    Jensen, S.R., B.J. Nielsen, and R. Dahlgren: Iridoid Compounds, Their Occurrence and Systematic Importance in Angiosperms. Bot. Notiser. 128, 148 (1975).Google Scholar
  62. 59.
    Yeowell, D.A., and H. Schmid: Zur Biosynthese des Plumierids. Experientia 20, 250 (1964).CrossRefGoogle Scholar
  63. 60.
    Clark, K.J., G.I. Fray, R.H. Jaeger, and R. Robinson: Synthesis of D- and LIsoiridomyrmecin and Related Compounds. Tetrahedron 6, 217 (1959).CrossRefGoogle Scholar
  64. 61.
    Coscia, C.J., and R. Guarnaccia: Biosynthesis of Gentiopicroside, a Novel Monoterpene. J. Amer. Chem. Soc. 89, 1280 (1967).CrossRefGoogle Scholar
  65. 62.
    Coscia, C.J., R. Guarnaccia, and L. Botta: Monoterpene Biosynthesis. I. Occurrence and Mevalonoid Origin of Gentiopicroside and Loganic Acid in Swertia caroliniensis. Biochemistry 8, 5036 (1969).CrossRefGoogle Scholar
  66. 63.
    Inouye, H., S. Ueda, and Y. Nakamura: Zur Biosynthese der Bitteren Glucoside der Genzianaceen, des Gentiopicrosids, des Swertiamarins und des Swerosids. Tetrahedron Letters 1967, 3221.Google Scholar
  67. 63a.
    Inouye, H., S. Ueda, and Y. Nakamura: Studies on Monoterpene Glucosides XII. Biosynthesis of Gentianaceous Secoiridoid glucosides. Chem. Pharm. Bull. (Japan) 18, 2043 (1970).CrossRefGoogle Scholar
  68. 64.
    Guarnaccia, R., L. Botta, and C.J. Coscia: Mechanism of Secoiridoid Monoterpene Biosynthesis. J. Amer. Chem. Soc. 91, 204 (1969).CrossRefGoogle Scholar
  69. 65.
    Coscia, C.J., L. Botta, and R. Guarnaccia: On the Mechanism of Iridoid and Secoiridoid Monoterpene Biosynthesis. Arch. Biochem. Biophys. 136, 498 (1970).CrossRefGoogle Scholar
  70. 66.
    Guarnaccia, R., and C.J. Coscia: Occurrence and Biosnthesis of Secologanic Acid in Vinca rosea. J. Amer. Chem. Soc. 93, 6320 (1971).CrossRefGoogle Scholar
  71. 67.
    Guarnaccia, R., L. Botta, and C.J. Coscia: Biosynthesis of Acidic Iridoid Monoterpene Glucosides in Vinca rosea. J. Amer. Chem. Soc. 96, 7079 (1974).CrossRefGoogle Scholar
  72. 68.
    Auda, H., H.R. Juneja, E.J. Eisenbraun, G.R. Waller, W.R. Kays, and H.H. Appel: Biosynthesis of Methylcyclopentane Monoterpenoids. I. Skytanthus Alkaloids. J. Amer. Chem. Soc. 89, 2476 (1967).Google Scholar
  73. 69.
    Auda, H., G.R. Waller, and E.J. Eisenbraun: Biosynthesis of Methylcyclopentane Monoterpenoids. III. Actinidine. J. Biol. Chem. 242, 4157 (1967).Google Scholar
  74. 70.
    Horodysky, A.G., G.R. Waller, and E.J. Eisenbraun: Biosynthesis of Methylcyclopentane Monoterpenoids. IV. Verbenalin. J. Biol. Chem. 244, 3110 (1969).Google Scholar
  75. 71.
    Hül, J.E.S., H. Hiltebrand, H. Schmid, D. Gröger, S. Johne, and K. Mothes: Zur Bioosynthese des Verbenalins und Aucubins. Experientia 22, 656 (1966).CrossRefGoogle Scholar
  76. 72.
    Regnier, F.E., G.R. Waller, E.J. Eisenbraun, and H. Auda: The Biosynthesis of Methylcyclopentane Monoterpenoids - II. Nepetalactone. Phytochem. 7, 221 (1968).CrossRefGoogle Scholar
  77. 73.
    Loew, P., CH. Von Szczepanski, C.J. Coscia, and D. Arigoni: The Structure and Biosynthesis of Foliamenthin. Chem. Commun. 1968, 1276.Google Scholar
  78. 74.
    Battersby, A.R., A.R. Burnett, G.D. Knowles, and P.G. Parsons: Seco-cyclopentane Glucosides from Menyanthes trifoliata: Foliamenthin, Dihydrofoliamenthin, and Menthiafolin. Chem. Commun. 1968, 1277.Google Scholar
  79. 75.
    Battersby, A.R., and R.J. Parry: Biosynthesis of the Ipecac Alkaloids and of Ipecoside. Chem. Commun. 1971, 901.Google Scholar
  80. 76.
    Coscia, C.J., and R. Guarnaccia: Natural Occurrence and Biosynthesis of a Cyclopentanoid Monoterpene Carboxylic Acid. Chem. Commun. 1968, 138.Google Scholar
  81. 77.
    Escher, S., P. Loew, and D. Arigoni: The Role of Hydroxygeraniol and Hydroxynerol in the Biosynthesis of Loganin and Indole Alkaloids. Chem. Commun. 1970, 823.Google Scholar
  82. 78.
    Battersby, A.R., S.H. Brown, and T.G. Payne: Biosynthesis of Loganin and the Indole Alkaloids from Hydroxygeraniol-Hydroxynerol. Chem. Commun. 1970, 827.Google Scholar
  83. 79.
    Meehan, T.D., and C.J. Coscia: Hydroxylation of Geraniol and Nerol by a Monooxygenase from Vinca rosea. Biochem. Biophys. Res. Comm. 53, 1043 (1973).CrossRefGoogle Scholar
  84. 80.
    Bowman, R.M., and E. Leete: Observations on the Administration of Iridodial-714C to Vinca rosea. Phytochem. 8, 1003 (1969).CrossRefGoogle Scholar
  85. 81.
    Ueda, S., K. Kobayashi, T. Muramatsu, and H. Inouye: Studies on Monoterpene Glucosides and related Natural Products. Part XL. Iridoid Glucosides of Cultured Cells of Gardenia jasminoides f. grandiflora. Planta Med. 41, 186 (1981).CrossRefGoogle Scholar
  86. 82.
    Uesato, S., K. Kobayashi, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. XLV. Synthesis of 13C-Labeled Acyclic Monoterpenes for Studies on the Mechanism of the Iridane Skeleton Formation in the Biosynthesis of Iridoid Glucosides. Chem. Pharm. Bull. (Japan) 30, 927 (1982).CrossRefGoogle Scholar
  87. 83.
    Battersby, A.R., M. Thompson, K.-H. Gldsenkamp, and L.-F. Tietze: Untersuchungen zur Biogenese der Indolalkaloide. Synthese und Verfütterung radioaktiv markierter Monoterpenaldehyde. Chem. Ber. 114, 3430 (1981).CrossRefGoogle Scholar
  88. 84.
    Balsevich, J., and W.G.W. Kurz: The Role of 9- and/or 10-Oxygenated Derivatives of Geraniol, Geranial, Nerol, and Neral in the Biosynthesis of Loganin and Ajmalicine. Planta Med. 49, 79 (1983).CrossRefGoogle Scholar
  89. 85.
    Uesato, S., S. Matsuda, and H. Inouye: Mechanism for Iridane Skeleton Formation from Acyclic Monoterpenes in the Biosynthesis of Secologanin and Vindoline in Catharanthus roseus and Lonicera morrowii. Chem. Pharm. Bull. (Japan) 32, 1671 (1984).CrossRefGoogle Scholar
  90. 86.
    Uesato, S., S. Matsuda, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. LII. Mechanism for Iridane Skeleton Formation from Acyclic Monoterpenes in the Biosynthesis of Secoiridoid Glucosides and Indole Alkaloids. Yakugaku Zasshi 104, 1232 (1984).Google Scholar
  91. 87.
    Stöckigt, J., A. Pfitzner, and J. Full: Indole Alkaloids from Cell Suspension Cultures of Rauwolfia serpentine Benth. Plant Cell Reports 1, 36 (1981).CrossRefGoogle Scholar
  92. 88.
    Uesato, S., S. Matsuda, A. Iida, H. Inouye, and M.H. Zenk: Intermediacy of 10-Hydroxygeraniol, 10-Hydroxynerol and Iridodial in the Biosynthesis of Ajmaline and Vomilenine in Rauwolfia serpentine Suspension Cultures. Chem. Pharm. Bull. (Japan) 32, 3764 (1984).CrossRefGoogle Scholar
  93. 89.
    Uesato, S., S. Kanomi, A. Iida, H. Inouye, and M.H. Zenk: Mechanism for Iridane Skeleton Formation in the Biosynthesis of Secologanin and Indole Alkaloids in Plants of Lonicera tatarica and Catharanthus roseus and Suspension Cultures of Rauwolfia serpentin. Phytochem. 25, 839 (1986).CrossRefGoogle Scholar
  94. 90.
    Uesato, S., Y. Ogawa, H. Inouye, K. Saiiu, and M.H. Zenk: Synthesis of Iridodial by Cell Free Extracts from Rauwolfia serpentina Cell Suspension Cultures. Tetrahedron Letters 27, 2893 (1986).CrossRefGoogle Scholar
  95. 91.
