In this review we consider 24 alkaloids having the precondylocarpinetype pentacyclic skeleton and a two-carbon unit (carbons 18 and 19 in the “biogenetic numbering” of Le Men and Taylor (1)). All can be derived from precondylocarpine (1) via condylocarpine (2). To date, no comprehensive review of these alkaloids has appeared. However, considerable information can be found in M Hesse’s (2) Tables of Indole Alkaloids under the aspidospermatine-type alkaloids. Husson (3) has recently reviewed Strychnos alkaloids discovered or studied in the seventies and up to 1982. Besides the chemical and structural properties he notes plant sources of condylocarpine derivatives. Van Beek et al. (4) have listed the alkaloids isolated from the genus Tabernaemontana.


Borohydride Carbazole AcOH Lactam Tetrafluoroborate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Men, J., and W.I. Taylor: A Uniform Numbering System for Indole Alkaloids. Experientia 21, 505 (1965).CrossRefGoogle Scholar
  2. 2. a)
    Hesse, M.: Indolalkaloide in Tabellen, p. 41. Berlin-Göttingen-Heidelberg: Springer. 1964.Google Scholar
  3. b).
    Hesse, M.: Indolalkaloide in Tabellen, Ergänzungswerk, p. 90. Berlin-Heidelberg-New York: Springer. 1968.Google Scholar
  4. 3.
    Husson, H.-P.: The Strychnos Alkaloids. In: Indoles, Part Four, The Monoterpenoid Indole Alkaloids (Saxton, J.E., ed.), in “The Chemistry of Heterocyclic Compounds” (Weissberger, A., and Taylor, E.C., eds.), p. 293. New York: John Wiley and Sons. 1983.Google Scholar
  5. 4.
    van Beek, T.A., R. Verpoorte, A. Baerheim Svendsen, A.J.M. Leeuwenberg, and N.G. Bisset: Tabernaemontana L. (Apocynaceae): A Review of Its Taxonomy, Phytochemistry, Ethnobotany and Pharmacology. J. Ethnopharmacol. 10, 1 (1984).CrossRefGoogle Scholar
  6. 5.
    Hesse, O.: Studien über argentinische Quebracho-drogen. Liebigs Ann. 211, 249 (1882).CrossRefGoogle Scholar
  7. 6.
    Stauffacher, D.: Alkaloide aus Diplorrhynchus condylocarpon (Muell. Arg.) Pichon ssp. mossambicensis (Benth.) Duvign. Helv. Chim. Acta 44, 2006 (1961).CrossRefGoogle Scholar
  8. 7.
    Sandoval, A., F. Walls, J.N. Shoolery, J.M. Wilson, H. Budzikiewicz, and C. Dierassi: Alkaloid Studies. The Structures of Stemmadenine and Condylocarpine. Tetrahedron Lett. 1962, 409.Google Scholar
  9. 8.
    Biemann, K., A.L. Burlingame, and D. Stauffacher: Application of Mass Spectrometry to Structure Problems: Condylocarpine. Tetrahedron Lett. 1962, 527.Google Scholar
  10. 9.
    Schumann, D., and H. Schmid: Chemische Korrelation von Condylocarpin mit Akuammicin. Helv. Chim. Acta 46, 1996 (1963).CrossRefGoogle Scholar
  11. 10.
    Wang, A.H.-J., and I.C. Paul: The Borine Adduct of Condylocarpine: A Case of Partially Mistaken Identity. Acta Crystallogr., Sect. B B 33, 2977 (1977).CrossRefGoogle Scholar
  12. 11.
    Uskokovic, M.R., R.L. Lewis, J.J. Partridge, C.W. Despreaux, and D.L. Pruess: Asymmetric Synthesis of allo-Heteroyohimbine Alkaloids. J. Am. Chem. Soc. 101, 6742 (1979).CrossRefGoogle Scholar
  13. 12.
    Kutney, J.P., and G.B. Fuller: The Total Synthesis of Akuammicine and 16-Epi-stemmadenine. The Absolute Configuration of Stemmadenine. Heterocycles 3, 197 (1975).CrossRefGoogle Scholar
  14. 13.
    Biemann, K., M. Spiteller-Friedmann, and G. Spiteller: Application of Mass Spectrometry to Structure Problems. X. Alkaloids of the Bark of Aspidosperma quebracho-blanco. J. Am. Chem. Soc. 85, 631 (1963).CrossRefGoogle Scholar
  15. 14.
    Rapoport, H., T.P. Onak, N.A. Hughes, and M.G. Reinecke: Alkaloids of Geissospermum vellosii. J. Am. Chem. Soc. 80, 1601 (1985).CrossRefGoogle Scholar
  16. 15.
    Verpoorte, R., and A. Baerheim Svendsen: Chromatography of Alkaloids, Pt. B: Gas-Liquid Chromatography and High-Performance Liquid Chromatography. In: Journal of Chromatography Library, vol. 23, p. 425. Amsterdam: Elsevier. 1984.Google Scholar
  17. 16. a)
    Besselièvre, R., N. Langlois, and P. Potier: Chlorure de méthylène, solvant ou réactif? Bull. Soc. Chim. Fr. 1972, 1477.Google Scholar
  18. Mills, J.E., C.A. Maryanoff, R.M. Cosgrove, L. Scott, and D.F. McComsey, Org. Prep. Proc. Int. 16, 99 (1984).CrossRefGoogle Scholar
  19. b).
    Kan-Fan, C., R. Besselièvre, A. C.vé, B.C. Das, and P. Potier: Nouveaux alcaloides du Craspidospermum verticillatum Boj. ex DC (Apocynacées): 414-vincine et A14-épi-16 vincine. C.R. Acad.Sci., Sér. C 272, 1431 (1971).Google Scholar
  20. 17.
    Hesse, M.: Alkaloid Chemistry. New York: Wiley-Interscience. 1981.Google Scholar
  21. 18.
    Allorge, L.: Monographie des Apocynacées - Tabernaemontanoidées Américaines Morphologie, Systématique, Chimio-taxonomie. In: Mémoires du Muséum national d’Histoire naturelle, nouvelle série, Série B, Botanique, vol. 30. Paris: Muséum national d’Histoire naturelle. 1985.Google Scholar
  22. 19.
    Baassou, S., H. Mehri, and M. Plat: Alcaloides de Melodinus aeneus. Phytochem. 17, 1449 (1978).CrossRefGoogle Scholar
  23. 20.
    Linde, H.A.: Die Alkaloide aus Melodinus australis (F. Mueller) Pierre (Apocynaceae). Helv. Chim. Acta 48, 1822 (1965).CrossRefGoogle Scholar
  24. 21.
    Lavaud, C., G. Massiot, J. Vercauteren, and L. Le Men-Olivier: Alkaloids of Hunteria zeylanica. Phytochem. 21, 445 (1982).CrossRefGoogle Scholar
  25. 22.
    Kump, W.G., M.B. Patel, J.M. Rowson, and H. Schmid: Indolalkaloide aus Blättern von Pleiocarpa pycnantha (K. Schum.) Stapf, var. tubicina (Stapf) Pichon. Helv. Chim. Acta 47, 1497 (1964).CrossRefGoogle Scholar
  26. 23.
    Pérez, I., and P. Sierra: Alcaloides de Tabernaemontana amblyocarpa Urb. Rev. Latinoam. Quim. 11, 132 (1980).Google Scholar
  27. 24.
    Ladhar, F., M. Damak, A. Ahond, C. Poupat, P. Potier, and C. Moretti: Contribution à l’étude des Tabernaemontanées américaines. III. Alcaloides de Anartia cf. meyeri. J. Nat. Prod. 44, 459 (1981).Google Scholar
  28. 25.
    van Beek, T.A., R. Verpoorte, and A. Baerheim Svendsen: Antimicrobially Active Alkaloids from Tabernaemontana chippii. J. Nat. Prod. 48, 400 (1985).CrossRefGoogle Scholar
  29. 26.
    Pawelka, K.-H., and J. Stöckigt: Indole Alkaloids from Cell Suspension Cultures of Tabernaemontana divaricata and Tabernanthe iboga. Plant Cell Rep. 2, 105 (1983).CrossRefGoogle Scholar
  30. 27.
    Ghorbel, N., M. Damak, A. Ahond, E. Philogène, C. Poupat, P. Potier, and H. Jacquemin: Contribution à l’étude des Tabernaemontanées américaines. IV. Alcaloides de Peschiera echinata. J. Nat. Prod. 44, 717 (1981).CrossRefGoogle Scholar
  31. 28.
    van Beek, T.A., R. Verpoorte, and A. Baerheim Svendsen: Alkaloids of Tabemaemontana eglandulosa. Tetrahedron 40, 737 (1984).CrossRefGoogle Scholar
  32. 29.
    Quirin, F., M.-M. Debray, C. Sigaut, P. Thépenier, L. Le Men-Olivier, and J. Le Men: Alcaloides du Pandaca eusepala. Phytochem. 14, 812 (1975).CrossRefGoogle Scholar
  33. 30.
    Gunasekera, S.P., G.A. Cordell, and N.R. Farnsworth: Anticancer Indole Alkaloids of Ervatamia heyneana. Phytochem. 19, 1213 (1980).CrossRefGoogle Scholar
  34. 31.
    Panas, J.M., B. Richard, C. Sigaut, M.-M. Debray, L. Le Men-Olivier, and J. Le Men: Alcaloides du Pandaca ochrascens. Phytochem. 13, 1969 (1974).CrossRefGoogle Scholar
  35. 32.
    Picot, F., F. Lallemand, P. Boiteau, and P. Potier: Alcaloides indoliques de Pandaca mauritiana. Phytochem. 13, 660 (1974).CrossRefGoogle Scholar
  36. 33.
    Petitfrère, N., A.M. Morfaux, M.-M. Debray, L. Le Men-Olivier, and J. Le Men: Alcaloides des feuilles du Pandaca minutiflora. Phytochem. 14, 1648 (1975).CrossRefGoogle Scholar
  37. 34.
    Andriantsiferana, M., F. Picot, P. Boiteau, and H.-P. Husson: Alcaloides de Pandaca boiteaui (Apocynaceae). Phytochem. 18, 911 (1979).CrossRefGoogle Scholar
  38. 35.
    Achenbach, H., and B. Raffelsberger: Alkaloide in Tabernaemontana-Arten, XII, Untersuchung der Alkaloide von Tabernaemontana olivacea - Condylocarpin-N-oxid, ein nues Alkaloid aus T. olivacea. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 35 B, 885 (1980).Google Scholar
  39. 36.
    van Beek, T A, F.L.C. Kuijlaars, P.H.A.M. Thomassen, R. Verpoorte, and A. Baerheim Svendsen: Antimicrobially Active Alkaloids from Tabernaemontana pachysiphon. Phytochem. 23, 1771 (1984).CrossRefGoogle Scholar
  40. 37.
    Kingston, D.G.I., F. Ionescu, and B.T. Li: Plant Anticancer Agents IV: Identification of Tubotaiwine-N-oxide as a Cytotoxic Constituent of Tabernaemontana holstii. Lloydia 40, 215 (1977).Google Scholar
  41. 38.
    Damak, M., A. Ahond, and P. Potier: Contribution à l’étude des Tabernaemontanées américaines. II. Nouveaux alcaloides de Bonafousia tetrastachya ( Humboldt, Bonpland et Kunth) Markgraf (Apocynacées). Bull. Soc. Chim. Fr. 1981, II - 213.Google Scholar
  42. 39.
    Pinar, M., U. Renner, M. Hesse, and H. Schmid: Tubotaiwin-N-oxid aus Wurzelrinde von Conopharyngia johnstonii Stapf. Hely. Chim. Acta 55, 2972 (1972).CrossRefGoogle Scholar
  43. 40.
    Ciccio, J.F., C.H. Herrera, V.H. Castro, and M. Ralitsch: Aislamiento y caracterizacion de alcaloides de Stemmadenia glabra Benth. (Apocynaceae). Rev. Latinoam. Quim. 10, 67 (1979).Google Scholar
  44. 41.
    Stöckigt, J., K.-H. Pawelka, A. Rother, and B. Deus: Indole Alkaloids from Cell Suspension Cultures of Stemmadenia tomentosa and Voacanga africana. Z. Naturforsch., C. Biosci. 37 C, 857 (1982).Google Scholar
  45. 42.
    Kan-Fan, C., B.C. Das, H.-P. Husson, and P. Potier: Plantes malgaches. XV. - Alcaloides de Craspidospermum verticillatum var. petiolare (Apocynacées): andrangine ou (+) époxy-14,15 nor-1 vallésamidine. Bull. Soc. Chim. Fr. 1974, 2839.Google Scholar
  46. 43.
    Laguna, A., L. Dolejš, and L. Novotný: Alkaloids from Strempeliopsis strempelioides K. Schum. Collect. Czech. Chem. Commun. 45, 1419 (1980).Google Scholar
  47. 44.
    Laguna, A., L. Novotný, L. Dolejš, and M. Buděšinský: Alkaloids from Roots of Strempeliopsis strempelioides - Structures of Strempeliopine and Strempeliopidine. Planta Med. 51, 285 (1984).CrossRefGoogle Scholar
  48. 45.
    Zèches, M., T. Ravao, B. Richard, G. Massiot, L. Le Men-Olivier, J. Guilhem, and C. Pascard: Structure de l’échitamidine, d’un stéréoisomére et de deux régioisomères. Tetrahedron Lett. 25, 659 (1984).CrossRefGoogle Scholar
  49. 46.
    Mamatas-Kalamars, S., T. Sėvenet, C. Thal, and P. Potier: Alcaloides d’ Alstonia quaternata. Phytochem. 14, 1849 (1975).CrossRefGoogle Scholar
  50. 47.
    Boonchuay, W., and W.E. Court: Minor Alkaloids of Alstonia scholaris root. Phytochem. 15, 821 (1976).CrossRefGoogle Scholar
  51. 48.
    Boonchuay, W., and W.E. Court: Alkaloids of Alstonia scholaris from Thailand. Planta Med. 29, 380 (1976).CrossRefGoogle Scholar
  52. 49.
    Gilbert, B., A.P. Duarte, Y. Nakagawa, J.A. Joule, S.E. Flores, J. Aguayo Brissolese, J. Campello, E.P. Carrazzoni, R.J. Owellen, E.C. Blossey, K.C. Brown, Jr. and C. Djerassi: Alkaloid Studies-L. The Alkaloids of Twelve Aspidosperma species. Tetrahedron 21, 1141 (1965).CrossRefGoogle Scholar
  53. 50.
    Verpoorte, R., E. Kos-Kuyck, A. Tjin, A Tsoi, C.L.M. Ruigrok, G. de Jong, and A. Baerheim Svendsen: Medicinal Plants of Surinam, III. Antimicrobially Active Alkaloids from Aspidosperma excelsum. Planta Med. 48, 283 (1983).CrossRefGoogle Scholar
  54. 51.
    Pinar, M., and H. Schmidt: 3’-Methoxy-limaspermin, Limapodin, 3’-Methoxylimapodin und Tubotaiwin aus Aspidosperma limae Woodson. Liebigs Ann. Chem. 668, 97 (1963).CrossRefGoogle Scholar
  55. 52.
    Pinar, M., and H. Schmid: Weitere Alkaloide aus Aspidosperma limae Woods. Helv. Chim. Acta 50, 89 (1967).CrossRefGoogle Scholar
  56. 53.
    Pinar, M., B.W. Bycroft, J. Seibl, and H. Sahmid: Notiz über Limatin aus Aspidosperma limae Woods. Helv. Chim. Acta 48, 822 (1965).CrossRefGoogle Scholar
  57. 54.
    Bisset, N.G.: The Occurrence of Alkaloids in the Apocynaceae. Ann. Bogor. 3, 105 (1958).Google Scholar
  58. 55.
    Biemann, K., M. Friedmann-Spiteller, and G. Spiteller: An Investigation by Mass Spectrometry of the Alkaloids of Aspidosperma quebracho-blanco. Tetrahedron Lett. 1961, 485.Google Scholar
  59. 56.
    Arndt, R.R., S.H. Brown, N.C. Ling, P. Roller, C. Djerassi, J.M. Ferreira, F.B. Gilbert, E.C. Miranda, S.E. Flores, A.P. Duarte, and E.P. Carrazzoni: Alkaloid Studies-LVIII. The Alkaloids of Six Aspidosperma Species. Phytochem. 5, 1653 (1967).CrossRefGoogle Scholar
  60. 57.
    Moore, R.E., and H. Rapoport: Geissovelline, a New Alkaloid from Geissospermum vellossi. J. Org. Chem. 38, 215 (1973).CrossRefGoogle Scholar
  61. 58.
    Panas, J.-M., A.-M. Morfaux, L. Olivier, and J. Le Men: Alcaloides des feuilles de 1’Amsonia tabernaemontana Walt., Apocynacées. Ann. Pharm. Fr. 30, 273 (1972).Google Scholar
  62. 59.
    Diatta, L., Y. Langlois, N. Langlois, and P. Potier: Alcaloides de Catharanthus ovalis Mgf:: réactivité d’alcaloides du type vindoline (et corrélation avec la désacétylcathovaline). Bull. Soc. Chim. Fr. 1975, 671.Google Scholar
  63. 60.
