Skip to main content
  • 71 Accesses

Abstract

Detailed research on the histopathological changes due to cerebral ischemia date from the work of Spielmeyer58 in the early part of this century. In 1920 he reported that, following cerebral ischemia, there is shrinkage of neurons, in which the cytoplasm becomes acidophilic and the nucleus basophilic and the Nissl bodies disappear. Spielmeyer called such changes “ischemic cell changes”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames A, Wright RL, Kowada M et al (l968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453

    Google Scholar 

  2. Arsenio-Nunes ML, Hossmann KA, Farkas-Bargeton E (1973) Ultrastructural and histochemical investigation of the cerebral cortex of cat during and after complete ischemia. Acta Nopathol (Berl) 26: 329–344

    Article  CAS  Google Scholar 

  3. Brown AW, Brierley JB (1966) Evidence for early anoxic-ischemic cell damage in the rat brain, Experientia (Basel) 22: 546–547

    Article  CAS  Google Scholar 

  4. Brown AW, Brierley JB (1968) The nature, distribution and earliest stages of anoxic-ischemic nerve cell damage in the rat brain as defined by the optical microscope. Br J Exp Pathol 49: 87–106

    PubMed  CAS  Google Scholar 

  5. Brown AW, Brierley JB (1972) Anoxic-ischemic cell change in the rat brain. Light microscopic and fine structural observations. J Neurol Sci 16: 59–84

    Article  PubMed  CAS  Google Scholar 

  6. Brown AW, Brierley JB (1973) The earliest alterations in rat neurons and astrocytes after anoxia-ischemia. Acta Neuropathol (Berl) 23: 9–22

    Article  CAS  Google Scholar 

  7. Brown AW (1977) Structural abnormalities in neurons. J Clin Pathol [Suppl] 11: 155–169

    CAS  Google Scholar 

  8. Calhoun CL, Mottaz JH (1966) Capillary bed of rat cerebral cortex. The fine structure in experimental cerebral infarction. Arch Neurol (Chicago) 15: 320–328

    Article  CAS  Google Scholar 

  9. Cammermeyer J (1961) The importance of avoiding dark neurons in the experimental neuropathology. Acta Neuropathol 1: 245–270

    Article  Google Scholar 

  10. Cammermeyer J (1973) Ischemic neuronal disease of Spielmeyer. A reevaluation. Arch Neurol 29: 390–393

    Article  Google Scholar 

  11. Dodson RF, Kawamura Y, Aoyagi M et al (1973) A comparative evaluation of the ultrastructural changes following induced cerebral infarction in the squirrel monkey and baboon. Cytobios 8: 175–182

    PubMed  CAS  Google Scholar 

  12. Fernand DA, Lau JK (1978) An electron microscope study of the effects of acute ischemia in the brain. Acta Anat (Basel) 100: 241–249

    Article  Google Scholar 

  13. Fischer EG, Ames A III, Hedley-Whyte ET et al (1977) Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon“. Stroke 8: 36–39

    Article  PubMed  CAS  Google Scholar 

  14. Furlow TW, Martin FM, Harrison LE (1984) Simultaneous measurement of local glucose utilization and blood flow in the rat brain. An autoradiographic method using two tracers labelled with carbon-14. J Cereb Blood Flow Metab 3: 62–66

    Article  Google Scholar 

  15. Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evaluation of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropath Exp Neurol 33: 408–421

    Article  PubMed  CAS  Google Scholar 

  16. Garcia JH, Trump BF (1975) Cerebral ischemia. The early structural changes and correlation of dynamic abnormalities. In: Whisnant J, Sandok BA (eds) Ninth Conference. Cerebral vascular disease. Grune and Stratton, New York, pp 313–323

    Google Scholar 

  17. Garcia JH, Lossinsky AS, Kauffman FC et al (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol (Berl) 43: 85–95

    Article  CAS  Google Scholar 

  18. Gildea EF, Cobb S (1930) Effects of anemia on the cerebral cortex of cat. Arch Neurol Psychiat 23: 876–903

    Google Scholar 

  19. Hills CP (1964) Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoxic ischemic brain lesions. Am J Pathol 44: 531–551

    PubMed  CAS  Google Scholar 

  20. Hossmann KA, Sato K (1975) Recovery oi neuronal function after prolonged cerebral ischemia. Science 168: 375–376

    Article  Google Scholar 

  21. Hossmann KA, Kleihues P (1973) Reversibility of ischemic brain damage. Arch Neurol 29: 375–384

    Article  PubMed  CAS  Google Scholar 

  22. Hounthoff KJ, Go KG (1980) Endogenous versus exogenous protein tracer passage in blood-brain barrier damage. In: Cervos-Navarro J, Ferszt R (eds) Brain edema. Adv Neurology 28. Raven Press, New York, pp 78–81

    Google Scholar 

  23. Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32: 209–223

    Article  CAS  Google Scholar 

  24. Jenkins LW, Povlishock JT, Becker DP et al (1979) Complete cerebral ischemia. An ul-trastructural study. Acta Neuropathol (Berl) 48: 113–125

    Article  CAS  Google Scholar 

  25. Johansen FF, Jorgensen MB, Diemer N (1983) Resistance of hippocampal CA-1 in-terneurons to 20 min of transient cerebral ischemia in the rat. Acta Neuropathol 61: 135–140

    Article  Google Scholar 

  26. Kalimo H, Garcia JH, Kamijyo Y et al (1977) The ultrastructure of „brain death“. II. Electron microscopy of feline cortex after complete ischemia. Virchows Archiv (Cell Pathol) 25: 207–220

    CAS  Google Scholar 

  27. Kalimo R, ehncrona S, Soderfeldt B et al (1981) Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1: 313–327

    Article  PubMed  CAS  Google Scholar 

  28. Kirino T, Sano K (1980) Changes in the contralateral dentate gyrus in Mongolian gerbils subjected to unilateral cerebral ischemia. Acta Neuropathol (Berl) 50: 121–129

    Article  CAS  Google Scholar 

  29. Kirino T (1980) Degeneration and repair of the brain after cerebral infarction-Changes in the neuropil of the contralateral hemisphere in Mongolian Gerbils. No To Shinkei 32: 1071–1079

    PubMed  CAS  Google Scholar 

  30. Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocamps. Acta Neuropathol (Berl) 62: 209–218

    Article  CAS  Google Scholar 

  31. Koshu K, Yoshimoto T, Suzuki J (1980) Experimental study on hemorrhagic infarction following recirculation in thalamic ischemic lesion. Neurol Med Chir (Tokyo) 20: 935–938

    Article  CAS  Google Scholar 

  32. Kowada M, Ames A III, Majno G et al (1968) Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit. J Neurosurg 28: 150–157

    Article  PubMed  CAS  Google Scholar 

  33. Lear JL, Jones SC, Greenberg JH et al (1981) Use of 123I and 14C in a double radionuclide autoradiographic technique for simultaneous measurement of LCBF and LCMR gl. Stroke 12: 589–597

    Article  PubMed  CAS  Google Scholar 

  34. Levine S, Payan H (1966) Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones un-guiculatus). Exp Neurol 16: 255–262

    Article  PubMed  CAS  Google Scholar 

  35. Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36: 1–17

    PubMed  CAS  Google Scholar 

  36. Lindberg R (1955) Compression of brain arteries as pathogenetic factor for tissue necrosis and their areas of pedilection. J Neuropathol Exp Neurol 14: 223–243

    Article  Google Scholar 

  37. Lindberg R (1956) Morphometric and mor-phostatic necrobiosis. Am J Pathol 23:1147–1177

    Google Scholar 

  38. Little JR, Kerr FW, Sundt TM Jr (1974) The role of lysosomes in production of ischemic nerve cell changes. Arch Neurol 30: 448–455

    Article  PubMed  CAS  Google Scholar 

  39. Little JR, Kerr FW, Sundt TM Jr (1974) Significance of neuronal alterations in developing cortical infarction. Mayo Clin Proc 49: 827–837

    PubMed  CAS  Google Scholar 

  40. Little JR, Sundt TM Jr, Kerr FW (1974). Neuronal alterations in developing cortical infarction. An experimental study in monkeys. J Neurosurg 40: 186–198

    Article  PubMed  CAS  Google Scholar 

  41. Little JR, Kerr FW, Sundt TM Jr (1975) Microcirculatory observation in focal cerebral ischemia. An electron microscopic investigation in monkeys. Stroke 7: 25–30

    Article  Google Scholar 

  42. Matakas F, Cervos-Navarro J, Schneider H (1973) Experimental brain death. 1. Morphology and fine structure of the brain. J Neurol Neurosurg Psychiatry 36: 497–508

    Article  PubMed  CAS  Google Scholar 

  43. McGee-Russell SM, Brown AW, Brierley JB (1970) A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res 20: 193–200

    Article  PubMed  CAS  Google Scholar 

  44. Meyer JS (1958) Importance of ischemic damage to small vessels in experimental cerebral infarction. J Neuropathol Exp Neurol 17: 571–585

    Article  PubMed  CAS  Google Scholar 

  45. Mies G, Niebuhr I, Hossmann KA (1981) Simultaneous measurement of blood flowand glucose metabolism by autoradiographic techniques. Stroke 12: 581–588

    Article  PubMed  CAS  Google Scholar 

  46. Mizoi K, Ogawa A, Seki H et al (1980) Changes of tissue pH in dog during ischemia-Alkaline shift. No To Shinkei 32: 265–268

    PubMed  CAS  Google Scholar 

  47. Nishijima M, Tanaka S, Watanabe T et al (1981) Sequential changes in nerve cells during complete ischemia and the preventive effects of various drugs on cerebral infarction. No To Shinkei 33: 291–299

    PubMed  CAS  Google Scholar 

  48. Ohishi H, Koshu K, Yoshimoto T et al (1981) Contrast enhancement on computed tomography in experimental cerebral infarction in dog. Jpn J Stroke 3: 23–26

    Article  Google Scholar 

  49. Ohishi H, Watanabe T, Seki H et al (1983) Sequential changes of experimental cerebral infarction-CT and histological study. No To Shinkei 35: 983–988

    PubMed  CAS  Google Scholar 

  50. Ohishi H, Nishijima M, Ogawa A et al (1984) Protective effect of mannitol in cerebral infarction-CT findings and physiological observation in experimental cerebral infarction in dogs. No Shinkei Geka 12: 153–158

    PubMed  CAS  Google Scholar 

  51. Petito CK (1979) Platelet thrombi in experimental cerebral infarction. Stroke 10: 192–196

    Article  PubMed  CAS  Google Scholar 

  52. Petito CK, Babiak T (1982) Early proliferative changes in astrocytes in postischemic non infarcted rat brain. Ann Neurol 11: 510–518

    Article  PubMed  CAS  Google Scholar 

  53. Pulsinelli WA, Brierley JB (1979) A new method of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272

    Article  PubMed  CAS  Google Scholar 

  54. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498

    Article  PubMed  CAS  Google Scholar 

  55. Schneider H, Dralle J (1973) Ultrastructural changes in the rat spinal cord after temporary occlusion of the thoracic aorta. Acta Neuropathol (Berl) 26: 301–315

    Article  CAS  Google Scholar 

  56. Scholtz W (1959) The contribution of pathoanatomical research to problem of epilepsy. Epilepsia 1: 36–55

    Article  Google Scholar 

  57. Seki H, Ogawa A, Tanaka S et al (1980) Correlation between the thalamus EEG and rCBF in the thalamus infarction in the dogs. No To Shinkei 32: 1065–1069

    PubMed  CAS  Google Scholar 

  58. Spielmeyer W (1922) Histopathologic des Nervensystems. Springer, Berlin

    Google Scholar 

  59. Suzuki M, Iwasaki Y, Yamamoto T et al (1984) Disintegration of orthogonal arrays in perivascular astrocytic processes as an early event in acute global ischemia. Brain Res 300: 141–145

    Article  PubMed  CAS  Google Scholar 

  60. Tureen LL (1936) Effect of experimental temporary vascular occlusion on the spinal cord: correlation between structural and functional changes. Arch Neurol Psychiat 35: 789–807

    Google Scholar 

  61. Watanabe T, Yoshimoto T, Tanaka S et al (1979) Ultrastructural observation of infarction changes of cerebral tissue in dog I. Neuronal alterations. Neurol Med Chir (Tokyo) 19: 279–285

    Article  CAS  Google Scholar 

  62. Watanabe T, Yoshimoto T, Koshu K et al (1979) Ultrastructural observation on the infarctic sequential changes in the cerebral tissue of dog-II. changes in small vessels. Neurol Med Chir (Tokyo) 19: 811–816

    Article  CAS  Google Scholar 

  63. Watanabe T, Suzuki M, Yoshimoto T et al (1985) Recirculation in ischemic focus in the acute stage-electron microscopical examination. Neurol Med Chir (Tokyo) 25: 81–88

    Article  CAS  Google Scholar 

  64. Welsh FA, Rieder W (1978) Evaluation of in situ freezing of cat brain by NADH fluorescence. J Neurochem 31: 299–309

    Article  PubMed  CAS  Google Scholar 

  65. Yoshimine T, Morimoto K, Yanagihara T (1982) Immunohistochemical investigation on cerebral ischemia. Stroke 13: 119

    Google Scholar 

  66. Yoshimine T, Yanagihara T (1983) Regional cerebral ischemia by occlusion of the posterior communicating artery and of the middle cerebral artery in gerbils. J Neu-rosurg 58: 362–367

    CAS  Google Scholar 

  67. Yoshimoto T, Sakamoto T, Suzuki J (1978) Experimental cerebral infarction. Part I. Production of thalamic infarction in dogs. Stroke 9: 211–214

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag/Wien

About this chapter

Cite this chapter

Suzuki, J. (1987). Histological Study. In: Treatment of Cerebral Infarction. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8861-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8861-3_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8863-7

  • Online ISBN: 978-3-7091-8861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics