Cerebral Metabolism and Free Radical Pathology

  • Jiro Suzuki


The most fundamental factors involved in the pathology of cerebral infarction are the decreased supply of oxygen and glucose to the brain tissue due to disturbances in cerebral blood flow. The term “cerebral ischemia” has long been used to describe a state of disrupted cerebral blood flow and metabolism. Biochemical research on the pathology of cerebral ischemia is less than 50 years old, which causes us some surprise. Indeed, one of the first usages of the term “neurochemistry” was at the First International Neurochemistry Symposium in 195471. Prior to that date, of course, brain proteins and lipids had been discovered by A. F. Fourcroy (1755–1809)85, and brain lipids had been discovered by L. N. Vauguelin (1763–1829), but not until the time of J. L. W. Thudichum (1828–1901)229 was systematic research on the biochemistry of the nervous system undertaken. He made analyses of some 130 substances found in the brain and undertook lipid analysis of various phospholipids, including sphingomyelin and phosphatide. Biochemical study of the ischemic brain, however, lagged far behind investigations in other areas and was not the focus of much research until the 1960s, when Lowry’s (1964)143 analysis technique based upon the absorption spectrometer was reported. Making use of enzyme reactions, that method allowed for quantitative measurement of carbohydrates and energy metabolism in samples of brain tissue. Thereafter, together with the development of various photometric analytic techniques—including gas chromatography, high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), electron spin resonance (ESR), computer, X-ray and electron diffraction, and the sensitive photomultiplier.—applications using biological materials have proliferated and progress in the biochemistry of the ischemic brain has been remarkable. Today, a massive amount of data and various hypotheses concerning the pathology of cerebral ischemia are to be found in the literature.


Electron Spin Resonance Cerebral Ischemia Ischemic Brain Brain Homogenate Phosphatidyl Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Halim MS, Von Hoist H, Meyerson B et al (1980) Prostaglandin profiles in tissue and blood vessels from human brain. J Neurochem 34: 1331–1333PubMedGoogle Scholar
  2. 2.
    Abe K, Yoshida S, Watson BD et al (1983) Alpha-Tocopherol and ubiquinones in rat brain subjected to decapitation ischemia. Brain Res 273: 166–169PubMedGoogle Scholar
  3. 3.
    Aldrete J A, Remo-Salas F, Jankovsky L et al (1979) Effect of pretreatment with thiopental and phenytoin on postischemic brain damage in rabbits. Crit Care Med 7: 466–470PubMedGoogle Scholar
  4. 4.
    Aldrete JA, Romo-Salas F, Mazzia VDB et al (1981) Phenytoin for brain resuscitation after cardiac arrest: an uncontrolled clinical trial. Crit Care Med 9: 474–477PubMedGoogle Scholar
  5. 5.
    Anderson BR, Lint TF, Brenzel AM (1978) Chemically shifted singlet oxygen spectrum. Biochim Biophys Acta 542: 527–536Google Scholar
  6. 6.
    Artru AA, Michenfelder JD (1980) Cerebral protective metabolic and vascular effects of phenytoin. Stroke 2: 377–382Google Scholar
  7. 7.
    Artru AA, Michenfelder JD (1981) Anoxic cerebral potassium accumulation reduced by phenytoin: mechanism of cerebral protection? Anesth Analg 60: 41–45PubMedGoogle Scholar
  8. 8.
    Aust SD, Svingen BA (1982) The role of iron in enzymatic lipid peroxidation. In: Pryor WA (ed) Free radicals in biology, vol 4. Academic Press, New York, pp 1–28Google Scholar
  9. 9.
    Baker PF (1978) The regulation of intracellular calcium in giant axons of loligo and myxicola. Ann NY Acad Sci 307: 250–268PubMedGoogle Scholar
  10. 10.
    Baker PF, Blaustein MP, Hodgkin AL et al (1969) The influence of calcium on sodium efflux in squid axons. J Physiol 200: 431–458PubMedGoogle Scholar
  11. 11.
    Baldy-Moulinier M (1972) Cerebral blood flow and membrane ionic pump, cerebral blood flow and intracranial pressure. Proc 5th Int, Symp, Roma-Siena 1971 Part I. Eur Neurol 6: 107–113Google Scholar
  12. 12.
    Barb WG, Baxendale JH, Gorge P et al (1951) Reactions of ferrous and ferric ions with hydrogen peroxide. Part II: the ferric ion reaction. Trans Faraday Soc 47: 591–616Google Scholar
  13. 13.
    Barrit GJ (1981) Calcium transport across cell membranes: progress toward molecular mechanism. Trends in Biochem Sci 6: 322–325Google Scholar
  14. 14.
    Bartschat DK, Cyr DL, Lindenmayer GE (1980) Depolarization induced calcium uptake by vesicle in a highly enriched sarcolemma preparation from canine ventricle. J Biol Chem 255: 10044–10047PubMedGoogle Scholar
  15. 15.
    Bateman L (1954) Olefin oxidation. Quart Rev 8: 147–167Google Scholar
  16. 16.
    Baulieu EE (1978) Cell membrane, a target for steroid hormones. Mol Cell Endocrinol 12: 247–254PubMedGoogle Scholar
  17. 17.
    Bazan NG Jr (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218: 1–10PubMedGoogle Scholar
  18. 18.
    Bazan NG, Rodriguez de Turco EB (1980) Membrane lipids in the pathogenesis of brain edema; phospholipids and ara-chidonic acid, the earliest membrane components changed at the onset of ischemia. In: Cervos-Navarro J, Ferszt R (eds) Brain edema. Advances in neurology, vol 28. Raven Press, New York, pp 197–205Google Scholar
  19. 19.
    Bazan NG Jr, de Bazan HEP, Kennedy WG et al (1971) Regional distribution and rate of production of free fatty acids in rat brain. J Neurochem 18: 1387–1393PubMedGoogle Scholar
  20. 20.
    Bazan NG Jr (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. In: Porcellati G, Amaducci L, Galli C (eds) Function and metabolism of phospholipids in the central and peripheral nervous systems. Plenum Press, New York, pp 317–335Google Scholar
  21. 21.
    Berliner LJ (1976) Spin labeling theory and applications. Academic Press, New YorkGoogle Scholar
  22. 22.
    Berridge MJ (1979) Modulation of nervous activity by cyclic nucleotides and calcium. In: Schmit FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge, Mass, pp 873–889Google Scholar
  23. 23.
    Berridge MJ (1982) A novel cellular signaling system based on the integration of phospholipid and calcium metabolism. In: Cheung WY (ed) Calcium and cell function, vol III. Academic Press, New York, pp 1–36Google Scholar
  24. 24.
    Berridge MJ (1983) Rapid accumulation of inositol triphosphate reveals that agonists hydrolyze polyphosphoinositides instead of phosphatidylinositol. Biochem J 212: 849–858PubMedGoogle Scholar
  25. 25.
    Berridge MJ (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem J 220: 345–360PubMedGoogle Scholar
  26. 26.
    Blackwell GJ, Flower RJ, Nijkamp FP et al (1978) Phospholipase A2 activity of guinea-pig isolated perfused lungs: stimulation and inhibition by anti-inflammatory steroids. Br J Pharmacol 62: 79–89PubMedGoogle Scholar
  27. 27.
    Boehme DH, Koseki R, Carson S et al (1977) Lipidperoxidation in human and rat brain tissue: Developmental and regional studies. Brain Res 136: 11–21PubMedGoogle Scholar
  28. 28.
    Bolland JL (1949) Kinetics of olefin oxidation. Quart Rev 3: 1–21Google Scholar
  29. 29.
    Bothe HW, Bodsch W, Hossmann KA (1984) Relationship between specific gravity, water content and serum protein extravasation in various types of vasogenic brain edema. Acta Neuropathol 64: 37–42PubMedGoogle Scholar
  30. 30.
    Boveris A, Chance B, Filipkowski M et al (1978) Enhancement of the chemilumines-cence of perfused rat liver and isolated mitochondria and microsomes by hydroperoxides. In: Scarpa A, Dutton PL, Leigh JS (eds) Frontiers to biological energetics, electron to tissues, vol 2. Academic Press, New York, pp 975–984Google Scholar
  31. 31.
    Boveris A, Cadenas E, Reiter R et al (1980) Organ chemiluminescence: Noninvasive assay for oxidation radical reactions. Proc Natl Acad Sci USA 77: 347–351PubMedGoogle Scholar
  32. 32.
    Boveris A, Cadenas E, Chance B (1981) Ultraweak chemiluminescence: A sensitive assay for oxidative radical reactions. Fed Proc 40: 195–198PubMedGoogle Scholar
  33. 33.
    Braughler JM (1985) Lipid peroxidation-induced inhibition of y-aminobutyric acid uptake in rat brain synaptosomes: protection by glucocorticoids. J Neurochem 44: 1282–1288PubMedGoogle Scholar
  34. 34.
    Bremer AM, Yamada K, West CR (1980) Ischemic cerebral edema in primates: effect of acetazolamide, phenytoin, sorbitol, dexamethasone, and methylpredni-solone on brain water and electrolytes. Neurosurgery 6: 149–154PubMedGoogle Scholar
  35. 35.
    Broddle WD, Nelson SR (1968) The effect of diphenylhydantoin on energy reserve levels in brain. Fed Proc 27: 751Google Scholar
  36. 36.
    Bunting S, Moncada S, Vane JR (1983) The prostacyclin-thromboxane A2 balance: pathophysiological and therapeutic implications. Br Med Bull 39: 271–276PubMedGoogle Scholar
  37. 37.
    Cadenas E, Arad ID, Boveris A et al (1980) Partial spectral analysis of the hydroperoxide-induced chemilumines-cence of the perfused lung. FEBS Lett 111: 413–418PubMedGoogle Scholar
  38. 38.
    Cadenas E, Arad ID, Fisher AB et al (1980) Hydroperoxide induced chemilu-minescene of the perfused lung. Biochem J 192: 303–309PubMedGoogle Scholar
  39. 39.
    Cadenas E, Boveris A, Chance B (1985) Low-level chemiluminescence of hydroperoxide-supplemented cytochrome c. Biochem J 187: 131–140Google Scholar
  40. 40.
    Cadenas E, Boveris A, Chance B (1980) Spectral analysis of low level chemiluminescence of hydrogen peroxide supplemented ferricytochrome c. FEBS Lett 112: 285–288PubMedGoogle Scholar
  41. 41.
    Cadenas E, Boveris A, Chance B (1980) Low-level chemiluminescence of bovine heart submitochondrial particles. Biochem J 186: 659–667PubMedGoogle Scholar
  42. 42.
    Cadenas E, Boveris A, Chance B (1980) Chemiluminescence of lipid vesicles supplemented with cytochrome c and hydroperoxide. Biochem J 188: 577–583PubMedGoogle Scholar
  43. 43.
    Capaldi RA, Vanderkooi G (1972) The low polarity of many membrane proteins. Proc Natl Acad Sci USA 69: 930–932PubMedGoogle Scholar
  44. 44.
    Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochim Biophys Acta 694: 291–306PubMedGoogle Scholar
  45. 45.
    Carafoli E, Crompton M (1978) The regulation of intracellular calcium. Curr Top Membr Transp 10: 151–216Google Scholar
  46. 46.
    Chan PH, Fishman RA (1978) Brain Edema: Induction in cortical slices by polyunsaturated fatty acid. Science 201: 358–360PubMedGoogle Scholar
  47. 47.
    Chan PH, Fishman RA (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35: 1004–1007PubMedGoogle Scholar
  48. 48.
    Chandrabose KA, Lapetina EG, Schmitges CJ et al (1978) Action of corticosteroids in regulation of prostaglandin biosynthesis in cultured fibroblasts. Proc Natl Acad Sci USA 75: 214–217PubMedGoogle Scholar
  49. 49.
    Cheung Y (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27PubMedGoogle Scholar
  50. 50.
    Chien KR, Abrams J, Serroni A et al (1978) Accelerated phospholipid degeneration and associated membrane dysfunction in irreversible ischemic liver cell injury. J Biol Chem 253: 4809–4817PubMedGoogle Scholar
  51. 51.
    Cooper AJL, Pulsinelli WA, Duffy TE (1980) Glutathione and ascorbate during and postischemic reperfusion in rat brain. J Neurochem 35: 1242–1245PubMedGoogle Scholar
  52. 52.
    Crabtree GR, Munck A, Smith KA (1979) Glucocorticoids inhibit expression of Fcreceptors on the human granulocytic cell line HL-60. Nature 279: 338–339PubMedGoogle Scholar
  53. 53.
    Crane P, Swanson PD (1970) Diphenylhydantoin and the cations and phosphates of electrically stimulated brain slices. Neurology (Minneap) 20: 1119–1123Google Scholar
  54. 54.
    Cullen JP, Aldrete JA, Jankovsky L et al (1979) Protective action of phenytoin in cerebral ischemia. Anesth Analg 58: 165–169PubMedGoogle Scholar
  55. 55.
