The pluramycin-like antibiotics are a group of highly substituted 4H-anthra[1,2-b]pyran-4,7,12-triones. They show antitumor and antimicrobial activity and have thus mainly been investigated for their biological activities. Their chemical instability and photolability make their handling difficult. This review stresses the chemical aspects of the pluramycin antibiotics; their biochemical properties will, however, also be summarized.


Minimal Inhibitory Concen Chair Conformation Sugar Ring Tetrahedron Letter Carminic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aszalos, A., M. Jelinek, and B. Berk: Rubiflavin, a toxic antitumor antibiotic. Antimicrobial Agents and Chemotherapy 1964, 68 (1965).Google Scholar
  2. 2.
    Aszalos, A., R.S. Robison, N.V. Kraemer, J.A. Henshaw, and M.S. Giannini: Tumimycin, seine Salze, Verfahren zu seiner Herstellung und seine Verwendung als Antibioticum. Deutsche Offenlegungsschrift 2139261 (17. 2. 1972 ).Google Scholar
  3. 3.
    Baer, H.H., and F.F.Z. Georges: The Synthesis of D-Angolosamine. Can. J. Chem. 55, 1100 (1977).CrossRefGoogle Scholar
  4. 4.
    Baker, W.: Molecular Rearrangement of Some o-Acyloxyacetophenones and the Mechanism of the Production of 3-Acylchromones. J. Chem. Soc. ( London ) 1933, 1381.Google Scholar
  5. 5.
    Bartus, H.R., C.K. Mirabelli, J.I. Auerbach, A.R. Shatzman, D.P. Taylor, R.K. Johnson, M. Rosenberg, and S.T. Crooke: Improved Genetically Modified Escherichia Coli Strain for Prescreening Antineoplastic Agents. Antimicrobial Agents and Chemotherapy 1984, 622.Google Scholar
  6. 6.
    Benn, R. and H. Günther: Moderne Pulsfolgen in der hochauflösenden NMRSpektroskopie. Angew. Chem. 95, 381 (1983).CrossRefGoogle Scholar
  7. 7.
    Bérdy, J.: Recent Developments of Antibiotic Research and Classification of Antibiotics According to Chemical Structure. Adv. Appl. Microbiol. 18, 309 (1974).CrossRefGoogle Scholar
  8. 8.
    Bradner, W.T., B. Heinemann, and A. Gourevitch: Hedamycin, a New Antitumor Antibiotic. II. Biological Properties. Antimicrobial Agents and Chemotherapy 1966, 613 (1967).Google Scholar
  9. 9.
    Brockmann, H.: Indomycine und Indomycinone. Angew. Chem. 80, 493 (1968).CrossRefGoogle Scholar
  10. 10.
    Brufani, M., and W. Keller-Schierlein: Stoffwechselprodukte von Mikroorganismen. 54. Mitteilung. Über die Zuckerbausteine des Angolamycins: L-Mycarose, D-Mycinose und D-Angolosamin. Helv. Chim. Acta 49, 1962 (1966).CrossRefGoogle Scholar
  11. 11.
    Byrne, K.M., S.K. Gonda, and B.D. Hilton: Largomycin FII Chromophore Component 4, a New Pluramycin Antibiotic. J. Antibiotics 38, 1040 (1985).Google Scholar
  12. 12.
    Ceroni, M., and U. Séquin: The Structure of the Antibiotic Hedamycin. IV. Relative Configurations in the Diepoxide Side Chain Tetrahedron Letters 1979, 3703.Google Scholar
  13. 13.
    Ceroni, M., and U. Séquin: Determination of the Relative Configurations in the Side Chains of the Antibiotics Hedamycin and Pluramycin A; Synthesis and NMR Data of Suitable Model Compounds. Helv. Chim. Acta 65, 302 (1982).CrossRefGoogle Scholar
  14. 14.
    Corbaz, R., L. Ettlinger, E. Gäumann, W. Keller-Schierlein, L. Neipp, V. Prelog, P. Reusser, and H. Zäi-Iner: Stoffwechselprodukte von Actinomyceten. 2. Mitteilung. Angolamycin. Helv. Chim. Acta 38, 1202 (1955).CrossRefGoogle Scholar
  15. 15.
    Dahivl, K.H.: Personal communication.Google Scholar
  16. 16.
    Dahm, K.H.: Unpublished results.Google Scholar
  17. 17.
    Dornberger, K., U. Berger, W. Gutsche, W. Jungstand, K. Wohlrabe, A. Härtl, and H. Knoll: Griseorubins, a New Family of Antibiotics with Antimicrobial and Antitumor Activity. II. Biological Properties and Antitumor Activity of the Antibiotic Complex Griseorubin. J. Antibiotics 33, 9 (1980).Google Scholar
  18. 18.
    Dornberger, K., U. Berger, and H. Knoll: Griseorubins, a New Family of Antibiotics with Antimicrobial and Antitumor Activity. I. Taxonomy of the Producing Strain, Fermentation, Isolation and Chemical Characterization. J. Antibiotics 33, 1 (1980).Google Scholar
  19. 19.
    Eckardt, K.: Quinones and Other Carbocyclic Antitumor Antibiotics. In: Antitumor Compounds of Natural Origin: Chemistry and Biochemistry (Aszalos, A., ed.), Vol II, p. 27. Boca Raton, FA: CRC Press, Inc. 1981.Google Scholar
  20. 20.
    Ellis, G.P.: General Methods of Prepraring Chromones. In: The Chemistry of Heterocyclic Compounds, Vol. 31: Chromenes, chromanones and chromones (ELLts, G.P., ed.), p. 495. New York: John Wiley & Sons 1977.Google Scholar
  21. 21.
    Fredenhagen, A., W. Rnias, U. Sequin, and M. Zeiinder: Solid State Conformation of a Bioxirane Related to Hedamycin. Chimia 35, 334 (1981).Google Scholar
  22. 22.
    Fredenhagen, A., and U. Sequtn: Phototransformations of Some 2-Substituted 4H-Chromen-4-ones (4-chromones) Related to the Antitumor Antibiotic Hedamycin. Helv. Chim. Acta 66, 586 (1983).CrossRefGoogle Scholar
  23. 23.
    Fredenhagen, A., and U. Sequtn: The Structures of Some Products from the Photo-degradation of the Pluramycin Antibiotics Hedamycin and Kidamycin. Helv. Chico. Acta 68, 391 (1985).CrossRefGoogle Scholar
  24. 24.
    Fredenhagen, A., and U. Sequtn: The Photodeactivation of Hedamycin, an Antitumor Antibiotic of the Pluramycin Type. J. Antibiotics 38, 236 (1985).Google Scholar
  25. 25.
    French, J.C.: Personal communication.Google Scholar
  26. 26.
    Fricice, I.: Zur Kenntnis der Indomycine, einer neuen Klasse von antibiotisch und cytostatisch wirksamer Naturstoffe. Dissertation. Göttingen 1973.Google Scholar
  27. 27.
    Fronza, G., C. Fuganti, P. Grasseli, and G. Pedrocchi-Fantoni: Synthesis of the Four Configurational Isomers of N-Benzoyl-2,3,6-trideoxy-3-C-methyl-3-aminoL-hexose from the (2S,3 R)-Diol obtained from a-Methylcinnamaldehyde by Fermentation with Bakers’ yeast. J. Carbohyd. Chem. 2, 225 (1983).CrossRefGoogle Scholar
  28. 28.
    Furukawa, M., I. Hayakawa, G. Ohta, and Y. Iitaka: Structure and Chemistry of Kidamycin. Tetrahedron 31, 2989 (1975).CrossRefGoogle Scholar
  29. 29.
    Furukawa, M., and Y. Iitaica: Structure of Kidamycin: X-ray Analysis of Isokidamycin Derivatives. Tetrahedron Letters 1974, 3287. The Antibiotics of the Pluramycin Group (4H-Anthra[1,2-b]pyran Antibiotics) 119Google Scholar
  30. 29a.
    Furukawa, M., and Y. Iitaka: Structures of Kidamycin Derivatives: Triacetylmethoxykidamycin Bis(trimethylammonium) Iodide and Isokidamycin Bis(m-bromobenzoate). Acta Cryst. B 36, 2270 (1980).Google Scholar
  31. 30.
    Furukawa, M., A. Itai, and Y. Iitaka: Crystallographic Studies of an Anthraquinone Derivative Obtained from Kidamycin. Tetrahedron Letters 1973, 1065.Google Scholar
  32. 31.
    Gerwick, W.H., and W. Fenical: Spatane Diterpenoids from the Tropical Marine Algae Spatoglossum Schmittii and Spatoglossum Howlett (Dictyotaceae). J. Organ. Chem. (USA) 48, 3325 (1982).CrossRefGoogle Scholar
  33. 32.
    Gerwick, W.H., W. Fenical, D. Van Engen, and J. Clardy: Isolation and Structure of Spatol, a Potent Inhibitor of Cell Replication from the Brown Seaweed Spatoglossum Schmittii. J. Amer. Chem Soc. 102, 7991 (1980).CrossRefGoogle Scholar
  34. 33.
    Gonda, S.K., K.M. Byrne, P.K. Herber, Y. Tondeur, D. Liberato, and B.D. Hilton: Structure and Properties of Major Largomycin FII Chromophore Components. J. Antibiotics 37, 1344 (1984).Google Scholar
  35. 34.
    Hamanoue, K., K. Yokoyama, T. Miyake, T. Kasuya, T. Nakayama, and H. Teranisi: Photochemical Reactions of Chloroanthraquinones. Chemistry Letters 1982, 1967.Google Scholar
  36. 35.
    Hata, T., T. Hoshino, A. Matsumae, S. Nomura, Y. Sano, and Y. Yajima: Iyomyein, a New Antitumor Antibiotic. Intern. Congr. Chemotherapy, Proc., 3rd, Stuttgart, 1963, 2, 1032 (1964). Cf. Chem. Abstr. 65, 6127g (1966).Google Scholar
  37. 35a.
    Hauser, F.M., and S.R. Ellenberger: Syntheses of 2,3,6-Trideoxy-3-amino-and 2,3,6-Trideoxy-3-nitrohexoses. Chem. Rev. 86, 35 (1986).CrossRefGoogle Scholar
  38. 36.
    Hauser, F.M., and R.P. Rhee: 4H-Anthra[1,2-b]pyran Antibiotics. Total Synthesis of the Methyl Ether of Kidamycinone. J. Amer. Chem. Soc. 101, 1628 (1979).CrossRefGoogle Scholar
  39. 37.
    Hauser, F.M., and R.P. Rhee: Anthra[1,2-b]pyran Antibiotics: Total Synthesis of O-Methylkidamycinone. J. Organ. Chem. (USA) 45, 3061 (1980).CrossRefGoogle Scholar
  40. 38.
    Heinemann, B., and A.J. Howard: Antiphage Properties of Compounds Possessing Both Antitumor and Inducing Activities. Antimicrobial Agents and Chemotherapy 1964, 126 (1965).Google Scholar
  41. 39.
    Hori, Y., M. Hino, Y. Kawai, S. Kiyoto, H. Terano, M. Kohsaka, H. Aoki, M. Hashimoto, and H. Imanaka: A New Antibiotic, Chromoxymycin. II. Production, Isolation, Characterization and Antitumor Activity. J. Antibiotics 39, 12 (1986).Google Scholar
  42. 40.
    Howe, I., and M. Jarman: New Techniques for the Mass Spectrometry of Natural Products. Fortschr. Chem. organ. Naturstoffe 47, 107 (1985).Google Scholar
  43. 41.
    Jernigan, H.M., J.L. Irvin, and J.R. White: Binding of Hedamycin to Deoxyribonucleic Acid and Chromatin of Testis and Liver. Biochemistry 17, 4232 (1978).CrossRefGoogle Scholar
  44. 42.
    Joel, P.B., and I.H. Goldberg: The Inhibition of RNA and DNA Polymerases by Hedamycin. Biochim. Biophys. Acta 224, 361 (1970).Google Scholar
  45. 43.
    Johnson, A.W., R.M. Smith, and R.D. Guthrie: Vancosamine: The Structure and Configuration of a Novel Amino-sugar from Vancomycin. J.C.S. Perkin I 1972, 2153.Google Scholar
  46. 44.
    Kanda, N.: A New Antitumor Antibiotic, Kidamycin. I. Isolation, Purification and Properties of Kidamycin. J. Antibiotics 24, 599 (1971).Google Scholar
  47. 45.
    Kanda, N.: A New Antitumor Antibiotic, Kidamycin. III. Preparation and Properties of Acetylkidamycin. J. Antibiotics 25, 557 (1972).Google Scholar
  48. 46.
    Kanda, N., M. Kono, and K. Asano: A New Antitumor Antibiotic, Kidamycin. II. Experimental Treatment of Cancer with Kidamycin. J. Antibiotics 25, 553 (1972).Google Scholar
  49. 47.
    Kawai, Y., K. Furihata, H. Seto, and N. Otake: The Structure of a New Antibiotic, Chromoxymycin. Tetrahedron Letters 26, 3273 (1985).CrossRefGoogle Scholar
  50. 48.
    Keller, P., G. Eggart, H. Wehrli, K. Schaffner, and O. Jeger: Photochemische Reaktionen. 41. Zur bimolekularen Photoreduktion cyclischer Ketone, cyclischer ß-Hydroxyketone und cyclischer a, ß-Epoxyketone. Helv. chim. Acta 50, 2259 (1967).Google Scholar
  51. 49.
    Kiniimaki, A., and M. Suzuki: Proposed Structure of Angolamycin (Shincomycin A) by Mass Spectroscopy. J. Antibiotics 25, 480 (1972).Google Scholar
  52. 50.
    Rondo, S., M. Miyamoto, H. Naganawa, T. Takeuchi, and H. Umezawa: Structures of Pluramycin A and Neopluramycin. J. Antibiotics 30, 1143 (1977).Google Scholar
  53. 51.
    Kondo, S., T. Wakashiro, M. Hamada, K. Maeda, T. Takeuchi, and H. Umezawa: Isolation and Characterization of a New Antibiotic, Neoluramycin. J. Antibiotics 23, 354 (1970).Google Scholar
  54. 52.
    Koo, J.: Synthesis in the Chromone Series. 5,8-Dimethoxy-2-substituted Chromones and Nitrogen Analogs. J. Organ. Chem. (USA) 26, 2440 (1961).CrossRefGoogle Scholar
  55. 53.
    Kudinova, M.K., G.A. Babenko, R.S. Ukholina, T.S. Maksimova, N.P. Nechaeva, L.P. Terekflova, and O.K. Rossollao: Antitumor Antibiotic 4418 Similar to Antibiotics of the Pluramycin-Iomycin Group. Antibiotiki 1968, 201.Google Scholar
  56. 54.
    Lown, J.W.: Newer Approaches to the Study of the Mechanism of Action of Antitumor Antibiotics. Acc. Chem. Res. 15, 381 (1982).CrossRefGoogle Scholar
  57. 55.
    Lown, J.W., H.-H. Chen, S.-V.. Sim, and J.A. Plambeck: Reactions of the Antitumor Agent Carminic Acid and Its Derivatives with DNA. Bioorganic Chem. 8, 17 (1979).CrossRefGoogle Scholar
  58. 56.
    Macfarlane, R.D.: Californium-252 Plasma Desorption Mass Spectrometry (PDMS) of Antibiotic Molecules. NBS Spec. Publ. (U.S.), 519 (Trace Org. Anal.: New Front. Anal. Chem.), 673 (1979). Cf. Chem. Abstr. 91, 139904v (1979).Google Scholar
  59. 57.
    Maeda, K., T. Takeuchi, K. Nitta, K. Yagishita, R. Utaeiara, T. Osato, M. Ueda, S. Kondo, Y. Okami, and H. Umezawa: A New Antitumor Substance, Pluramycin. J. Antibiotics, Ser. A 9, 75 (1956).Google Scholar
  60. 58.
    Massiot, G.,S.K. Kan, P. Gonord, and C. Durst: The Fourier Transform Difference Spectra method. An Application to Structural Elucidation of Andranginine, a Novel Indole Alkaloid. J. Amer. Chem. Soc. 97, 3277 (1975).CrossRefGoogle Scholar
  61. 59.
    Matsubara, H.: Cytotoxic Characteristics of Virus Antitumor Antibiotics in HeLa Cell Cultures and a Proposed Anticellogram for the Differentiation of These Substances. J. Antibiotics, Ser. B 13, 262 (1960).Google Scholar
  62. 60.
    Matsumae, A., and T. Hata: Morphological Change of Bacteria Induced by Chemotherapeutic Agents. I. A Classification of Chemotherapeutic Agents Based on Their Activities to Induce Morphological Changes of Escherichia Coli Strain B. J. Antibiotics, Ser. A 17, 164 (1964).Google Scholar
  63. 61.
    Matsumoto, K.: Cytological Effects of Various Antitumor Substances on HeLa Cells and Synergistic Effects. J. Antibiotics, Ser. B 14, 1 (1961).Google Scholar
  64. 62.
    Mccormick, M.H., W.M. Stark, G.E. Pittenger, R.C. Piiienger, and J.M. Mcguire: Vancomycin, a New Antibiotic. I. Chemical and Biologic Properties. Antibiotics Ann. 1955/56, 606.Google Scholar
  65. 63.
    Mondon, A., B. Epe, U. Oelbermann, V. Sinnwell, and G. Remberg: Zur Kenntnis der Bitterstoffe aus Cneoraceen - XVII. Tetrahedron Letters 23, 4015 (1982).CrossRefGoogle Scholar
  66. 64.
    Mong, S., J.E. Strong, and S.T. Crooke: Interaction of Covalently Closed Circular PM-2 DNA and Hedamycin. Biochem. Biophys. Res. Commun. 88, 237 (1979).CrossRefGoogle Scholar
  67. 65.
    Nadig, H.: Über Antibiotika des Pluramycin-Typs. Isolierung und Strukturaufklärung einiger Rubiflavin-Komponenten. Struktur von Hedamycin. Dissertation. Basel 1982.Google Scholar
  68. 66.
    Nadig, H., and U. Sequin, unpublished.Google Scholar
  69. 67.
    Nadig, H., and U. Sequin: A Structural Investigation of the Antibiotic Rubiflavin. HeIv. Chim. Acta 63, 2446 (1980).CrossRefGoogle Scholar
  70. 68.
    Nadig, H., U. Sequin, R.H. Bunge, T.R. Hurley, D.B. Murphey, and J. C. French: Isolation and Structure of a New Antibiotic Related to Rubiflavin A. HeIv. Chim. Acta 68, 953 (195).Google Scholar
  71. 69.
    Nagai, K., N. Tanaka, and H. Umezawa: Inhibition of Nucleic Acid Biosynthesis in Cell-free Systems of Escherichia Coli B by Pluramycin. J. Biochemistry (Tokyo) 67, 655 (1970).Google Scholar
  72. 70.
    Nagai, K., H. Yamaki, N. Tanaka, and H. Umezawa: Inhibition by Pluramycin A of Nucleic Acid Biosynthesis. J. Biochemistry (Tokyo) 62, 321 (1967).Google Scholar
  73. 71.
    Nishibotu, A.: Antitumor Effect of Pluramycin A on Experimental Animal Tumors. J. Antibiotics, Ser. A 10, 213 (1957).Google Scholar
  74. 72.
    Ogawara, H., K. Maeda, K. Nitta, Y. Okami, T. Takeuchi, and H. Umezawa: An Antibiotic, Plurallin, Consisting of a Pluramycin-like Prosthetic Group and a Glycoprotein. J. Antibiotics, Ser. A 19, 1 (1966).Google Scholar
  75. 73.
    Ogawara, H., K. Maeda, and H. Umezawa: Pluramycin Complex with Human Serum Albumin and the Antitumor Activity. J. Antibiotics, Ser. A 19, 141 (1966).Google Scholar
  76. 74.
    Omura, S., A. Nakagawa, H. Takeshima, J. Miyazawa, C. Kitao, F. Piriou, and G. Luicacs: A 13C Nuclear Magnetic Resonance Study of the Biosynthesis of the 16-Membered Macrolide Antibiotic Tylosin. Tetrahedron Letters 1975, 4503.Google Scholar
  77. 75.
    Otake, N., and T. Sasaki: A Screening Procedure on the Inhibitors of Substrate-Incorporation in Tumor Cells. Methodological Survey and Its Evaluation. Agric. Biol. Chem. 41, 1039 (1977).CrossRefGoogle Scholar
  78. 76.
    Parker, W.L., M.L. Rathnum, V. Seiner, W.H. Trejo, P.A. Principe, and R.B. Sykes: Cepacin A and Cepacin B, Two New Antibiotics Produced by Pseudomonas Cepacia. J. Antibiotics 37, 431 (1984).Google Scholar
  79. 77.
    Price, K.E., R.E. Buck, and J. Lein: Incidence of Antineoplastic Activity Among Antibiotics Found to be Inducers of Lysogenic Bacteria. Antimicrobial Agents and Chemotherapy 1964, 505 (1965).Google Scholar
  80. 78.
    Sano, Y., N. Kanda, and T. Hata: Iyomycin, a New Antitumor Antibiotic from Streptomyces. III. Isolation and Properties of Iyomycin B. J. Antibiotics, Ser. A 17, 117 (1964).Google Scholar
  81. 79.
    Schmitz, H., K.E. Crook, Jr., and J.A. Bush: Hedamycin, a New Antitumor Antibiotic. I. Production, Isolation, and Characterization. Antimicrobial Agents and Chemotherapy 1966, 606 (1967).Google Scholar
  82. 80.
    Schnell, J.: Indomycine, eine Gruppe neuer Cytostatika aus Streptomyceten. Dissertation. Göttingen 1963.Google Scholar
  83. 81.
    Scott, A.I.: Personal communication.Google Scholar
  84. 82.
    Séquin, U.: The Structure of the Antibiotic Hedamycin. II. Comparison of Hedamycin and Kidamycin. Tetrahedron 34, 761 (1978).CrossRefGoogle Scholar
  85. 83.
    Sequin, U.: 13C-NMR. Spectral Differences Between Corresponding Methyl Esters, Phenyl Esters and 2-Substituted Chromones. Helv. Chim. Acta 64, 2654 (1981).CrossRefGoogle Scholar
  86. 84.
    Sequin, U., C.T. Bedford, S.K. Chung, and A.I. Scott: The Structure of the Antibiotic Hedamycin. I. Chemical, Physical and Spectral Properties. Helv. Chim. Acta 60, 896 (1977).Google Scholar
  87. 85.
    Sequin, U., and M. Ceroni: Concerning the Configuration of the Side Chain in the Antibiotic Pluramycin A. Helv. Chim. Acta 61, 2241 (1978).CrossRefGoogle Scholar
  88. 86.
    Sequin, U., and M. Furukawa: The Structure of the Antibiotic Hedamycin. III. “C-NMR Spectra of Hedamycin and Kidamycin. Tetrahedron 34, 3623 (1978).CrossRefGoogle Scholar
  89. 87.
    Smith, C.G., W.L. Luanns, and J.E. Grady: An Improved Tissue Culture Assay. II. Cytotoxicity Studies with Antibiotics, Chemicals, and Solvents. Cancer Res. 19, 847 (1959).Google Scholar
  90. 88.
    Takeuchi, T., T. Hiiciji, K. Nitta, and H. Umezawa: Effect of Pluramycin A on Ehrlich Carcinoma of Mice. J. Antibiotics, Ser A. 10, 143 (1957).Google Scholar
  91. 89.
    Tanaka, N., K. Nagai, H. Yamaguchi, and H. Umezawa: Inhibition of RNA and DNA Polymerase Reactions by Pluramycin A. Biochem. Biophys. Res. Commun. 21, 328 (1965).CrossRefGoogle Scholar
  92. 90.
    Terui, Y., K. Tori, and N. Tsuji: Esterification Shifts in Carbon-13 NMR Spectra of Alcohols. Tetrahedron Letters 1976, 621.Google Scholar
  93. 91.
    Thang, T.T., F. Winternitz, A. Olesker, A. Lagrange, and G. Lltkacs: Synthesis of a Derivative of Vancosamine, a Component of the Glycopeptide Antibiotic Vancomycin. J.C.S. Chem. Comm. 1979, 153.Google Scholar
  94. 92.
    Toth-Sarudy, E., I. Gado, J. Gymifsi, M. Halasz, I. Horvatii, K. Magyar, L. Alfoldi, J. Beady, and B. Doczl: Griseofagins. Hung. Pat. 157600, 13. Juli 1970. Cf. Chem. Abstr. 73, 119214v (1970).Google Scholar
  95. 93.
    Tsukada, I., M. Hamada, and H. Unmezawa: Neopluramycin, an Inhibitor of Nucleic Acid Synthesis. J. Antibiotics 24, 189 (1971).Google Scholar
  96. 94.
    Turner, W.B.: Fungal Metabolites, p. 74ff. London, New York: Academic Press 1971.Google Scholar
  97. 95.
    Turner, W.B., and D.C. Aldridge: Fungal Metabolites II, p. 55ff. London, New York: Academic Press 1983.Google Scholar
  98. 96.
    Umezawa, I., Komiyama, H. Takeshima, T. Hata, M. Kong, and N. Kanda: A New Antitumor Antibiotic, Kidamycin. IV. Pharmacokinetics of Acetylkidamycin. J. Antibiotics 26, 669 (1973).Google Scholar
  99. 97.
    Vignon, M.R., and P.J.A. Vottero: RMN 13C: Sur l’utilisation des esters pour l’attribution des carbones des molécules glucidiques. Tetrahedron Letters 1976, 2445.Google Scholar
  100. 98.
    Weringa, W.D., D.H. Williams, J. Feeney, J.P. Brown, and R.W. King: The Structure of an Amino-sugar from the Antibiotic Vancomycin. J.C.S. Perkin I 1972, 443.Google Scholar
  101. 99.
    White, J.R., and H.H. Dearman: Generation of Free Radicals from Phenazine Methosulfate, Streptronigrin, and Rubiflavin in Bacterial Suspensions. Proc. Natl. Acad. Sci. U.S. 54, 887 (1965).CrossRefGoogle Scholar
  102. 100.
    White, H.L., and J.R. White: Hedamycin and Rubiflavin Complexes with Deoxyribonucleic Acid and Other Polynucleotides. Biochemistry 8, 1030 (1969).CrossRefGoogle Scholar
  103. 101.
    White, H.L., and J.R. White: Binding of Rubiflavin to Deoxyribonucleic Acid in Relation to Antibacterial Action. Antimicrobial Agents and Chemotherapy 1966, 227 (1967).Google Scholar
  104. 102.
    Wilkinson, F.: Transfer of Triplet-State Energy and the Chemistry of Excited States. J. Phys. Chem. 66, 2569 (1962).CrossRefGoogle Scholar
  105. 103.
    Yamaguchi, T., T. Furumai, M. Sato, T. Okuda, and N. Imam: Studies on a New Antitumor Antibiotic, Largomycin. I. Taxonomy of the Largomycin-Producing Strain and Production of the Antibiotic. J. Antibiotics 23, 369 (1970).Google Scholar
  106. 104.
    Yoshida, T., and K. Katagiri: Anthracidins A and B, New Antibiotics. Antimicrobial Agents and Chemotherapy 1963, 63 (1964).Google Scholar
  107. 105.
    Zehnder, M., U. Sequin, and H. Nadig: The Structure of the Antibiotic Hedamycin. V. Crystal Structure and Absolute Configuration. Hely. Chim. Acta 62, 2525 (1979).Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • U. Séquin
    • 1
  1. 1.Institut für Organische Chemie der UniversitätBaselSwitzerland

Personalised recommendations