Electrodynamics in Homogeneous, Isotropic Media

  • Peter Schattschneider


This chapter, is devoted to the discussion of electromagnetic properties of homogeneous (as such they are unbounded in space) isotropic media, based on classical Maxwell theory. As we shall see, the central concept is that of the dielectric function (permittivity) ε. It determines the eigenmodes of the system as well as the medium’s interaction with external perturbations, which is, in the context of inelastic scattering, a (fast) electron.


Dielectric Function Longitudinal Mode Scatter Cross Section Charge Density Wave Fourier Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    Langmuir I (1926) Proc Nat Acad Sci 14, 627CrossRefGoogle Scholar
  2. 4.2
    Tonks L, Langmuir I (1929) Phys. Rev 33, 195, 996 4.3 Venghaus H (1975) phys stat sol (b) 71, 609Google Scholar
  3. 4.4
    Ehrenreich H, Philipp HR (1962) Phys Rev 128, 1622CrossRefGoogle Scholar
  4. 4.5
    Sölkner G (1986) Plasmonen in einfachen Metallen. Thesis, Technical University ViennaGoogle Scholar
  5. 4.6
    Daniels J (1971) Optics Comm 3, 240CrossRefGoogle Scholar
  6. 4.7
    Wehenkel C, Gauthé B (1974) phys statsol (b) 64, 515CrossRefGoogle Scholar
  7. 4.8
    Jackson JD (1975) Classical Electrodynamics John Wiley & Sons, New York, London, Sydney, TorontoGoogle Scholar
  8. 4.9
    Jonscher AK (1980) Phys Thin Films 2, 205Google Scholar
  9. 4.10
    Raether H (1980) Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics 88. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  10. 4.11
    Kittel C (1966) Introduction to Solid State Physics. John Wiley & Sons, New YorkGoogle Scholar
  11. 4.12
    Sommerfeld A (1977) Vorlesungen über Theoretische Physik(Elektrodynamik).Harri Deutsch, Thun, Frankfurt/M.Google Scholar
  12. 4.13
    Agranovich VM, Galanin MD (1982) Electronic Excitation Energy Transfer in Condensed Matter. In: Agranovich VM,Maradudin AA (eds) Modern Problems in Condensed Matter Sciences. North-Holland, Amsterdam, New York, OxfordGoogle Scholar
  13. 4.14a
    Ruthemann G (1941) Naturwissenschafften 29, 648CrossRefGoogle Scholar
  14. 4.14b
    Ruthemann G (1948) Ann Phys 2, 113CrossRefGoogle Scholar
  15. 4.15
    Lang W (1948) Optik (Stuttgart) 3, 233Google Scholar
  16. 4.16
    Boltzmann L (1893) Vorlesungen über Maxwells Theorie der Elektrizität und des Lichts. MünchenGoogle Scholar
  17. 4.17
    Behmer M, Claus R (1984) Phys Rev B30, 4800CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Peter Schattschneider
    • 1
  1. 1.Institut für Angewandte und Technische PhysikTechnische Universität WienAustria

Personalised recommendations