    Langlois, N., L. Diatta, and R.Z. Andriamialisoa: Alcaloides monoindoliques de Cathardnthus ovalis. Phytochem. 18, 467 (1979).CrossRefGoogle Scholar
  64. 61.
    Pétiard, V., D. Courtois, F. Guéritte, N. Langlois, and B. Mompon: New Alkaloids in Plant Tissue Cultures. Plant Tissue Cult., Proc. Int. Congr. Plant Tissue Cell Cult., 5th. 1982, 309. Ref. Chem Abstr. 99, 172856u (1983).Google Scholar
  65. 62.
    Walser, A., and C. Djerassi: Alkaloid-Studien LII. Die Alkaloide aus Vallesia dichotoma Ruiz et Pay. Helv. Chini. Acta 48, 391 (1965).CrossRefGoogle Scholar
  66. 63.
    Ling, N.C., and C. Djerassi: Alkaloid Studies. LXIII. The Constitution and Chemistry of Dichotine and 11-Methoxydichotine. J. Am. Chem. Soc. 92, 6019 (1970).CrossRefGoogle Scholar
  67. 64.
    Bohlin, L., W. Rolfsen, J. Strömbom, and R. Verpoorte: Alkaloids and Biological Activity of Strychnos angolensis. Planta Med. 35, 19 (1979).CrossRefGoogle Scholar
  68. 65.
    Verpoorte, R., M.J. Verzijl, and A. Bafrheim Svendsen: Further Alkaloids from Strychnos dolichothyrsa. Planta Med. 44, 21 (1982).CrossRefGoogle Scholar
  69. 66.
    Massiot, G., P. Thépenier, M.-J. Jacquier, J. Lounkokobi, C. Mirand, M. Zéches, L. LE Merolivier, and C. Delaude: Further Alkaloids from Strychnos ngouniensis. Tetrahedron 39, 3645 (1983).CrossRefGoogle Scholar
  70. 67.
    Heimberger, S.I., and A.I. Scorn: Biosynthesis of Strychnine. J. Chem. Soc., Chem. Commun. 1973, 217.Google Scholar
  71. 68.
    Scott, A.I., and A.A. Qureshi: Biogenesis of Strychnos, Aspidosperma, and Iboga Alkaloids. The Structure and Reactions of Preakuammicine. J. Am. Chem. Soc. 91, 5874 (1969).CrossRefGoogle Scholar
  72. 69.
    Scott, A.I.: Biosynthesis of the Indole Alkaloids. Acc. Chem. Res. 3, 151 (1970).CrossRefGoogle Scholar
  73. 70.
    Scott, A.I., and C.C. Wei: Regio- and Stereospecific Models for the Biosynthesis of the Indole Alkaloids. The Corynanthe-Aspidosperma Relationship. J. Am. Chem. Soc. 94, 8264 (1972).CrossRefGoogle Scholar
  74. 71.
    Scott, A.I., and C.C. Wei: Regio- and Stereospecific Models for the Biosynthesis of the Indole Alkaloids-II. Biogenetic Type Synthesis of Aspidosperma and Iboga alkaloids from a Corynanthe Precursor. Tetrahedron 30, 3003 (1974).CrossRefGoogle Scholar
  75. 72.
    Klyne, W., R.J. Swan, B.W. Bycroft, and H. Schmid: Ermittlung der absoluten Konfiguration von Indolinalkaloiden durch Vergleiche der Optischen Rotationsdispersionen ihrer N(a)-Acylderivate. Helv. Chim. Acta 49, 833 (1966).CrossRefGoogle Scholar
  76. 73.
    Ling, N.C., C. Djerassi, and P.G. Simpson: Alkaloid Studies. LXII. X-Ray Crystallo graphic Structure Determination of Dichotine hydrobromide. J. Am. Chem. Soc. 92, 222 (1970).CrossRefGoogle Scholar
  77. 74.
    Kan-Fan, C., G. Massiot, A. Ahond, B.C. Das, H.-P. Husson, P. Potier, A.I. Scott, and C.-C. Wei: Structure and Biogenetic-type Synthesis of Andranginine: an Indole Alkaloid of a New Type. J. Chem. Soc., Chem. Commun. 1974, 164.Google Scholar
  78. 75.
    Dadson, B.A., J. Harley-Mason, and G.H. Foster: Total Synthesis of (±)-Tubifoline, (±)-Tubifolidine and (±)-Condyfoline. J. Chem. Soc., Chem. Commun. 1968, 1233.Google Scholar
  79. 76.
    Wu, A., and V. Snieckus: A New Synthesis of a Stemmadenine Model. Tetrahedron Lett. 1975, 2057.Google Scholar
  80. 77.
    Takano, S., M. Hirama, and K. Ogasawara: A New Entry into the Synthesis of the Strychnos Indole Alkaloids Containing 19,20-Double Bond via the Thio-Claisen Rearrangement. Tetrahedron Lett. 23, 881 (1982).CrossRefGoogle Scholar
  81. 78.
    Ban, Y., K. Yoshida, J. Golo, and T. Oishi: Novel Photoisomerization of 1-Acylindoles to 3-Acylindolenines: General Entry to the Total Synthesis of Strychnos and Aspidosperma Alkaloids. J. Am. Chem. Soc. 103, 6990 (1981).CrossRefGoogle Scholar
  82. 79.
    Ban, Y., K. Yoshida, J. Goto, T. Oishi, and E. Takeda: A Synthetic Road to the Forest of Strychnos, Aspidosperma, Schizozygane and Eburnamine Alkaloids by Way of the Novel Photoisomerization. Tetrahedron 39, 3657 (1983).CrossRefGoogle Scholar
  83. 80.
    Boscx, J., M. Amai: A New Synthetic Entry to Pentacyclic Strychnos Indole Alkaloids. Tetrahedron Lett. 26, 4951 (1985).CrossRefGoogle Scholar
  84. 81. a)
    Dadson, B.A., and J. Harley-Mason: Total Synthesis of (±)-Geissoschizoline. J. Chem. Soc., Chem. Commun. 1969, 665.Google Scholar
  85. b).
    Dadson, B.A., and J. Harley-Mason: Total Synthesis of (±)-Tubotaiwine (Dihydrocondylocarpine). J. Chem. Soc., Chem. Commun. 1969, 665.Google Scholar
  86. 82.
    Crawley, G.C., and J. Harley-Mason: Total Synthesis of (±)-Fluorocurarine, the Racemate of a Calabash-curare Alkaloid. J. Chem. Soc., Chem. Commun. 1971, 685.Google Scholar
  87. 83.
    Harley-Mason, J.: Synthetic Studies in the Strychnos-type Alkaloid Field. Pure Appl. Chem. 41, 167 (1975).CrossRefGoogle Scholar
  88. 84.
    Wenkert, E., D.W. Cochran, E.W. Hagaman, F.M. Schell, N. Neuss, A.S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri, J. Poisson, N. Kunesch, and Y. Rolland: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Naturally Occurring Substances. XIX. Aspidosperma Alkaloids. J. Am. Chem. Soc. 95, 4990 (1973).CrossRefGoogle Scholar
  89. 85.
    Urrea, M., A. Ahond, H. Jacquemin, S.-K. Kan, C. Poupat, P. Potier, and M.-M. Janot: Nouveaux alcaloides extraits des graines de Aspidosperma album (Vahl) R. Bent. (Apocynacées). C.R. Hebd. Séances Acad. Sci., Sér. C 287, 63 (1978).Google Scholar
  90. 86.
    Lounasmaa, M., A. Koskinen, and J. O’Connell: NMR Studies of Alkaloids. Assignment of the Stereochemistry at C(20) in Tubotaiwine (Dihydrocondylocarpine). Hely. Chim. Acta 69, 1343 (1986).CrossRefGoogle Scholar
  91. 87.
    Buoziiaewicz, H., J.M. Wilson, C. Djerassi, J. Levy, J. Le Men, and M. Janot: Mass Spectrometry in Structural and Stereochemical Problems-XIX. Akuammicine and Related Alkaloids. Tetrahedron 19, 1265 (1963).CrossRefGoogle Scholar
  92. 88.
    Chalmers, J.R., H.T. Openshaw, and G.F. Smith: The Constitution of Aspidospermine. Part II. Ultraviolet Absorption of the Bz-Methoxy-tetra-and -hexa-hydrocarbazoles. J. Chem. Soc. 1957, 1115.Google Scholar
  93. 89.
    Klyne, W., R.J. Swan, B.W. Bycroft, D. Schumann, and H. Schmid: Absolute Konfiguration von Alkaloiden der Aspidospermin-Gruppe. Hely. Chim. Acta 48, 443 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • M. Lounasmaa
    • 1
  • P. Somersalo
    • 1
  1. 1.Laboratory for Organic and Bioorganic Chemistry, Department of ChemistryTechnical University of HelsinkiFinland

Personalised recommendations