Advertisement

Beyond Simple Models

  • Peter Schattschneider

Abstract

The closing chapter is dedicated to a discussion of some details not yet covered. We shall outline how inhomogeneities on an atomic scale in a medium, influence the dielectric function, how ion-electron interactions can be included into the random phase approximation, thus surpassing the simple jellium model described in the foregoing chapter, and what the consequences of multiple inelastic scattering of electrons are. These issues ought to be considered appendices to the mainframe of the present monograph. By no means do they represent a completion of important facts on electron interactions, or even a list of the most important extension of simple models.

Keywords

Monte Carlo Multiple Scattering Random Phase Approximation Small Angle Scattering Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    Adler SL (1962) Phys Rev 126, 413CrossRefGoogle Scholar
  2. 8.2
    Schnatterly S (1983) Determination of S(q,w) by Inelastic Electron and X-ray Scattering. In: Devreese JT, Brosens F (eds.) Electron Correlations in Solids, Molecules, and Atoms. Plenum Press, New York, LondonGoogle Scholar
  3. 8.3
    Helman JS, Baltensperger W (1966) Phys Kondens Materie 5, 60CrossRefGoogle Scholar
  4. 8.4
    Kloos T (1973) Z Phys 265, 225CrossRefGoogle Scholar
  5. 8.5
    Spence JCH (1981) Experimental High-Resolution Electron Microscopy. Clarendon Press, OxfordGoogle Scholar
  6. 8.6
    Rez P (1983) Ultramicroscopy 12, 29CrossRefGoogle Scholar
  7. 8.7
    Misell DL, Burge RE (1969) J Phys C2, 61Google Scholar
  8. 8.8
    Yoshioka H (1957) J Phys Soc Japan 12, 6, 618CrossRefGoogle Scholar
  9. 8.9
    Serneels R, Heantjens D (1980) Phil Mag A42, 1Google Scholar
  10. 8.10
    Yamamoto T (1980) Acta Crystallogr A36, 126CrossRefGoogle Scholar
  11. 8.11
    Gjonnes J (1966) Acta Crystallogr 20, 240CrossRefGoogle Scholar
  12. 8.12
    Chukovskii FN, Alexanjan LA, Pinsker ZG (1973) Acta Crystallogr A29, 38CrossRefGoogle Scholar
  13. 8.13
    Ohtsuki Y-H (1983) Charged Beani Interactions with Solids. Taylor & Francis Ltd. London, New YorkGoogle Scholar
  14. 8.14
    Bothe W (1929) ZS Physik 54, 161CrossRefGoogle Scholar
  15. 8.15
    Landau LD (1944) J Phys USSR 8, 201Google Scholar
  16. 8.16
    Goudsmit S, Saunderson JL (1940) Phys Rev 57, 24CrossRefGoogle Scholar
  17. 8.17
    Armigliato A, Desalvo A, Rinaldi R, Rosa R (1979) J Phys D: Appl Phys 12, 1299CrossRefGoogle Scholar
  18. 8.18
    Spence JCH (1979) Ultramicroscopy 4, 9CrossRefGoogle Scholar
  19. 8.19
    Misell DL, Jones AF (1969) J Phys A2, 540CrossRefGoogle Scholar
  20. 8.20
    Schattschneider P (1983) Phil Mag B47, 555Google Scholar
  21. 8.21
    Johnson DE (1979) Ultramicroscopy 3, 361CrossRefGoogle Scholar
  22. 8.22
    Schattschneider P, Sölkner G (1984) J Microscopy 134, 73CrossRefGoogle Scholar
  23. 8.23
    Schattschneider P, Zapfl M, Skalicky P (1985) Inverse Problems 1, 381CrossRefGoogle Scholar
  24. 8.24
    Egerton RF, Williams BG, Sparrow TG (1985) Proc R Soc London A398, 395CrossRefGoogle Scholar
  25. 8.25
    Batson PE, Silcox J (1983) Phys Rev B27, 5224CrossRefGoogle Scholar
  26. 8.26
    Urner-Wille M, Raether H (1976) Phys Lett 58A, 265Google Scholar
  27. 8.27
    Kainuma Y (1955) Acta Crys 8, 247CrossRefGoogle Scholar
  28. 8.28
    Howie A (1963) Proc Roy Soc London 271 A, 268CrossRefGoogle Scholar
  29. 8.29
    Takagi S (1958) J Phys Soc Japan 13, 278Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Peter Schattschneider
    • 1
  1. 1.Institut für Angewandte und Technische PhysikTechnische Universität WienAustria

Personalised recommendations