    Cooicson, R.C., J. Hudec, S.A. Knight, and B.R.D. Whitear: The Photochemistry of Citral. Tetrahedron 19, 1995 (1963).Google Scholar
  96. 92.
    Cookson, R.C.: The Photochemistry of Some Allylic Compounds. Quart. Rev. 22, 423 (1968).CrossRefGoogle Scholar
  97. 93.
    Uesato, S., H. Itoh, S. Xie, and H. Inouye: unpublished results.Google Scholar
  98. 94.
    Inouye, H., S. Ueda, Y. Amu, and Y. Takeda: Zur Biosynthese der Iridoidglucoside. Tetrahedron Letter 1969, 2351.Google Scholar
  99. 95.
    Inouye, H., S. Ueda, Y. Amu, and Y. Takeda: Studies on Monoterpene Glucosides and Related Natural Products. XVII. The Intermediacy of 7-Desoxyloganic Acid and Loganin in the Biosynthesis of Several Iridoid Glucosides. Chem. Pharm. Bull. (Japan) 20, 1287 (1972).CrossRefGoogle Scholar
  100. 96.
    Rimpler, H., and B. Von Lehmann: Bisdesoxydihydromonotropein aus Physostegia virginiana. Phytochem. 9, 641 (1970).CrossRefGoogle Scholar
  101. 97.
    Battersby, A.R., A.R. Burnett, and P.G. Parsons: Preparation and Isolation of Deoxyloganin: Its Role as Precursor of Loganin and the Indole Alkaloids. Chem. Commun. 1970, 826.Google Scholar
  102. 98.
    Madyastha, K.M., R. Guarnaccia, and C.J. Coscia: Enzymic Synthesis of Loganin by Carboxyl Group Methylation of Loganic Acid. FEBS Letters 14, 175 (1971).CrossRefGoogle Scholar
  103. 99.
    Madyastha, K.M., R. Guarnaccia, C. Baxter, and C.J. Coscia: S-Adenosyl-Lmethionine: Loganic Acid Methyltransferase. J. Biol. Chem. 248, 2497 (1973).Google Scholar
  104. 100.
    Battersby, A.R., A.R. Burnett, E.S. Hall, and P.G. Parsons: The Rearrangement Process in Indole Alkaloid Biosynthesis. Chem Commun. 1968, 1582.Google Scholar
  105. 101.
    Inouye, H., S. Ueda, K. Inoue, and Y. Takeda: Studies on Monoterpene Glucosides and Related Natural Products. XXIII. Biosynthesis of the Secoiridoid Glucosides, Gentiopicroside, Morroniside, Oleuropein, and Jasminin. Chem. Pharm. Bull. (Japan) 22, 676 (1974).CrossRefGoogle Scholar
  106. 102.
    Gröger, D., and P. Simchen: Über den Einbau von Loganin in Gentiopicrosid. Naturforsch. 241), 356 (1969).Google Scholar
  107. 103.
    Inouye, H., S. Ueda, and Y. Takeda: Zur Biosynthese des Morronisids. Tetrahedron Letters 1971, 4069.Google Scholar
  108. 104.
    Bairersby, A.R., A.R. Burnett, and P.G. Parsons: Alkaloid Biosynthesis. Part XIV. Secologanin Its Conversion into Ipecoside and Its Role as Biological Precursor of the Indole Alkaloids. J. Chem. Soc. (C) 1969, 1187.Google Scholar
  109. 105.
    Inouye, H., S. Ueda, and Y. Takeda: Loganin als precursor in der Biosynthese des Asperulosids. Naturforsch. 24b, 1666 (1969).Google Scholar
  110. 106.
    Damtoft, S., S.R. Jensen, and B.J. Nielsen: Application of 2H N.M.R. Spectroscopy to a Study of the Biosynthesis of the Iridoid Glucosides Comin in Verbena officinalis. J. C. S. Chem. Commun. 1980, 42.Google Scholar
  111. 107.
    Inouye, H., S. Ueda, and Y. Takeda: Loganin als precursor in der Biosynthese des Asperulosids. Naturforsch. 24b, 1666 (1969).Google Scholar
  112. 108.
    Damtofr, S., M.U. Jars, S.R. Jensen, O. Kirk, and B.J. Nieisen, The Effect of Metabolic Period, Dose and Application Method on the Incorporation of Deoxyloganin into Comin in Verbena officinalis. Phytochemistry 22, 695 (1983).CrossRefGoogle Scholar
  113. 109.
    Jensen, S.R., and B.J. Nielsen private communication.Google Scholar
  114. 110.
    Damtoft, S., S.R. Jensen, and B.J. Nielsen, The Biosynthesis of Iridoid Glucosides from 8-epi-Deoxyloganic Acid. Biochem. Soc. Transactions 11, 593 (1983).Google Scholar
  115. 111.
    Uesato, S., H. Iron, and H. Inouye: unpublished results.Google Scholar
  116. 112.
    Uesato, S., E. Au, H. Nishimura, I. Kawamuaa, and H. Inouye: Four Iridoids from Randia canthioides. Phytochem. 21, 353 (1982).CrossRefGoogle Scholar
  117. 113.
    Indue, K., Y. Takeda, H. Nishimura, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. XXXIX. Biogenetic-type Transformation of Geniposide into Plumieride. Chem. Pharm. Bull. (Japan) 27, 3115 (1979).CrossRefGoogle Scholar
  118. 114.
    Kupchan, S.M., A.L. Dessertine, B.T. Blaylock, and R.F. Bryan: Isolation and Structural Elucidation of Allamandin, an Antileukemic Iridoid Lactone from Alla-manda cathartica. J. Org. Chem. 39, 2477 (1974).Google Scholar
  119. 115.
    Adesogan, E.K.: Oruwacin, A New Iridoid Ferulate from Morinda lucida. Phytochem. 18, 175 (1979).CrossRefGoogle Scholar
  120. 116.
    Jensen, S.R., B.J. Nielsen, C.B. Mikkelsen, J.J. Hoffmann, S.D. Jolad, and J.R. Cole: The Revised Structure of Penstemide. Tetrahedron Letters 1979, 3261.Google Scholar
  121. 117.
    Djerassi, C., T. Nakano, A.N. James, L.H. Zalkow, E.J. Eisenbraun, and J.N. Shoolery: Terpenoids. XLVII. The Structure of Genipin. J. Org. Chem. 26, 1192 (1961).CrossRefGoogle Scholar
  122. 118.
    Miles, D.H., U. Kokpol, J. Bhattacharyya, J.L. Atwood, K.E. Stone, T.A. Bryson, and C. Wilson: Structure of Sarracenin. An unusual Enol Diacetal Monoterpene from the Insectivorous Plant Sarracenia flava. J. Amer. Chem. Soc. 98, 1569 (1976).CrossRefGoogle Scholar
  123. 119.
    Kubo, I., I. Miura, and K. Nakanishi: The Structure of Xylomollin, a Secoiridoid Hemiacetal Acetal. J. Amer. Chem. Soc. 98, 6704 (1976).CrossRefGoogle Scholar
  124. 120.
    Bock, K., S.R. Jensen, B.J. Nielsen, and V. Norn: Iridoid Allosides from Viburunum opulus. Phytochem. 17, 753 (1978).CrossRefGoogle Scholar
  125. 121.
    S.R. Jensen, B.J. Nielsen, and V. Nom: Iridoids from Viburnum betulifolium. Phytochem. 24, 487 (1985).CrossRefGoogle Scholar
  126. 122.
    Taguchi, H., Y. Yokokawa, and T. Endo: Studies on the Constituents of Patrinia villosa. Yakugaku Zasshi 93, 607 (1973).Google Scholar
  127. 123.
    Taguchi, H., and T. Endo: Patrinoside, a New Iridoid Glycoside from Patrinia scabiosaefolia. Chem. Pharm. Bull. (Japan) 22, 1935 (1974).CrossRefGoogle Scholar
  128. 124.
    Bal Iursby, A.R.: Biosynthesis of the Indole and Colchicum Alkaloids. Pure and Appl. Chem. 14, 117 (1967).Google Scholar
  129. 125.
    Battersby, A.R., B. Gregory, H. Spencer, J.C. Turner, M.-M. Janot, P. Potier, P. Francois, and J. Levisalles, Constitution of Ipecoside: A Monoterpenoid Isoquinoline. Chem. Commun. 1967, 219.Google Scholar
  130. 126.
    Battersby, A.R., A.R. Burnett, and P.G. Parsons: Preparation of Secologanin its Conversion into Ipecoside and its Role in Indole Alkaloid Biosynthesis. Chem. Commun. 1968, 1280.Google Scholar
  131. 127.
    Battersby, A.R., A.R. Burnett, and P.G. Parsons: Partial Synthesis and Isolation of Vincoside and Isovincoside: Biosynthesis of the Three Major Classes of Indole Alkaloids from the ß-Carboline Systen. Chem. Commun. 1968, 1282.Google Scholar
  132. 127a.
    Battersby, A.R., A.R. Burnett, and P.G. Parsons: Alkaloid Biosynthesis. Part XV. Partial Synthesis and Isolation of Vincoside and Isovincoside: Biosynthesis of the Three Major Classes of Indole Alkaloids from Vincoside. J. Chem. Soc. (C) 1969, 1193.Google Scholar
  133. 128.
    Souzu, I., and H. Mitsuhashi: Structures of Iridoids from Lonicera morrowii A. Gray. II. Tetrahedron Letters 1970, 191.Google Scholar
  134. 129.
    Popov, S., and N. Maarekov: A New Iridoid Precursor of Gentiopicroside. Phytochem. 10, 3077 (1971).CrossRefGoogle Scholar
  135. 130.
    Baitersby, A.R., and K.H. Gibson: Further Studies on Rearrangements during Biosynthesis of Indole Alkaloids. Chem. Commun. 1971, 902.Google Scholar
  136. 131.
    Takeda, Y., and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. XXX. The Fate of the C-8 Proton of 7-Deoxyloganic Acid in the Biosynthesis of Secoiridoid Glucosides. Chem. Pharm. Bull. (Japan) 24, 79 (1976).CrossRefGoogle Scholar
  137. 132.
    Hutchinson, C.R., A.H. Heckendorf, and P.E. Daddona: Biosynthesis of Camptothecin. I. Definition of the Overall Pathway Assisted by Carbon-13 Nuclear Magnetic Resonance Analysis. J. Amer. Chem. Soc. 96, 5609 (1974).Google Scholar
  138. 133.
    Tietze, L.-F.: Totalsynthese von Hydroxyloganin und Hydroxyloganinsäure. Angew. Chem. 85, 763 (1973).CrossRefGoogle Scholar
  139. 133a.
    Tietze, L.-F.: Iridoide, IV Totalsynthese von Hydroxyloganin und Hydroxyloganinsäure. Chem. Ber. 107, 2499 (1974).CrossRefGoogle Scholar
  140. 134.
    Tietze, L.-F.: Fragmentation of Hydroxyloganin Derivatives. An Assay to Secologanin Type Compounds. J. Amer. Chem. Soc. 96, 946 (1974).CrossRefGoogle Scholar
  141. 134a.
    Tietze, L.-F.: Iridoide, V Biogenetische Synthese von Secologanin-und Swerosid-aglyconmethyläther. Chem. Ber. 109, 3626 (1976).CrossRefGoogle Scholar
  142. 135.
    Inoue, K., Y. Takeda, T. Tanahashi, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. XLI. Chemical Conversion of Geniposide into 10-Hydroxyloganin. Chem. Pharm. Bull. (Japan) 29, 970 (1981).CrossRefGoogle Scholar
  143. 136.
    Inoue, K., Y. Takeda, T. Tanahashi, and H. Inouye: Studies on Monoterpene Glucosides and Related Natural Products. XLII. On the Possibility of the Intermediacy of 10-Hydroxyloganin in the Biosynthesis of Secologanin Chem. Pharm. Bull. (Japan) 29, 98 (1981).CrossRefGoogle Scholar
  144. 137.
    Battersby, A.R., N.D. Westcott, K.-H. Glüsenkamp, and L.-F. Tietze: Untersuchungen zur Biogenese der Indolalkaloide. Synthese und Verfütterung radioaktiv markierter Hydroxyloganin-Derivate. Chem Ber. 114, 3439 (1981).CrossRefGoogle Scholar
  145. 138.
    Inoue, K., H. Kuwarma, K. Takaishi, and H. Inouye: unpublished results.Google Scholar
  146. 139.
    Partridge, J.J., N.K. Chadha, S. Faber, and M.R. Usxoxovlc: Lead Tetraacetate Fragmentation of Loganin Aglucone 0-Methyl Ether and Its stereoisomers. Synth. Commun. 1, 233 (1971).CrossRefGoogle Scholar
  147. 140.
    Uesato, S., T. Hashimoto, and H. Inouye: Three New Secoiridoid Glucosides from 5- Eustoma russellianum. Phytochem. 18, 1981 (1979).Google Scholar
  148. Balenovic, K., H.U. Däniker, R. Goutarel, M.M. Janot, and V. Prelog: Über Bakankosin. Heiv. Chim. Acta 35, 2519 (1952).CrossRefGoogle Scholar
  149. 142.
    Murai, F., M. Tagawa, S. Matsuda, T. Kikuchi, S. Uesato, and H. Inouye: Abeliosides A and B, Secoiridoid Glucosides from Abelia grandora. Phytochem. 24, 2329 (1985).CrossRefGoogle Scholar
  150. 143.
    Inouye, H., S. Ueda, and Y. Takeda: The Biological Conversion of Sweroside into Gentiopicroside and Vindoline. Tetrahedron Letters 1968, 3453.Google Scholar
  151. 144.
    Inouye, H., S. Ueda, and Y. Takeda: Studies on Monoterpene Glucosides and Related Natural Products. XIII. Incorporation of [10–14C]Sweroside into Gentiopicroside and the Alkaloids in Vinca and Cinchona Plants. Chem. Pharm. Bull. (Japan) 19, 587 (1971).CrossRefGoogle Scholar
  152. 145.
    Inouye, H., S. Ueda, and Y. Takeda: Zur Biosynthese der Vinca-sowie der Cinchonaalkaloide. Inkorporation des Swerosids in Reserpinin und Chinin. Tetrahedron Letters 1969, 407.Google Scholar
  153. 146.
    Inouye, H., S. Tobita, and M. Moriguchi: Studies on Monoterpene Glucosides and Related Natural Products. XXXIII. Structure of Bakankosin. Chem. Pharm. Bull. (Japan) 24, 1406 (1976).CrossRefGoogle Scholar
  154. 147.
    Tietze, L.-F.: Synthese und Strukturbeweis von Bakankosin. Tetrahedron Letters 1976, 2535.Google Scholar
  155. 148.
    Kitagawa, I., T. Tani, K. Akita, and I. Yosioka: On the Constituents of Linaria japonica Miq. I. The Structure of Linarioside, a New Chlorinated Iridoid Glucoside and Identification of Two Related Glucosides. Chem. Pharm. Bull. (Japan) 21, 1978 (1973).Google Scholar
  156. 149.
    Inouye, H., and Y. Nakamura: Zwei stark bittere Glucoside aus Swertia japonica Makino Amarogentin und Amaroswerin. Tetrahedron Letters 1968, 4919.Google Scholar
  157. 149a.
    Inouye, H., and Y. Nakamura: Über die Monoterpenglucoside und verwandte Naturstoffe. XIV. Die Struktur der beiden stark bitter schmeckenden Glucoside Amarogentin und Amaroswerin aus Swertia japonica. Tetrahedron 27, 1951 (1971).CrossRefGoogle Scholar
  158. 150.
    Inouye, H., and Y. Nakamura: Studies on Monoterpene Glucosides and Related Natural Products. XVI. Occurrence of Secoiridoid Glucosides in Gentianaceous Plants especially in the Genera Gentiana and Swertia. Yakugaku Zasshi 91, 755 (1971).Google Scholar
  159. 151.
    Wagner, H., and K. Vasirian: Desoxyamarogentin, ein neuer Bitterstoff aus Gentiana pannonica Scop. Phytochem. 13, 615 (1974).CrossRefGoogle Scholar
  160. 152.
    Sakina, K., and K. Aota: Studies on the Constituents of Erythraea centaurium (Linne) Persoon. I. The Structure of Centapicrin, a New Bitter Secoiridoid Glucoside. Yakugaku Zasshi 96, 683 (1976).Google Scholar
  161. 153.
    Van Der Slüis, W.G., and R.P. Labadie: Secoiridoids and Xanthones in the Genus Centaurium Part III: Decentapicrins A, B and C, New m-Hydroxybenzoyl Esters of Sweroside from Centaurium littorale. Planta Med. 41, 150 (1981).CrossRefGoogle Scholar
  162. 154.
    Endo, T., and H. Taguchi: Study on the Constituents of Cornus officinalis Sieb. et Zucc. Yakugaku Zasshi 93, 30 (1973).Google Scholar
  163. 155.
    Bock, K., S.R. Jensen, and B.J. Nielsen, Secogalioside, an Iridoid Glucoside from Galium album Mill. and 13C NMR Spectra of some Seco-iridoid Glucosides. Acta Chem. Scand. B 30, 743 (1976).CrossRefGoogle Scholar
  164. 156.
    Uesato, S., M. Ueda, H. Inouye, H. Kuwajima, M. Yatsuzuka, and K. Takaishi. Iridoids from Galium mollugo. Phytochem. 23, 2535 (1984).CrossRefGoogle Scholar
  165. 157.
    Inouye, H., T. Yoshida, S. Tobita, K. Tanaka, and T. Nishioka: Über die Monoterpenglucoside und verwandte Naturstoffe. XXII. Absolutstruktur des Oleuropeins, Kingisids und Morronisids. Tetrahedron 30, 201 (1974).CrossRefGoogle Scholar
  166. 158.
    Inouye, H., S. Ueda, K. Inoue, and Y. Takeda: Ober die Biosynthese der Oleuropein-Typ-Secoiridoidglucoside der Oleaceae. Tetrahedron Letters 1971, 4073.Google Scholar
  167. 159.
    Lavie, D., and E.C. Levy: Oxidative Reactions of Biogenetic Interest. Tetrahedron Letters 1970, 1315.Google Scholar
  168. 160.
    Conrad, H.E., R. Duaus, M.J. Namtvedt, and I.C. Gunsalus: Mixed Function Oxidation. II. Separation and Properties of the Enzymes Catalyzing Camphor Lactonization. J. Biol. Chem. 240, 495 (1965).Google Scholar
  169. 161.
    Inoue, K., T. Nishidka, T. Tanahashi, and H. Inouye: Three Secoiridoid Glucosides from Ligustrum japonicum. Phytochem. 21, 2305 (1982).CrossRefGoogle Scholar
  170. 162.
    Smith, G.N.: Strictosidine: A Key Intermediate in the Biosynthesis of Indole Alkaloids. Chem. Commun. 1968, 912.Google Scholar
  171. 163.
    De Silva, K.T.D., G.N. Smith, and K.E.H. Warren: Biochemistry of Strictosidine. Chem. Commun. 1971, 905.Google Scholar
  172. 164.
    De Silva, K.T.D., G.N. Smith, and K.E.H. Warren: Stereochemistry of Strictosidine. Chem. Commun. 1971, 905.Google Scholar
  173. 165.
    Blackstock, W.P., R.T. Brown, and G.K. Lee: Configuration at C-3 in Vincoside. Chem. Commun. 1971, 910.Google Scholar
  174. 166.
    Kennard, O., P.J. Roberts, N.W. Isaacs, F.H. Allen, W.D.S. Motherwell, K.H. Gibson, and A.R. Battersby: X-Ray Determination of the Structure of 0,0-Dimethylipecoside. Chem. Commun. 1971, 899.Google Scholar
  175. 167.
    Mattes, K.C.,C.R. Hutchinson, J.P. Springer, and J. Clardy: Absolute Configuration of Vincoside. J. Amer. Chem. Soc. 97, 6270 (1975).CrossRefGoogle Scholar
  176. 168.
    Hutchinson, C.R., A.H. Heckendorf, and P.E. Daddona: Biosynthesis of Camptothecin. I. Definition of the Overall Pathway Assisted by Carbon-13 Nuclear Magnetic Resonance Analysis. J. Amer. Chem. Soc. 96, 5609 (1974).Google Scholar
  177. 169.
    Brown, R.T., J. Leonard, and S.K. Sleigh: One-pot Biomimetic Synthesis of 19/1Heterojohimbine Alkaloids. J.C.S. Chem. Comm. 1977, 636.Google Scholar
  178. 170.
    Stöckigt, J., J. Treimer, and M.H. Zenk: Synthesis of Ajmalicine and Related Indole Alkaloids by Cell Free Extracts of Catharanthus roseus Cell Suspension Cultures. FEBS Letters 70, 267 (1976).CrossRefGoogle Scholar
  179. 171.
    Stöckigt, J., and M.H. Zenk: Isovincoside (Strictosidine), the Key Intermediate in the Enzymatic Formation of Indole Alkaloids. FEBS Letters 79, 233 (1977).CrossRefGoogle Scholar
  180. 172.
    Stöckigt, J., H.P. Husson, C. Kan-Fan, and M.H. Zenk: Cathenanline, a Central Intermediate in the Cell Free Biosynthesis of Ajmalicine and Related Indole Alkaloids. J.C.S. Chem. Commun. 1977, 164.Google Scholar
  181. 173.
    Stöckigt, J., and M.H. Zenk: Strictosidine (Isovincoside): the Key Intermediate in the Biosynthesis of Monoterpenoid Indole Alkaloids. J.C.S. Chem. Commun. 1977, 646.Google Scholar
  182. 174.
    Rüffer, M., N. Nagakura, and M.H. Zenk: Strictosidine, the Common Precursor for Monoterpenoid Indole Alkaloids with 3a and 3ß Configuration. Tetrahedron Letters 1978, 1593.Google Scholar
  183. 175.
    Nagakura, N., M. Rüffer, and M.H. Zenk: The Biosynthesis of Monoterpenoid Indole Alkaloids from Strictosidine. J. Chem. Soc., Perkin I 1979, 2308.Google Scholar
  184. 176.
    Heckendorf, A.H., and C.R. Hutchinson: Biosynthesis of Camptothecin. II. Confirmation that Isovincoside, not Vincoside, is the Penultimate Biosynthetic Precursor of Indole Alkaloids. Tetrahedron Letters 1977, 4153.Google Scholar
  185. 177.
    Scott, A.I., S.L. Lee, P. de Capile, M.G. Culver, and C.R. Hutchinson: The Role of Isovincoside (Strictosidine) in the Biosynthesis of the Indole Alkaloids. Heterocycles 7, 979 (1977).CrossRefGoogle Scholar
  186. 178.
    Brown, R.T., J. Leonard, and S.K. Sleigh: The Role of Strictosidine in Monoterpenoid Indole Alkaloid Biosynthesis. Phytochem. 17, 899 (1978).CrossRefGoogle Scholar
  187. 179.
    Roberts, P.J., N.W. Isaacs, F.H. Allen, W.D.S. Motherwell, and O. Kennard: The Crystal Structure and Absolute Configuration of 0,0-Dimethylipecoside. Acta Crystallogr. B 30, 133 (1974).Google Scholar
  188. 180.
    Battersby, A.R., and B. Gregory: Biosynthesis of the Ipecac Alkaloids and of Ipecoside, a Cleaved Cyclopentane Monoterpene. Chem. Commun. 1968, 134.Google Scholar
  189. 181.
    Nagakura, N., G. Höfle, and M.H. Zenk: Deacetylipecoside: the Key Intermediate in the Biosynthesis of the Alkaloids Cephaeline and Emetine. J.C.S. Chem. Commun. 1978, 896.Google Scholar
  190. 182.
