Skip to main content

Abstract

Research on the nature of brain infarction has proceeded using various approaches, including those of histopathology, biochemistry and electrophysiology. One of the most fundamental parameters in such research is cerebral blood flow (CBF)—which is an essential barometer for determining the level of brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames A, Wright RL, Kowada M et al (l968) Cerebral ischemia II. The no-reflow phenomenon. Am J Pathol 52: 437–453

    Google Scholar 

  2. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia-the ischemic penumbra. Stroke 12: 723–725

    Article  PubMed  CAS  Google Scholar 

  3. Aukland K, Bower BF, Berliner RW (1964) Measurement of local blood flow with hydrogen gas. Circ Res 14: 164–187

    PubMed  CAS  Google Scholar 

  4. Branston NM, Symon L, Crockard HA et al (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45: 195–208

    Article  PubMed  CAS  Google Scholar 

  5. Davis KR, Ackerman RH, Kistler JP et al (1977) Computed tomography of cerebral infarction: hemorrhagic, contrast enhancement, and time of appearance. Comput Tomogr 1: 71–86

    Article  PubMed  CAS  Google Scholar 

  6. Doyle TF, Martins AN, Kobrine A (1975) Estimating total cerebral blood flow from the initial slope of hydrogen washout curve. Stroke 6: 149–152

    Article  PubMed  CAS  Google Scholar 

  7. Fieschi C, Bozzao L, Agnol A (1965) Regional clearance of hydrogen as a measure of cerebral blood flow. Acta Neurol Scand [Suppl] 14: 46–52

    CAS  Google Scholar 

  8. Halsey JH Jr, Capra NF, McFarland RS (1977) Use of hydrogen for measurement of regional cerebral blood flow: problem of intercompartmental diffusion. Stroke 8: 351–357

    Article  PubMed  CAS  Google Scholar 

  9. Hasuo M, Furuse M, Brock M (1978) Brain tissue pressure gradients and cerebral blood flow dynamics. No Shinkei Geka 6: 789–794

    PubMed  CAS  Google Scholar 

  10. Heiss WD, Hayakawa T, Waltz AG (1976) Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral artery on single-unit activity in cats. Arch Neurol 33: 813–820

    Article  PubMed  CAS  Google Scholar 

  11. Heiss WD (1983) Flow thresholds of functional and morphologic damage of brain tissue. Stroke 14: 329–331

    Article  PubMed  CAS  Google Scholar 

  12. Hossmann KA, Lechtape-Gruter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204: 281–299

    Article  PubMed  CAS  Google Scholar 

  13. Irino T (1978) Review of clinical reports about recanalization of occluded cerebral artery. No To Shinkei 30: 135–151

    PubMed  CAS  Google Scholar 

  14. Ito U, Ohno K, Tomita H et al (1976) Cerebral changes during recirculation following temporary ischemia in mongolian gerbils. Neurol Med Chir (Tokyo) (16) 2: 313–322

    Article  Google Scholar 

  15. Jones TH, Morawetz RB, Crowell RM et al (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54: 773–782

    Article  PubMed  CAS  Google Scholar 

  16. Kogure K, Fujishima M, Scheinberg P et al (1969) Effects of changes in carbon dioxide pressure and arterial pressure on blood flow in ischemic regions of the brain in dogs. Circ Res 24: 557–565

    PubMed  CAS  Google Scholar 

  17. Koshu K, Seki H, Yoshimoto T et al (1981) Experimental hemorrhagic thalamic infarction in the dog. Surg Neurol 16: 274–279

    Article  PubMed  CAS  Google Scholar 

  18. Lassen NA (1966) The luxury-perfusion syndrome and its possible relationship to acute metabolic acidosis localized within the brain. Lancet 2: 1113–1115

    Article  PubMed  CAS  Google Scholar 

  19. Lim RSK, Lim CN, Moffitt RL (eds) (1960) A stereotaxic atlas of the dog’s brain. Charles C Thomas, Springfield

    Google Scholar 

  20. Mabe H, Uemura S, Yoshida T et al (1982) Correlation between local cerebral blood flow and EEG in experimental cerebral ischemia. No To Shinkei 34: 585–589 (Eng Abstr)

    PubMed  CAS  Google Scholar 

  21. Marmarou A, Poll W, Shapiro K et al (1916) The influence of brain tissue pressure gradience upon local cerebral blood flow in vasogenic edema. In: Becks JWF, Bosch DA, Brock M (eds) Intracranial pressure, vol 3. Springer, Berlin Heidelberg New York, pp 10–13

    Google Scholar 

  22. Meyer JS, Fand HQ, Denny-Brown D (1954) Polarographic study of cerebral collateral circulation. Arch Neurol Psychiat 72: 296–312

    CAS  Google Scholar 

  23. Meyer JS, Gotoh F, Tazaki Y (1962) Circulation and metabolism following experimental cerebral embolism. J Neuropath Exp Neurol 21: 4–24

    Article  PubMed  CAS  Google Scholar 

  24. Miller JD, Garibi J, North JB et al (1975) Effects of increased arterial pressure on blood flow in the damaged brain. J Neurol Neurosurg Psychiatry 38: 657–665

    Article  PubMed  CAS  Google Scholar 

  25. Morawetz RB, DeGirolami U, Ojeman RG et al (1978) Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unasthetized monkeys. Stroke 9: 143–149

    Article  PubMed  CAS  Google Scholar 

  26. Nemoto EM, Snyder JV, Carroll Rg et al (1965) Global ischemia in dogs-cerebrovascular C02 reactivity and autoregulation. Stroke 6: 425–431

    Article  Google Scholar 

  27. Ogawa A, Seki H, Mizoi K et al (1979) Circulatory dynamics in experimental focal cerebral infarction. Acta Neurol Scand [Suppl] 72: 284–285

    Google Scholar 

  28. Ogawa A, Seki H, Yoshimoto T et al (1982) Experimental focal cerebral infarction. Part 1: Hemodynamics at the center of the focal cerebral infarction following recirculation. Jpn J Stroke 4: 1–9 (Eng Abstr)

    Article  Google Scholar 

  29. Ogawa A, Seki H, Yoshimoto T et al (1982) Experimental focal cerebral infarction. Part 2: Hemodynamics in and around the focal cerebral infarction following recirculation. Jpn J Stroke 4: 10–17 (Eng Abstr)

    Article  Google Scholar 

  30. Olsen TS, Larsen B, Herning M et al (1983) Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients in acute stroke. Stroke 14: 332–341

    Article  PubMed  CAS  Google Scholar 

  31. Sakamoto T, Tanaka S, Yoshimoto T et al (1978) Experimental cerebral infarction. Part 2: Electroencephalographic changes produced by experimental thalamic infarction in dogs. Stroke 9: 214–216

    Article  PubMed  CAS  Google Scholar 

  32. Sato H, Seki H, Ogawa A et al (1985) Sequential changes of autoregulation in and around focal ischemia. In: Spetzler RF, Carter LP, Selman WR et al (eds) Cerebral revascularization for stroke, pp 48–52

    Google Scholar 

  33. Seki H, Ogawa A, Tanaka S et al (1980) Correlation between the the thalamus EEG and rCBF in the thalamus infarction in the dogs. No To Shinkei 32: 1065–1069

    PubMed  CAS  Google Scholar 

  34. Seki H, Yoshimoto T, Ogawa A et al (1984). The CO2 response in focal cerebral ischemia-sequential changes following recirculation. Stroke 15: 699–704

    Article  PubMed  CAS  Google Scholar 

  35. Seki H, Yoshimoto T, Ogawa A et al (1983) Effect of mannitol on rCBF in canine thalamic ischemia-an experimental study. Stroke 14: 46–50

    Article  PubMed  CAS  Google Scholar 

  36. Seki H, Yoshimoto T, Ogawa A et al (1985) Hemodynamics in hemorrhagic infarction-an experimental study. Stroke 16: 647–651

    Article  PubMed  CAS  Google Scholar 

  37. Strong AJ, Venables GS, Gibson G (1983) The cortical ischemic penumbra associated with occlusion of the middle cerebral artery in the cat. 1. Topography of changes in blood flow, potassium ion acitivity, and EEG. J Cereb Blood Flow Metab 3: 86–96

    Article  PubMed  CAS  Google Scholar 

  38. Sundt TM, Michenfelder JD (1972) Focal transient cerebral ischemia in the squirrel monkey. Effect on brain adenosin triphosphate and lactate levels with electrocortico-graphic and pathologic correlation. Circ Res 30: 703–712

    PubMed  CAS  Google Scholar 

  39. Suzuki H, Kimura S, Watanabe M et al (1979) The EEG changes during the extracorporeal circulation. Rinsho Noha 21: 1–9 (Eng Abstr)

    Google Scholar 

  40. Symon L, Pasztor E, Branston NM (1974) The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion-An experimental study by the technique of hydrogen clearance in baboons. Stroke 5: 355–364

    Article  PubMed  CAS  Google Scholar 

  41. Symon L, Branston NM, Strong AJ (1976) Autoregulation in acute focal ischemia an experimental study. Stroke 7: 547–554

    Article  PubMed  CAS  Google Scholar 

  42. Tamura A, Sano K (1978) The temporary occlusion of the middle cerebral artery in cat-The correlation between the rCBF and the histological changes. No To Shinkei 31: 1005–1014

    Google Scholar 

  43. Traupe H, Kruse E, Heiss WD (1982) Reperfusion of focal ischemia of varing duration. Postischemic hyper-and hypoperfusion. Stroke 13: 615–622

    Article  PubMed  CAS  Google Scholar 

  44. Waltz AG, Sundt TM Jr (1967) The micro-vasculature and microciruclation of the cerebral cortex after arterial occlusion. Brain 90: 681–691

    Article  PubMed  CAS  Google Scholar 

  45. Waltz AG (1970) Effect of PaCO2 on blood flow and microvasculature of ischemic and nonischemic cerebral cortex. Stroke 1: 27–37

    Article  PubMed  CAS  Google Scholar 

  46. Waltz AG (1974) Effect of blood pressure on blood flow in ischemic and nonischemic cerebral cortex-the phenomena of autoregulation and luxury perfusion. Neurology 41: 755–757

    Google Scholar 

  47. Watanabe T, Yoshimoto T, Koshu K et al (1976) Ultrastructural observation on the infarctic sequential changes in the cerebral tissue of dog. Part 2. Changes in small vessels. Neurol Med Chir (Tokyo) 19: 811–816

    Article  Google Scholar 

  48. Watanabe T, Suzuki M, Yoshimoto T et al. (1985) Recirculation in ischemic focus in the acute stage-electron microscopical observation. Neurol Med Chir (Tokyo) 25: 81–88

    Article  CAS  Google Scholar 

  49. Yoshimoto T, Sakamoto T, Suzuki J (1978) Experimental cerebral infarction. Part 1: Production of thalamic infarction in dogs. Stroke 9: 211–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this chapter

Cite this chapter

Suzuki, J. (1987). Cerebral Blood Flow. In: Treatment of Cerebral Infarction. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8861-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8861-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8863-7

  • Online ISBN: 978-3-7091-8861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics