Advertisement

Practical Aspects of Absorption Edge Spectrometry

  • Peter Schattschneider

Abstract

Since each element has ionisation edges at characteristic energies, the main aspect in edge spectroscopy is elemental analysis. The task of deciding which element(s) a particular sample consists of, is relatively easy to perform by observation of structure at ionisation energy losses in the elsewhere smooth spectrum. Quantitation of loss spectra is quite another story, complicated by such facts as insufficient knowledge of cross sections, instrumental aberrations and instabilities, or masking effects (background intensity, multiple scattering, etc.). At present an accuracy of 20 % in quantitation seems to be realistic, although better figures have been obtained in particular cases [3.1], [2.19]. The same holds for the lower detection limit of mass fraction which is, for routine application, on the order of 5 atom % [3.18], whereas under special circumstances, minima of some 0.01 at % [3.10] to 0.5 at % [3.2] are given. As to the absolute lower detection limit, there are several calculations, yielding some ten atoms [3.19], [3.9] up to some 100 atoms [3.20].

Keywords

Differential Cross Section Compton Scattering Ground State Wave Function Bloch Wave Target Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1a
    a Egerton RF (1981) Ultramicroscopy 7, 207CrossRefGoogle Scholar
  2. 3.1b
    b Joy DC, Maher DM (1981) J Microsc 124, 37CrossRefGoogle Scholar
  3. 3.2
    Colliex C (1982) J Microsc Spectrosc Electron 7, 525Google Scholar
  4. 3.3
    Williams BG (ed.) (1977) Compton Scattering. McGraw-Hill, New YorkGoogle Scholar
  5. 3.4
    Williams BG, Sparrow TG, Egerton RF (1984) Proc Roy Soc London A 393, 409CrossRefGoogle Scholar
  6. 3.5a
    Williams BG, Thomas JM (1983) Internat Rev Phys Chem 3, 39CrossRefGoogle Scholar
  7. 3.5b
    Weyrich W, Pattison P, Williams BG (1979) Chem Phys 41, 271CrossRefGoogle Scholar
  8. 3.6b
    Tafto J, Krivanek OL (1982) Phys Rev Lett 48, 560CrossRefGoogle Scholar
  9. 3.6b
    b Tafto J, Krivanek OL (1982) Nuclear Instr Meth 194, 153 3.7 Leapman RD, Cosslett VE (1976) J Phys D 9, L29CrossRefGoogle Scholar
  10. 3.7
    Leapman RD, Cosslett VE (1976) J Phys D 9, L29Google Scholar
  11. 3.8a
    Egerton RF (1981) Proc of the 39. EMSA-Meeting, 198CrossRefGoogle Scholar
  12. 3.8b
    b Egerton RF (1981) J Microsc 123, 333CrossRefGoogle Scholar
  13. 3.9
    Joy DC, Maher DM (1980) Ultramicroscopy 5, 333 3.10 Isaacson M, Johnson D (1975) Ultramicroscopy 1, 33Google Scholar
  14. 3.10
    Isaacson M, Johnson D (1975) Ultramicroscopy 1, 33Google Scholar
  15. 3.11
    Eisenberger P, Platzmann PM (1970) Phys Rev A 2, 415 3. 12 Bauer GEW, Schneider JR (1983) Solid State Communica-Google Scholar
  16. 3.12
    Bauer GEW, Schneider JR (1983) Solid State Communications 47 (9), 673 Google Scholar
  17. 3.13
    Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron Microscopy of thin Crystals. Krieger, New YorkGoogle Scholar
  18. 3.14
    Williams BG, Bourdillon AJ (1982) J Phys C: Solid State Phys 15, 6881CrossRefGoogle Scholar
  19. 3.15
    Leapman R (1984) Electron Beam Interactions with Solids. AMF O’Hare, ChicagoGoogle Scholar
  20. 3.16
    Brown FC (1974) Sol State Phys 29, 1CrossRefGoogle Scholar
  21. 3.17
    Economou EN (1979) Green’s Functions in Quantum Physics.Springer Series in Solid State Phys 7, Springer, BerlinGoogle Scholar
  22. 3.18
    Colliex C, Trebbia P (1982) Ultramicroscopy 9, 259CrossRefGoogle Scholar
  23. 3.19
    Colliex C, Krivanek OL, Trebbia P (1981) Inst Phys Conf Ser61, 183Google Scholar
  24. 3.20
    Cazaux J (1983) Ultramicroscopy 12, 83CrossRefGoogle Scholar
  25. 3.21
    Hitchcock AP, Teng CH (1985) Surf Sci 149, 558CrossRefGoogle Scholar
  26. 3.22
    Egerton RF (1982) Phil Trans R Soc London A 305, 521CrossRefGoogle Scholar
  27. 3.23
    Wong J (1981) Topics in Applied Physics 46, 45Google Scholar
  28. 3.24
    Egerton RF (1980) Instrumentation and Software for Electron Energy Loss Microanalysis. In: Scanning Electron Microscopy. AMF O’Hare, ChicagoGoogle Scholar
  29. 3.25
    Silcox J (1979) Ultramicrosc 3, 409CrossRefGoogle Scholar
  30. 3.26
    Johnson DE (1984) Electron Energy Loss Spectrometry. In: Echlin P (ed.) Analysis of Organic and Biological Surfaces. Wiley & Sons, New YorkGoogle Scholar
  31. 3.27
    Disko MM, Spence JCH, Sankey OF, Saldin D (1986) Phys Rev B33, 5642CrossRefGoogle Scholar
  32. 3.28
    Egerton RF (1986) Electron Energy Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, LondonGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • Peter Schattschneider
    • 1
  1. 1.Institut für Angewandte und Technische PhysikTechnische Universität WienAustria

Personalised recommendations