    Nagakura, N., G. Höfle, D. Coggiola, and M.H. Zenk: The Biosynthesis of the Ipecac Alkaloids and of Ipecoside and Alangiside. Planta Med. 34, 381 (1978).CrossRefGoogle Scholar
  191. 183.
    Inouye, H., Y. Takeda, S. Uesato, K. Uobe, and T. Hashimoto: A Novel Secoiridoid Glucoside, Hydrangenoside A from Hydrangea macrophylla. Tetrahedron Letters 21, 1059 (1980).CrossRefGoogle Scholar
  192. 184.
    Uesato, S., T. Hashimoto, K. Uobe, and H. Inouye: Novel Type Secoiridoid Glucosides, Hydrangenoside B, C and D from Hydrangea macrophylla. Chem. Pharm. Bull. (Japan) 29, 3421 (1981).CrossRefGoogle Scholar
  193. 185.
    Uesato, S., Y. Takeda, T. Hashimoto, K. Uobe, H. Inouye, H. Taguchi, and T. Endo: Studies on Monoterpene Glucosides and Related Natural Products. Part 49 Absolute Structures of Hydrangenosides A, B, C, D, E, F and G. Novel Type Secoiridoid Glucosides from Two Hydrangea plants. Helv. Chim. Acta 67, 2111 (1984).CrossRefGoogle Scholar
  194. 186.
    Uesato, S., T. Hashimoto, Y. Takeda, and H. Inouye: New Secoiridoid Glucosides, Hydrangenosides E, F and G from Hydrangea scandens. Chem. Pharm. Bull. (Japan) 30, 4222 (1982).CrossRefGoogle Scholar
  195. 187.
    Bate-Smith, E.C., and T. Swain: The Asperulosides and the Aucubins, p. 159 in Comparative Phytochemistry. (Ed. by T. SwAix.) New York: Academic Press. 1966.Google Scholar
  196. 188.
    Hegnauer, R.: Aucubinartige Glucoside. Über ihre Verbreitung und Bedeutung als systematisches Merkmal. Pharmaceutica Acta Helvetiae 41, 577 (1966).Google Scholar
  197. 189.
    Wiffering, J.H.: Aucubinartige Glucoside (Pseudoindikane) und verwandte Hetero-side als systematische Merkmale. Phytochem. 5, 1053 (1966).CrossRefGoogle Scholar
  198. 190.
    Fikenscher, L.H., R. Hegnauer, and H.W. Rujigrok: Iridoide Pflanzenstoffe (Pseudoindikane) als systematische Merkmale. Pharm. Weekblad 104, 561 (1969).Google Scholar
  199. 191.
    Kooiman, P.: The Occurrence of Asperulosidic Glycosides in the Rubiaceae. Acta Bot. Neerl. 18, 124 (1969).Google Scholar
  200. 192.
    Kooiman, P.: The Occurrence of Iridoid Glycosides in the Scrophulariaceae. Acta Bot. Neerl. 19, 329 (1970).Google Scholar
  201. 193.
    Hegnauer, R.: Pflanzenstoffe und Pflanzensystematik. Naturwissenschaften 58, 585 (1971).CrossRefGoogle Scholar
  202. 194.
    Bateshnth, E.C.: Chemistry and Phylogeny of the Angiosperms. Nature 236, 353 (1972).CrossRefGoogle Scholar
  203. 195.
    Grayer-Barkmeuer, R.J.: A Chemosystematic Study of Veronica: Iridoid Glucosides. Biochemical Systematics and Ecology 1, 101 (1973).CrossRefGoogle Scholar
  204. 196.
    Bate-Smith, E.C., I.K. Ferguson, K.H. Hutson, S.R. Jensen, B J Nielsen, and T. Swain: Phytochemical Interrelationship in the Comaceae. Biochemical Systematics and Ecology 3, 79 (1975).CrossRefGoogle Scholar
  205. 197.
    Hegnauer, R., and P. Kooimaan: Die Systematische Bedeutung von Iridoiden Inhaltsstoffen im Rahmen von Wettstein’s Tubiflorae. Planta Med. 33, 1 (1978).CrossRefGoogle Scholar
  206. 198.
    Inouye, H., Y. Takeda, S. Kanomi, and T. Okuda: unpublished results.Google Scholar
  207. 199.
    Tanahashi, T., N. Nagakura, H. Inouye, and M.H. Zenk: Radioimmunoassay for the Determination of Loganin and the Biotransformation of Loganin to Secologanin by Plant Cell Cultures. Phytochem. 23, 1917 (1984).CrossRefGoogle Scholar
  208. 200.
    Inouye, H., K. Inoue, and M. Ono: unpublished results.Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • H. Inouye
    • 1
  • S. Uesato
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversitySakyo-ku, Kyoto 606Japan

Personalised recommendations