    Dahle LK, Hill EG, Holman RT (1962) The thiobarbituric acid reaction and the autoxidation of polyunsaturated fatty acid methyl esters. Arch Biochem Biophys 98: 253–261PubMedGoogle Scholar
  56. 56.
    Dahlen SE, Bjork J, Hedquist P et al (1981) Leukotriens promote plasma leakage and leukocyte adhesion in post capillary vessels: In vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78: 3887–3891PubMedGoogle Scholar
  57. 57.
    Deneke CF, Krinksy NI (1977) Inhibition and enhancement of singlet oxygen (!Ag) dimol chemiluminescence. Photochem Photobiol 25: 299–304Google Scholar
  58. 58.
    Dannenberg AM Jr (1979) The antiinflammatory effects of glucocorticosteroids. A brief review of the literature. Inflammation 3: 329–343PubMedGoogle Scholar
  59. 59.
    De Medio GE, Goracci G, Horrocks LA et al (1980) The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital J Biochem 29: 412–432PubMedGoogle Scholar
  60. 60.
    DeVries GH, Norton WT (1974) The lipid composition of axons from bovine brain. J Neurochem 22: 259–264PubMedGoogle Scholar
  61. 61.
    Dembinska-Kiec A, Korbut R, Zmuda A et al (1984) Formation of lipoxygenase and cyclooxygenase metabolites of arachidonic acid by brain tissue. Biomed Biochim Acta 43: 222–226Google Scholar
  62. 62.
    Demopoulos HB, Flamm ES, Seligman ML et al (1977) Antioxidant effects of barbiturates in model membranes undergoing free radical damage. Acta Neurol Scand [Suppl] 56: 152–153Google Scholar
  63. 63.
    Demopoulos HB, Landgraf W, Duke PS et al (1966) Light-induced alterations in melanoma-related free radicals, and the consequences on respiration and growth. Lab Invest 15: 1652–1658PubMedGoogle Scholar
  64. 64.
    Demopoulos HB, Milvy P, Kakari S et al (1972) Molecular aspects of membrane structure in cerebral edema. In: Reulen HJ, Schurmann K (eds) Steroid and brain edema. Springer, Berlin Heidelberg New York, pp 20–39Google Scholar
  65. 65.
    Demopoulos HB (1973) The basis of free radical pathology. Fed Proc 32: 1859–1861PubMedGoogle Scholar
  66. 66.
    Demopoulos HB, Flamm ES, Seligman ML et al (1979) Membrane pertubations in central nervous system injury; theoretical basis for free radical damage and a review of the experimental data. In: Popp AJ et al (eds) Neural trauma. Raven Press, New York, pp 63–78Google Scholar
  67. 67.
    Dillard CJ, Kunert KJ, Tappel AL (1982) Effects of vitamin E, ascorbic acid and mannitol on alloxan-induced lipid peroxidation in rats. Arch Biochem Biophys 216: 204–212PubMedGoogle Scholar
  68. 68.
    Diplock AT, Baum H, Lucy JA (1971) The effect of vitamin E on the oxidation state of selenium in rat liver. Biochem J 123: 721–729PubMedGoogle Scholar
  69. 69.
    Diplock AT, Lucy JA (1973) The biochemical mode of action of vitamin E and selenium: a hypothesis. FEBS Lett 29: 205–210PubMedGoogle Scholar
  70. 70.
    Diplock AT (1974) Possible stabilizing effect of vitamin E on microsomal, membrane-bound, selenide-containing proteins and drug metabolizing enzyme systems. Am J Clin Nutr 27: 995–1004PubMedGoogle Scholar
  71. 71.
    Elkes J (1970) Psychopharmacology: on beginning in a new science. In: Ayd FJ Jr, Blackwell B (eds) Discoveries in biological psychiatry. Lippincott, Philadelphia, pp 30–52Google Scholar
  72. 72.
    Enseleit WH, Domer FR, Jarrott DM et al (1984) Cerebral phospholipid content and Na + K+ ATPase activity during ischemia and post ischemic reperfusion in the mongolian gerbil. J Neurochem 43: 320–327PubMedGoogle Scholar
  73. 73.
    Erecinska M, Nelson D, Wilson DF et al. (1984) Neurotransmitter amino acid in the CNS. I. Regional change in amino acid levels in rat brain during ischemia and reperfusion. Brain Res 304: 9–22PubMedGoogle Scholar
  74. 74.
    Escueta AV, Appel SH (1972) Brain Synapses: An in vitro model for the study of seizures. Arch Intern Med 129: 333–344PubMedGoogle Scholar
  75. 75.
    Fertziger AP, Liuzzi SE, Dunham PB (1971) Diphenylhydantoin (Dilantin) stimulation of potassium influx in lobster axons. Brain Res 33: 592–596PubMedGoogle Scholar
  76. 76.
    Festoff BW, Appel SH (1968) Effect of diphenylhydantoin on synaptosome soduim potassium ATPase. J Clin Invest 47: 2752–2758PubMedGoogle Scholar
  77. 77.
    Finkelstein E, Rosen GM, Raukman EJ (1985) Spin trapping of superoxide and hydroxy radical: practical aspects. Arch Biochem Biophys 200: 1–16Google Scholar
  78. 78.
    Flamm ES, Demopoulos HB, Myron MD et al (1978) Free radicals in cerebral ischemia. Stroke 9: 445–447PubMedGoogle Scholar
  79. 79.
    Franklin ML, Horlick G, Malmstadt HV (1969) Basic and practical consideration in utilizing photon counting for quantitative spectrochemical methods. Anal Chem 7: 2–10Google Scholar
  80. 80.
    Fong KL, McCay PB, Poyer JL (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxy radicals produced during flavin enzyme activity. J Biol Chem 248: 1192–1191Google Scholar
  81. 81.
    Foots CS, Ching TY, Geller GG (1974) Chemistry of singlet oxygen-XVIII: Rates of reaction and quenching of a-tocopherol and singlet oxygen. Photochem Photobiol 20: 511–513Google Scholar
  82. 82.
    Foots CS (1976) Photosensitization oxidation and singlet oxygen; consequences in biological systems. In: Pry or WA (ed) Free radicals in biology, vol 2. Academic Press, New York, pp 85–133Google Scholar
  83. 83.
    Foots CS, Shook FC, Abakerli RA (1980) Chemistry of superoxide ion 4. Singlet oxygen is not a major product of dismutation. J Am Chem Soc 102: 2503–2504Google Scholar
  84. 84.
    Forman HJ, Kennedy J (1976) Dihydroorotate-dependent superoxide production in rat brain and liver: a function of the primary dehydrogenase. Arch 96, Biochem Biophys 173: 219–224Google Scholar
  85. 85.
    Fourcroy AF (1789) Sur l’existence de la matiere albumineuse dans les vegetaux. Ann Chimi (Paris) 3: 252–261Google Scholar
  86. 86.
    Fox CF (1972) The structure of cell membranes. Sci Am 226: 30–38Google Scholar
  87. 87.
    Fujita Y, Shingu T, Kohno M (1983) Radical reactions in the ischemic brain damage basic studies with ESR trap method. In: Asano T (ed) Brain ischemia and free radicals. Neuron Pub, Tokyo, pp 101–110Google Scholar
  88. 88.
    Fukuda A, Tabuse H, Ihara N et al (1983) Effect of phenytoin on regional cerebral blood flow, electroencephalogram, and electrolyte contents in cerebral blood and cerebral cortex following total cerebral ischemia in dogs. Circ Shock 10: 341–350PubMedGoogle Scholar
  89. 89.
    Galli C, Spagnuolo C (1976) The release of brain free fatty acids during ischemia in essential fatty acid-deficient rats. J Neurochem 26: 401–404PubMedGoogle Scholar
  90. 90.
    Gaudet RJ, Alam I, Levine L (1980) Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem 35: 653–658PubMedGoogle Scholar
  91. 91.
    Gilman AG, Goodman LS, Gilman A (1980) Hydantoins. In: Gilman AG, Goodman LS, (eds). The pharmacological basis of therapeutics. Macmillan, pp 452–456Google Scholar
  92. 92.
    Ginsberg MD, Watson BD, Yoshida S et al (1983) Aspects of tissue injury in cerebral ischemia. In: Reivich M, Hurtig HI, et al (eds) Cerebrovascular diseases. 13th Princeton Conference. Raven Press, New York, pp 237–247Google Scholar
  93. 93.
    Goldberg WJ, Watson BD, Busto R et al (1984) Concurrent measurement of (Na+, K+)-ATPase activity and lipid peroxides in rat brain following reversible global ischemia. Neurochem Res 9: 1737–1747PubMedGoogle Scholar
  94. 94.
    Gonzales RA, Crews FT (1985) Cholinergic-and adrenergic-stimulated inositide hydrolysis in brain: interaction, regional distribution, and coupling mechanisms. J Neurochem 45: 1076–1084PubMedGoogle Scholar
  95. 95.
    Guidotti G (1972) Membrane proteins. Ann Rev Biochem 41: 731–752PubMedGoogle Scholar
  96. 96.
    Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron saits. Proc R Soc Lond (Biol) Ser A 147: 332–351.Google Scholar
  97. 97.
    Hafeman DG, Hoekstra WG (1977) Lipid peroxidation in vivo during vitamin E and selenium deficiency in rat as monitored by ethane evolution. J Nutr 107: 666–672PubMedGoogle Scholar
  98. 98.
    Haglund L, Kohler C, Haaparanta T et al (1984) Presence of NADPH-cytochrome P450 reductase in central cathecholamin-ergic neurons. Nature 307: 259–262PubMedGoogle Scholar
  99. 99.
    Hall ED, Braughler JM (1981) Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 73: 321–324PubMedGoogle Scholar
  100. 100.
    Halliwell B (1976) An attempt to demonstrate reaction between superoxide and hydrogen peroxide. FEBS Lett 72: 8–10PubMedGoogle Scholar
  101. 101.
    Hammarstrom S, Hamberg M, Duell EA et al (1977) Glucocorticoid in inflammatory proliferative skin disease reduces arachidonic and hydroxyeicosatetraenoic acids. Science 197: 994–996PubMedGoogle Scholar
  102. 102.
    Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo and hyperglycemic rats. Acta Physiol Scand 102: 324–329PubMedGoogle Scholar
  103. 103.
    Hansen AJ (1981) Extracellular ion concentration in cerebral ischemia. In: Zeuthen H (ed) The application of ion selective microelectrode. Elsevier/North- Holland Biomedical Press, Amsterdam, pp 239–254Google Scholar
  104. 104.
    Harbour JR, Chew V, Bolton JR (1974) Ar electron spin resonance study of the spir adducts of OH and OH2 radicals witl: nitrones in the ultraviolet photolysis o1 aqueous hydrogen peroxide solutions. Car J Chem 52: 3549–3553Google Scholar
  105. 105.
    Harris RJ, Simon L, Branston NM et al (1981) Changes in extracellular calciuir activity in cerebral ischemia. J Cereb Blooc Flow Metab 2: 203–211Google Scholar
  106. 106.
    Hirata F (1981) The regulation of lipomo-dulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J Biol chem 256: 7780–7783Google Scholar
  107. 107.
    Holman RT, Burr GO (1946) Spectropho-tometric studies of the oxidation of fats. VI. Oxygen absorption and chromophore production in fatty esters. J Am Chem Soc 68: 562–566PubMedGoogle Scholar
  108. 108.
    Holton FA, Holton P (1954) The capillary dilator substances in dry powders of spinal roots. A possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol 126: 124–140PubMedGoogle Scholar
  109. 109.
    Holub BJ, Kuksis A, Thompson W (1970) Molecular species of mono-, di-and tri-phosphoinositides of bovine brain. J Lipid Res 11: 558–564PubMedGoogle Scholar
  110. 110.
    Hong SCL, Levine L (1976) Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc Natl Acad Sci USA 73: 1730–1734PubMedGoogle Scholar
  111. 111.
    Igarashi O, Matsukawa Inagaki C (1976) Reactivity of a-tocopherol with hydroperoxide of methyl linoleate. J Nutr Sci Vitaminol (Tokyo) 22: 267–270Google Scholar
  112. 112.
    Imaizumi S, Kayama T, Suzuki J (1984) Chemiluminescence in hypoxic brain-the first report: correlation between energy metabolism and free radical reaction. Stroke 15: 1061–1065PubMedGoogle Scholar
  113. 113.
    Imaizumi S, Kayama T, Suzuki J (1985) Chemiluminescence in hypoxic brain the 2nd report: effects of free radical scavengers. No To Shinkei 37: 161–168PubMedGoogle Scholar
  114. 114.
    Imaizumi S, Suzuki J, Tominaga T et al (1985) Effect of free radical scavengers on cerebral ischemia and hypoxia evaluated by chemiluminescence. In: Spetzler RF, Selman WR, et al (eds) Cerebral revascularization for stroke. Thieme-Stratton Inc, New York, pp 299–306Google Scholar
  115. 115.
    Inaba H, Shimizu Y, Tsuji Y et al (1979) Photon counting spectral analyzing system of extra-weak chemi-and bioluminescence for biochemical applications. Photochem Photobiol 30: 169–175Google Scholar
  116. 116.
    Inaba H, Yamagishi A, Takyu C et al (1982) Development of an ultra-high sensitive photon counting system and its application to biomedical measurements. Opt Lasers Engineering 3: 125–130Google Scholar
  117. 117.
    Ishikawa K, Hanaoka Y, Kondo Y et al (1977) Primary action of steroid hormone at the surface of amphibian oocyte in the induction of germinal vesicle breakdown. Mol Cell Endocrinol 9: 91–100PubMedGoogle Scholar
  118. 118.
    Janzen EG, Blackburn BJ (1969) Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (Spin Trapping). Photolysis of organolead, -tin and -mercury compounds. J Am Chem Soc 91: 4481–4490Google Scholar
  119. 119.
    Janzen EG (1971) Spin trapping. Acc Chem Res 4: 31–40Google Scholar
  120. 120.
    Janzen EG (1980) A critical review of spin trapping in biological system. In: Pryor WA (ed) Free radicals in biology, vol IV. Academic Press, New York, pp 115–154Google Scholar
  121. 121.
    Johnston MV (1983) Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Ann Neurol 13: 511–518PubMedGoogle Scholar
  122. 122.
    Joseph SK, Thomas AP, Williams RJ et al (1984) Myo-inositol 1, 43 5-triphosphate: a second messenger for the normal mobilization of intracellular Ca2+ in liver. J Biol Chem 259: 3077–3081PubMedGoogle Scholar
  123. 123.
    Jost PC, Griffith OH, Capaldi RA, et al (1973) Evidence for boundary lipid in membrane. Proc Natl Acad Sci USA 70: 480–484PubMedGoogle Scholar
  124. 124.
    Kahn AU, Kasha M (1970) Chemiluminescence arising from simultaneous transitions in pairs of singlet oxygen molecules. J Am Chem Soc 92: 3293–3300Google Scholar
  125. 125.
    Kakiuchi S, Rail TW (1968) Studies on adenosine 3’-5’-phosphate in rabbit cerebral cortex. Mol Pharmacol 4: 379–388PubMedGoogle Scholar
  126. 126.
    Kalynaraman B, Perez-Reyes E, Mason PP (1980) Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim Biophys Acta 630: 119–130Google Scholar
  127. 127.
    Kameyama M, Suzuki J, Shirane R et al (1985) A new model of bilateral hemispheric ischemia three vessel occlusion model. Stroke 16: 489–493PubMedGoogle Scholar
  128. 128.
    Kellog III, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by xanthine oxidase system. J Biol Chem 250: 8812–8817Google Scholar
  129. 129.
    Kiwak KJ, Moskowitz MA, Levine L (1985) Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury. J Neurosurg 62: 865–869PubMedGoogle Scholar
  130. 130.
    Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Ann Rev Biochem 49: 489–515Google Scholar
  131. 131.
    Klee CB, Vanaman TC (1982) Calmodulin. Adv Protein Chem 35: 213–321Google Scholar
  132. 132.
    Robayashi M, Lust WD, Passonneau JV (1977) Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J Neurochem 29: 53–59Google Scholar
  133. 133.
    Kogure K, Scheinberg P, Kishikawa H et al. (1979) Adrenergic control of cerebral blood flow and energy metabolism in the rat. Stroke 10: 179–184PubMedGoogle Scholar
  134. 134.
    Kogure K, Watson BD, Busto R et al (1982) Potentiation of lipid peroxides by ischemia in rat brain. Neurochem Res 7: 437–454PubMedGoogle Scholar
  135. 135.
    Kovachich GB, Mishra OP (1980) Lipid peroxidation in rat brain cortical slices as measured by the thiobarbituric acid test. J Neurochem 35: 1449–1452PubMedGoogle Scholar
  136. 136.
    Kretsinger RH (1979) Calcium in neurology, a general theory of its function and evolution. In: Schmitt FO, Worden FG (eds) The neuroscience: fourth study program. MIT Press, Cambridge, Mass, pp 617–622Google Scholar
  137. 137.
    Krishtal OA, Marchenko SM, Pidoplichko VI (1983) Receptor for ATP in the membrane of mammalian sensory neurones. Neurosci Lett 35: 41–45PubMedGoogle Scholar
  138. 138.
    Lai C-S, Piette LH (1977) Hydroxy radical production in lipid peroxidation of rat liver microsome. Biochem Biophys Res Commun 78: 51–59PubMedGoogle Scholar
  139. 139.
    Lai C-S, Grover TA, Piette LH (1979) Hydroxy radical production in a purified NADPH-cytochrome c (P-450) reductase system. Arch Biochem Biophys 193: 373–378PubMedGoogle Scholar
  140. 140.
    Lazarewicz JW, Strosznajder J, Gromek A (1972) Effect of ischemia and exogeneous fatty acid on the energy metabolism in brain mitochondria. Bull Acad Pol Sci 20: 599–606Google Scholar
  141. 141.
    Lehninger AL, Carafoli E, Rossi CS (1967) Energy-linked ion movements in mitochondrial systems. Adv Enzymol 29: 259–320PubMedGoogle Scholar
  142. 142.
    Littel JR, O’Shaughnessy D (1979) Treatment of acute focal ischemia with continuous CSF drainage and mannitol. Stroke 10: 446–450Google Scholar
  143. 143.
    Lowry OH, Passonneau JV, Hasselberger FX et al (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239: 18–30PubMedGoogle Scholar
  144. 144.
    Lucy JA, Dingle JT (1964) Fat-soluble vitamins and biological membranes. Nature 204: 156–204PubMedGoogle Scholar
  145. 145.
    Lucy JA (1972) Functional and structural aspects of biological membranes: A suggested structural role for vitamin E in the control of membrane permeability and stability. Ann NY Acad Sci 203: 4–11PubMedGoogle Scholar
  146. MacMillan V, Shankaran R (1984) Influence of lactate accumulation of Na+ K+ ATPase activity of ischemic and postischemic brain.Google Scholar
  147. 147.
    Majewska MR, Strosznajder J, Lazarewicz J (1978) Effect of ischemic anoxia and barbiturate anesthesia on free radical oxidation of mitochondrial phospholipids. Brain Res 158: 423–434PubMedGoogle Scholar
  148. 148.
    Marion J, Wolfe LS (1979) Origin of the arachidonic acid released post-mortem in rat forebrain. Biochim Biophys Acta (Amst) 574: 25–32.Google Scholar
  149. 149.
    Markelonis G, Garbus J (1975) Alterations of intracellular oxidative metabolism as stimuli evoking prostaglandin biosynthesis. Prostaglandins 10: 1087–1106PubMedGoogle Scholar
  150. 150.
    McCay PB, Noguchi T, Fong K-L et al (1980) Production of radicals from enzyme systems and the use of spin traps. In: Pryor WA (ed) Free radicals in biology, vol 4. Academic Press, New York, pp 155–186Google Scholar
  151. 151.
    McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 249: 6049–6055Google Scholar
  152. 152.
    McCord JM, Fridovich I (1973) Production of O2 in photolyzed water demonstrated through the use of superoxide dismutase. Photochem Photobiol 17: 115–121PubMedGoogle Scholar
  153. 153.
    Merritt HH, Putnam TJ (1938) A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiat 39: 1003–1015Google Scholar
  154. 154.
    Means AR, Tash JS, Chafouleas JG (1982) Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol Rev 62: 1–30PubMedGoogle Scholar
  155. 155.
    Mitchell P (1972) Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge. J Bioenerg 3: 5–24PubMedGoogle Scholar
  156. 156.
    Mitchell P (1973) Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg 4: 63–91PubMedGoogle Scholar
  157. 157.
    Mizuno K, Hata S, Tomioka S (1970) Measurement of extra-weak chemiluminescence. Chem Pharm Bull (Tokyo) 18: 2588–2589Google Scholar
  158. 158.
    Moncada S, Vane JR (1979) Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New Eng J Med 300: 1142–1147PubMedGoogle Scholar
  159. 159.
    Morton EG (1968) Photon counting. Appl Opt 7: 1–10Google Scholar
  160. 160.
    Moskowitz MA, Kiwak KJ, Hekimian K et al (1984) Synthesis of compounds with properties of leukotriene C4 and D4 in gerbil brain after ischemia and reperfusion. Science 224: 886–889PubMedGoogle Scholar
  161. 161.
    Mrsulja BB, Djuricic BM, Cvejic V et al (1980) Biochemistry of experimental ischemic brain edema: In: Cervos-Navarro J, Ferszt R (eds) Brain edema. Advances in neurology, vol 28. Raven Press, New York, pp 217–230Google Scholar
  162. 162.
    Mullins LJ (1979) The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol 236: 103–110Google Scholar
  163. 163.
    Murphy RC, Hammarstrom S, Samuelsson B et al (1979) Leukotrien C: a slow-reacting substance (SRS) from murine mastcytoma cells. Proc Natl Acad Sci USA jy 76: 4275–4279Google Scholar
  164. 164.
    Neifakh YA (1971) Free radical mechanism of ultraweak chemiluminescence coupled with peroxide oxidation of unsatu rated fatty acids. Biofizica 16: 584–588Google Scholar
  165. 165.
    Nemoto EM, Bleyaert AL, Stezoski SW et al (1977) Global brain ischemia: a reproducible monkey model. Stroke 8: 558–564PubMedGoogle Scholar
  166. 166.
    Nemoto EM (1985) Brain ischemia. In: Lajtha A (ed) Handbook of neurochemis-try 9. Plenum Press, New York, pp 553–588Google Scholar
  167. 167.
    Nordstrom CH, Siesjo BK (1978) Effects of phenobarbital in cerebral ischemia. Part I: Cerebral energy metabolism during pronounced incomplete ischemia. Stroke 9: 327–335PubMedGoogle Scholar
  168. 168.
    Nordstrom CH, Rehncrona S, Siesjo BK (1978) Effects of phenobarbital in cerebral ischemia. Part II: Restitution of cerebral energy state, as well as of glycolytic metab-olities, citric ascid cycle intermediates and associated amino acids after pronounced incomplete ischemia. Stroke 9: 335–343PubMedGoogle Scholar
  169. 169.
    Nordstrom CH, Rehncrona S, Siesjo BK (1978) Restitution of cerebral energy state, as well as of glycolytic metabolism and associated amino acids after 30 min of complete ischemia in rats anesthetized with nitrous oxide or phenobarbital. J Neurochem 30: 479–486PubMedGoogle Scholar
  170. 170.
    Norton WT, Poduslo SE (1971) Neuronal perikarya and astroglia of rat brain: chemical composition during myelination. J Lipid Res 12: 84–90PubMedGoogle Scholar
  171. 171.
    O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6: 537–545PubMedGoogle Scholar
  172. 172.
    O’Brien JS (1965) Stability of the myelin membrane. Science 147: 1099–1107PubMedGoogle Scholar
  173. 173.
    Ozawa K, Seta I, Handa H (1969) Biochemical studies on brain swelling II. influence of brain swelling and ischemia on the formation of an endogenous inhibitor in mitochondria. J Biochem (Tokyo) 66: 361–367Google Scholar
  174. 174.
    Ozawa K, Seta K, Takeda H et al (1966) On the isolation of mitochondria with high respiratory control from rat brain. J Biochem (Tokyo) 59: 501–510Google Scholar
  175. 175.
    Ozawa K, Kitamura O, Ohsawa T et al (1966) Mitochondrial vulnerability and lipid metabolism. Folia Psychiatr Neurol 20: 73–84Google Scholar
  176. 176.
    Ozawa T, Hanaki A, Matsumoto S et al (1978) Electron spin resonance studies of radicals obtained by the reaction of alpha-tocopherol and its model compound with superoxide ion. Biochim Biophys Acta 531: 72–78PubMedGoogle Scholar
  177. 177.
    Pavlock GS, Southard JH, Litz MF et al (1981) Effect of mannitol and chlorprom-azine pretreatment of rabbits on kidney mitochondria following in vivo ischemia and reflow. Life Sci 29: 2667–2672PubMedGoogle Scholar
  178. 178.
    Pederson TC, Aust SD (1975) The mechanism of liver microsomal lipid peroxidation. Biochim Biophys Acta 385: 232–241PubMedGoogle Scholar
  179. 179.
    Pincus JH, Grove I, Marino BB et al (1970) Studies on the mechanism of action of diphenylhydantoin. Arch Neurol 22: 566–571PubMedGoogle Scholar
  180. 180.
    Pincus JH (1972) Diphenylhydantoin and ion flux in lobster nerve. Arch Neurol 26: 4–10PubMedGoogle Scholar
  181. 181.
    Pincus JH, Rawson MD (1969) Diphenylhydantoin and intracellular sodium concentration. Neurology 19: 419–422PubMedGoogle Scholar
  182. 182.
    Pietronigro DD, Mignano JE, Demopoulos HB (1983) Direct quenching of adriamycin radicals by coenzyme Q10 and tetrazolium salts. Biochem Pharmacol 32: 1441–1444PubMedGoogle Scholar
  183. 183.
    Pietronigro DD, Hovsepian M, Demopoulos HB et al (1985) Reductive metabolism of ascorbic acid in the central nervous system. Brain Res 333: 161–164PubMedGoogle Scholar
  184. 184.
    Poduslo SE, Norton WT (1972) Isolation and some chemical properties of oligodendroglia from calf brain. J Neurochem 19: 727–736PubMedGoogle Scholar
  185. 185.
    Pollay M, Fullenwider C, Roberts A et al (1983) Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg 59: 945–950PubMedGoogle Scholar
  186. 186.
    Porcellati G, De Medio GE, Fini C et al (1978) Phospholipid and its metabolism in ischemia. In: Neuhoff V (ed) Prov Europ Soc Neurochem, vol 1, pp 285–302.Google Scholar
  187. 187.
    Poyer JL, McCay PB’ Lai EK et al (1980) Confirmation of asignment of the trichlo-romethyl radical spin adduct detected by spin trapping 13C-carbon tetrachloride metabolism in vitro and in vivo. Biochem, Biophys Res Commun 94: 1154–1160Google Scholar
  188. 188.
    Prioleau GR, Fishman RA, Chan PH (1979) Induction of brain edema by fatty acids in vivo. Trans Am Neurol Ass 104: 147–150Google Scholar
  189. 189.
    Pryor WA (1973) Free radical reactions and their importance in biochemical systerns. Fed Proc 32: 1862–1869PubMedGoogle Scholar
  190. 190.
    Pryor WA (1976) The role of free radical reactions in biological systems. In: WA Pryor (ed) Free radicals in biology, vol 1. Academic Press, New York, pp 1–49Google Scholar
  191. 191.
    Reeves JP, Sutro JL (1980) Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208: 1461–1464PubMedGoogle Scholar
  192. 192.
    Rehncrona S, Mela L, Siesjo BK (1979) Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia. Stroke 10: 437–446PubMedGoogle Scholar
  193. 193.
    Rehncrona S, Smith DS, Akesson B et al (1980) Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+ and ascorbic acid-stimulated lipid peroxidation in vitro. J Neurochem 34: 1630–1638PubMedGoogle Scholar
  194. 194.
    Rehncrona S, Rosen I, Siesjo BK (1981) Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1: 297–313PubMedGoogle Scholar
  195. 195.
    Rehncrona S, Westerberg E, Akesson B et al (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem 38: 84–93PubMedGoogle Scholar
  196. 196.
    Rieley CA, Cohen C, Lieberman M (1974) Ethane evolution: a new index of lipid peroxidation. Science 183: 208–210Google Scholar
  197. 197.
    Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195: 743–753PubMedGoogle Scholar
  198. 198.
    Russell GA (1957) Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals. J Am Chem Soc 79: 3871–3877Google Scholar
  199. 199.
    Saprin AN, Piette LH (1977) Spin trapping and its application in the study of lipid peroxidation and free radical production with liver microsomes. Arch Biochem Biophys 180: 480–492PubMedGoogle Scholar
  200. 200.
    Schreier S, Polneszek CF, Smith IC (1978) Spin labels in membranes: problems in practice. Biochim Biophys Acta 515: 395–436PubMedGoogle Scholar
  201. 201.
    Seliger HH (1975) The origin of bio-luminescence. Photochem Photobiol 21: 355–361PubMedGoogle Scholar
  202. 202.
    Seligman ML, Demopoulos HB (1973) Spin-probe analysis of membrane perturbations produced by clinical and physical agents. Ann NY Acad Sci 222: 640–667PubMedGoogle Scholar
  203. 203.
    Seligman ML, Mitamura J, Shera N et al (1979) Corticosteroid (methylpredni-solone) modulation of photoperoxidation by ultraviolet light in liposomes. Photochem Photobiol 29: 549–558Google Scholar
  204. 204.
    Shimizu Y, Inaba H, Kumaki K et al (1973) Measuring methods for ultra-light intensity and their application to extra-weak bioluminescence from living tissures. IEEE, Trans Inst Meas IM 22: 153–157Google Scholar
  205. 205.
    Shiu GK, Nemoto EM (1981) Barbiturate attenuation of brain free fatty acid liberation during global ischemia. J Neurochem 37: 1448–1456PubMedGoogle Scholar
  206. 206.
    Shiu GK, Nemmer JP, Nemoto EM (1983) Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia. J Neurochem 40: 880–884PubMedGoogle Scholar
  207. 207.
    Shiu GK, Nemoto EM, Nemmer J (1983) Dose of thiopental, pentobarbital and phenytoin for maximal therapeutic effects in cerebral ischemic anoxia. Crit Care Med 11: 452–459PubMedGoogle Scholar
  208. 208.
    Shohami E, Rosenthal J’ Lavy S (1982) The effect of incomplete cerebral ischemia on prostaglandin levels in rat brain. Stroke 13: 494–499PubMedGoogle Scholar
  209. 209.
    Siesjo BK (1978) Brain energy metabolism. John Wiley, New YorkGoogle Scholar
  210. 210.
    Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–185PubMedGoogle Scholar
  211. 211.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731PubMedGoogle Scholar
  212. 212.
    Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29: 13–26PubMedGoogle Scholar
  213. 213.
    Spagnuolo C, Sautebin L, Galli G et al (1979) PGF2a5 thromboxane B2 and HETE levels in gerbil brain cortex after ligation of common carotid arteries and decapitation. Prostaglandins 18: 53–61PubMedGoogle Scholar
  214. 214.
    Stauff J, Schmidkunz H, Hartman G (1963) Weak chemiluminescence of oxidations reactions. Nature 198: 281–282Google Scholar
  215. 215.
    Sugioka K, Nakano M (1983) Mechanism of phospholipid peroxidation by ferric ion- ADP-adriamycin-coordination complex. Biochim Biophys Acta 713: 333–343Google Scholar
  216. 216.
    Sun GY, Manning R, Strosznajder J (1980) Effect of postdecapitative ischemia and hypoxia on the phosphoglyceride acyl groups of rat brain membranes. Neurochem Res 5: 1211–1219PubMedGoogle Scholar
  217. 217.
    Suzuki J, Yoshimoto T, Kodama N et al (1982) A new therapeutic method for acute brain infarction: revascularization following the administration of mannitol and perfluorochemicals a preliminary report. Surg Neurol 17: 325–332PubMedGoogle Scholar
  218. 218.
    Suzuki J, Imaizumi S, Kayama T (1985) Chemiluminescence in hypoxic brain The second report: cerebral protective effect of mannitol, vitamin E and glucocorticoid. Stroke 16: 695–700Google Scholar
  219. 219.
    Suzuki J, Ogawa A, Yoshimoto T et al (1985) Indications for surgery in the acute stage of cerebral infarction: The role of new cerebral protective drugs “Sendai Cocktail” and perfluorochemicals. In: Spetzler RF, et al (eds) Cerebral revascularization for stroke. Thieme-Stratton Inc., New York, pp 392–396Google Scholar
  220. 220.
    Svingen BA, O’Neal FO, Aust SD (1978) The role of superoxide and singlet oxygen in lipid peroxidation. Photochem Photobiol 28: 803–809PubMedGoogle Scholar
  221. 221.
    Svingen BA, Buege JA, O’Neal FO et al (1979) The mechanism of NADPH-de-pendent lipid peroxidation. J Biol Chem 254: 5892–5899PubMedGoogle Scholar
  222. 222.
    Tappel AL (1962) Vitamin E as the biological lipid antioxidant. Vitamins Hormones 20: 493–510Google Scholar
  223. 223.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32: 1870–1874PubMedGoogle Scholar
  224. 224.
    Tappel AL (1972) Vitamin E and free radical peroxidation of lipids. Ann NY Acad Sci 203: 12–28PubMedGoogle Scholar
  225. 225.
    Tappel AL (1975) Lipid peroxidation and fluorescent molecular damage to membrane. In: Trump BF, et al (eds) Pathological aspects of cell membranes, vol 1. Academic Press, New York, pp 145–170Google Scholar
  226. 226.
    Tappel AL (1980) Measurement of and protection from in vivo lipid peroxidation. In: Pryor WA (ed) Free radicals in biology, vol 4, Academic Press, New York, pp 1–47Google Scholar
  227. 227.
    Tarusov BN, Polidova A, Zhuravlev A et al (1962) Ultra weak luminescence of animal tissues. Tsitologiia 4: 696–699PubMedGoogle Scholar
  228. 228.
    Taylor GW, Morris HR (1983) Lipoxygenase pathways. Br Med Bull 39: 219–222PubMedGoogle Scholar
  229. 229.
    Thudichum JLW (1901) Die Chemische Konstitution des Gehirns und der Tiere. Franz Pietzcher, TiibingenGoogle Scholar
  230. 230.
    Tien M, Svingen BA, Aust SD (1981) Initiation of lipid peroxidation by perferryl complexes. In: Rodgers MAJ, Powers EL (eds) Oxygen and oxy-radicals in chemistry and biology. Academic Press, New York, pp 147–152Google Scholar
  231. Tominaga T, Imaizumi S, Yoshimoto T et al (1985) Protective effects of radical scavengers on cerebral infarction-experimental study utilizing spin trapping method of ESR. No To Shinkei 37: 555–560 (Eng Abstr)Google Scholar
  232. 232.
    Tominaga T, Imaizumi S, Yoshimoto T et al (1986) Detection of free radicals generated in NADPH-dependent lipid peroxidation of rat brain homogenate application of spin trapping technique. No To Shinkei 38: 169–175 (Eng Abstr)PubMedGoogle Scholar
  233. 233.
    Vassil’ev RF, Vichutinskii AA (1962) Chemiluminescence and oxidation. Nature 194: 1276–1277Google Scholar
  234. 234.
    Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8: 125–131Google Scholar
  235. 235.
    Watanabe T, Yoshimoto T, Suzuki M et al (1984) Supression effect of mannitol upon cerebral infarct formation an electron microscopical investigation. Recent progress in the study and therapy of brain edema. Plenum, New York, 551–559Google Scholar
  236. 236.
    Watson BD, Busto R, Goldberg WJ et al (1984) Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42: 268–274PubMedGoogle Scholar
  237. 237.
    Westerberg E, Akesson B, Rehncrona S et al (1979) Lipid peroxidation in brain tissue in vitro: Effects on phospholipids and fatty acids. Acta Physiol Scand 105: 524–526PubMedGoogle Scholar
  238. 238.
    Westerberg E, Friberg M, Akesson B (1981) Assay of brain tocopherol using high performance liquid chromatography. J Lipid Chromatogr 4: 109–121Google Scholar
  239. 239.
    Wieloch T, Siesjo BK (1982) Ischemic brain injury: the importance of calcium, lipolytic activity and free fatty acid. Pathol Biol 30: 269–277PubMedGoogle Scholar
  240. 240.
    Woelk H, Goraci G, Gatti A et al (1973) Phospholipase A1and A2 activities of neuronal and glial cells of the rabbit brain. Hoppe-Seyler’s Z Physiol chem 354: 729–736PubMedGoogle Scholar
  241. 241.
    Woelk H, Rubly N, Arienti G et al (1981) Occurrence and properties of phospholipase At of plasma membrane prepared from neuronal and glial enriched fraction of the rabbit cerebral cortex. J Neurochem 36: 875–880PubMedGoogle Scholar
  242. 242.
    Wolfe LS, Coceani F (1979) The role of prostaglandins in the central nervous system. Annu Rev Physiol 41: 669–684PubMedGoogle Scholar
  243. 243.
    Woodbury DM, Timiras PS, Vernadakis A (1957) Modification of adrenocortical function by centrally acting drugs and the influence of such modification on the central response to these drugs. In: Hoagland H (ed) Hormones, brain function, and behavior. Academic Press, New York, pp 38–50Google Scholar
  244. 244.
    Woodbury DM (1955) Effect of diphenylhydantoin on electrolytes and radiosodium turnover in brain and other tissues of normal, hyponatremic and postictal rats. J Pharmacol Exp Ther 115: 74–95PubMedGoogle Scholar
  245. 245.
    Yagi K (1976) A simple fluorometric assay for lipidperoxide in blood plasma. Biochem Med 15: 212PubMedGoogle Scholar
  246. 246.
    Yamada I, Saito Y, Matsuoka N et al (1978) Studies on adrenaline-induced lipol-ysis in adrenalectomized rats. Endocrinol Jpn 25: 315–320PubMedGoogle Scholar
  247. 247.
    Yoshida S, Abe K, Busto R et al (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245: 307–316PubMedGoogle Scholar
  248. 248.
    Yoshida S, Inoh S, Asano T et al (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain: Lipid peroxidation as possible cause of postischemic injury. J Neurosurg 53: 323–331PubMedGoogle Scholar
  249. 249.
    Yoshida S, Harik SI, Busto R et al (1984) Free fatty acids and energy metabolites in ischemic cerebral cortex with noradrenaline depletion. J. Neurochem 42: 711–717PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • Jiro Suzuki
    • 1
  1. 1.Division of Neurosurgery, Institute for Brain DiseasesTohoku University School of MedicineNagamachi, SendaiJapan

Personalised recommendations