Histological Study

  • Jiro Suzuki


Detailed research on the histopathological changes due to cerebral ischemia date from the work of Spielmeyer58 in the early part of this century. In 1920 he reported that, following cerebral ischemia, there is shrinkage of neurons, in which the cytoplasm becomes acidophilic and the nucleus basophilic and the Nissl bodies disappear. Spielmeyer called such changes “ischemic cell changes”.


Cerebral Ischemia Orthogonal Array Sequential Change Ischemic Focus Occlusion Time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames A, Wright RL, Kowada M et al (l968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453Google Scholar
  2. 2.
    Arsenio-Nunes ML, Hossmann KA, Farkas-Bargeton E (1973) Ultrastructural and histochemical investigation of the cerebral cortex of cat during and after complete ischemia. Acta Nopathol (Berl) 26: 329–344CrossRefGoogle Scholar
  3. 3.
    Brown AW, Brierley JB (1966) Evidence for early anoxic-ischemic cell damage in the rat brain, Experientia (Basel) 22: 546–547CrossRefGoogle Scholar
  4. 4.
    Brown AW, Brierley JB (1968) The nature, distribution and earliest stages of anoxic-ischemic nerve cell damage in the rat brain as defined by the optical microscope. Br J Exp Pathol 49: 87–106PubMedGoogle Scholar
  5. 5.
    Brown AW, Brierley JB (1972) Anoxic-ischemic cell change in the rat brain. Light microscopic and fine structural observations. J Neurol Sci 16: 59–84PubMedCrossRefGoogle Scholar
  6. 6.
    Brown AW, Brierley JB (1973) The earliest alterations in rat neurons and astrocytes after anoxia-ischemia. Acta Neuropathol (Berl) 23: 9–22CrossRefGoogle Scholar
  7. 7.
    Brown AW (1977) Structural abnormalities in neurons. J Clin Pathol [Suppl] 11: 155–169Google Scholar
  8. 8.
    Calhoun CL, Mottaz JH (1966) Capillary bed of rat cerebral cortex. The fine structure in experimental cerebral infarction. Arch Neurol (Chicago) 15: 320–328CrossRefGoogle Scholar
  9. 9.
    Cammermeyer J (1961) The importance of avoiding dark neurons in the experimental neuropathology. Acta Neuropathol 1: 245–270CrossRefGoogle Scholar
  10. 10.
    Cammermeyer J (1973) Ischemic neuronal disease of Spielmeyer. A reevaluation. Arch Neurol 29: 390–393CrossRefGoogle Scholar
  11. 11.
    Dodson RF, Kawamura Y, Aoyagi M et al (1973) A comparative evaluation of the ultrastructural changes following induced cerebral infarction in the squirrel monkey and baboon. Cytobios 8: 175–182PubMedGoogle Scholar
  12. 12.
    Fernand DA, Lau JK (1978) An electron microscope study of the effects of acute ischemia in the brain. Acta Anat (Basel) 100: 241–249CrossRefGoogle Scholar
  13. 13.
    Fischer EG, Ames A III, Hedley-Whyte ET et al (1977) Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the “no-reflow phenomenon“. Stroke 8: 36–39PubMedCrossRefGoogle Scholar
  14. 14.
    Furlow TW, Martin FM, Harrison LE (1984) Simultaneous measurement of local glucose utilization and blood flow in the rat brain. An autoradiographic method using two tracers labelled with carbon-14. J Cereb Blood Flow Metab 3: 62–66CrossRefGoogle Scholar
  15. 15.
    Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evaluation of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropath Exp Neurol 33: 408–421PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia JH, Trump BF (1975) Cerebral ischemia. The early structural changes and correlation of dynamic abnormalities. In: Whisnant J, Sandok BA (eds) Ninth Conference. Cerebral vascular disease. Grune and Stratton, New York, pp 313–323Google Scholar
  17. 17.
    Garcia JH, Lossinsky AS, Kauffman FC et al (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol (Berl) 43: 85–95CrossRefGoogle Scholar
  18. 18.
    Gildea EF, Cobb S (1930) Effects of anemia on the cerebral cortex of cat. Arch Neurol Psychiat 23: 876–903Google Scholar
  19. 19.
    Hills CP (1964) Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoxic ischemic brain lesions. Am J Pathol 44: 531–551PubMedGoogle Scholar
  20. 20.
    Hossmann KA, Sato K (1975) Recovery oi neuronal function after prolonged cerebral ischemia. Science 168: 375–376CrossRefGoogle Scholar
  21. 21.
    Hossmann KA, Kleihues P (1973) Reversibility of ischemic brain damage. Arch Neurol 29: 375–384PubMedCrossRefGoogle Scholar
  22. 22.
    Hounthoff KJ, Go KG (1980) Endogenous versus exogenous protein tracer passage in blood-brain barrier damage. In: Cervos-Navarro J, Ferszt R (eds) Brain edema. Adv Neurology 28. Raven Press, New York, pp 78–81Google Scholar
  23. 23.
    Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32: 209–223CrossRefGoogle Scholar
  24. 24.
    Jenkins LW, Povlishock JT, Becker DP et al (1979) Complete cerebral ischemia. An ul-trastructural study. Acta Neuropathol (Berl) 48: 113–125CrossRefGoogle Scholar
  25. 25.
    Johansen FF, Jorgensen MB, Diemer N (1983) Resistance of hippocampal CA-1 in-terneurons to 20 min of transient cerebral ischemia in the rat. Acta Neuropathol 61: 135–140CrossRefGoogle Scholar
  26. 26.
    Kalimo H, Garcia JH, Kamijyo Y et al (1977) The ultrastructure of „brain death“. II. Electron microscopy of feline cortex after complete ischemia. Virchows Archiv (Cell Pathol) 25: 207–220Google Scholar
  27. 27.
    Kalimo R, ehncrona S, Soderfeldt B et al (1981) Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1: 313–327PubMedCrossRefGoogle Scholar
  28. 28.
    Kirino T, Sano K (1980) Changes in the contralateral dentate gyrus in Mongolian gerbils subjected to unilateral cerebral ischemia. Acta Neuropathol (Berl) 50: 121–129CrossRefGoogle Scholar
  29. 29.
    Kirino T (1980) Degeneration and repair of the brain after cerebral infarction-Changes in the neuropil of the contralateral hemisphere in Mongolian Gerbils. No To Shinkei 32: 1071–1079PubMedGoogle Scholar
  30. 30.
    Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocamps. Acta Neuropathol (Berl) 62: 209–218CrossRefGoogle Scholar
  31. 31.
    Koshu K, Yoshimoto T, Suzuki J (1980) Experimental study on hemorrhagic infarction following recirculation in thalamic ischemic lesion. Neurol Med Chir (Tokyo) 20: 935–938CrossRefGoogle Scholar
  32. 32.
    Kowada M, Ames A III, Majno G et al (1968) Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit. J Neurosurg 28: 150–157PubMedCrossRefGoogle Scholar
  33. 33.
    Lear JL, Jones SC, Greenberg JH et al (1981) Use of 123I and 14C in a double radionuclide autoradiographic technique for simultaneous measurement of LCBF and LCMR gl. Stroke 12: 589–597PubMedCrossRefGoogle Scholar
  34. 34.
    Levine S, Payan H (1966) Effects of ischemia and other procedures on the brain and retina of the gerbil (Meriones un-guiculatus). Exp Neurol 16: 255–262PubMedCrossRefGoogle Scholar
  35. 35.
    Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36: 1–17PubMedGoogle Scholar
  36. 36.
    Lindberg R (1955) Compression of brain arteries as pathogenetic factor for tissue necrosis and their areas of pedilection. J Neuropathol Exp Neurol 14: 223–243CrossRefGoogle Scholar
  37. 37.
    Lindberg R (1956) Morphometric and mor-phostatic necrobiosis. Am J Pathol 23:1147–1177Google Scholar
  38. 38.
    Little JR, Kerr FW, Sundt TM Jr (1974) The role of lysosomes in production of ischemic nerve cell changes. Arch Neurol 30: 448–455PubMedCrossRefGoogle Scholar
  39. 39.
    Little JR, Kerr FW, Sundt TM Jr (1974) Significance of neuronal alterations in developing cortical infarction. Mayo Clin Proc 49: 827–837PubMedGoogle Scholar
  40. 40.
    Little JR, Sundt TM Jr, Kerr FW (1974). Neuronal alterations in developing cortical infarction. An experimental study in monkeys. J Neurosurg 40: 186–198PubMedCrossRefGoogle Scholar
  41. 41.
    Little JR, Kerr FW, Sundt TM Jr (1975) Microcirculatory observation in focal cerebral ischemia. An electron microscopic investigation in monkeys. Stroke 7: 25–30CrossRefGoogle Scholar
  42. 42.
    Matakas F, Cervos-Navarro J, Schneider H (1973) Experimental brain death. 1. Morphology and fine structure of the brain. J Neurol Neurosurg Psychiatry 36: 497–508PubMedCrossRefGoogle Scholar
  43. 43.
    McGee-Russell SM, Brown AW, Brierley JB (1970) A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res 20: 193–200PubMedCrossRefGoogle Scholar
  44. 44.
    Meyer JS (1958) Importance of ischemic damage to small vessels in experimental cerebral infarction. J Neuropathol Exp Neurol 17: 571–585PubMedCrossRefGoogle Scholar
  45. 45.
    Mies G, Niebuhr I, Hossmann KA (1981) Simultaneous measurement of blood flowand glucose metabolism by autoradiographic techniques. Stroke 12: 581–588PubMedCrossRefGoogle Scholar
  46. 46.
    Mizoi K, Ogawa A, Seki H et al (1980) Changes of tissue pH in dog during ischemia-Alkaline shift. No To Shinkei 32: 265–268PubMedGoogle Scholar
  47. 47.
    Nishijima M, Tanaka S, Watanabe T et al (1981) Sequential changes in nerve cells during complete ischemia and the preventive effects of various drugs on cerebral infarction. No To Shinkei 33: 291–299PubMedGoogle Scholar
  48. 48.
    Ohishi H, Koshu K, Yoshimoto T et al (1981) Contrast enhancement on computed tomography in experimental cerebral infarction in dog. Jpn J Stroke 3: 23–26CrossRefGoogle Scholar
  49. 49.
    Ohishi H, Watanabe T, Seki H et al (1983) Sequential changes of experimental cerebral infarction-CT and histological study. No To Shinkei 35: 983–988PubMedGoogle Scholar
  50. 50.
    Ohishi H, Nishijima M, Ogawa A et al (1984) Protective effect of mannitol in cerebral infarction-CT findings and physiological observation in experimental cerebral infarction in dogs. No Shinkei Geka 12: 153–158PubMedGoogle Scholar
  51. 51.
    Petito CK (1979) Platelet thrombi in experimental cerebral infarction. Stroke 10: 192–196PubMedCrossRefGoogle Scholar
  52. 52.
    Petito CK, Babiak T (1982) Early proliferative changes in astrocytes in postischemic non infarcted rat brain. Ann Neurol 11: 510–518PubMedCrossRefGoogle Scholar
  53. 53.
    Pulsinelli WA, Brierley JB (1979) A new method of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272PubMedCrossRefGoogle Scholar
  54. 54.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  55. 55.
    Schneider H, Dralle J (1973) Ultrastructural changes in the rat spinal cord after temporary occlusion of the thoracic aorta. Acta Neuropathol (Berl) 26: 301–315CrossRefGoogle Scholar
  56. 56.
    Scholtz W (1959) The contribution of pathoanatomical research to problem of epilepsy. Epilepsia 1: 36–55CrossRefGoogle Scholar
  57. 57.
    Seki H, Ogawa A, Tanaka S et al (1980) Correlation between the thalamus EEG and rCBF in the thalamus infarction in the dogs. No To Shinkei 32: 1065–1069PubMedGoogle Scholar
  58. 58.
    Spielmeyer W (1922) Histopathologic des Nervensystems. Springer, BerlinGoogle Scholar
  59. 59.
    Suzuki M, Iwasaki Y, Yamamoto T et al (1984) Disintegration of orthogonal arrays in perivascular astrocytic processes as an early event in acute global ischemia. Brain Res 300: 141–145PubMedCrossRefGoogle Scholar
  60. 60.
    Tureen LL (1936) Effect of experimental temporary vascular occlusion on the spinal cord: correlation between structural and functional changes. Arch Neurol Psychiat 35: 789–807Google Scholar
  61. 61.
    Watanabe T, Yoshimoto T, Tanaka S et al (1979) Ultrastructural observation of infarction changes of cerebral tissue in dog I. Neuronal alterations. Neurol Med Chir (Tokyo) 19: 279–285CrossRefGoogle Scholar
  62. 62.
    Watanabe T, Yoshimoto T, Koshu K et al (1979) Ultrastructural observation on the infarctic sequential changes in the cerebral tissue of dog-II. changes in small vessels. Neurol Med Chir (Tokyo) 19: 811–816CrossRefGoogle Scholar
  63. 63.
    Watanabe T, Suzuki M, Yoshimoto T et al (1985) Recirculation in ischemic focus in the acute stage-electron microscopical examination. Neurol Med Chir (Tokyo) 25: 81–88CrossRefGoogle Scholar
  64. 64.
    Welsh FA, Rieder W (1978) Evaluation of in situ freezing of cat brain by NADH fluorescence. J Neurochem 31: 299–309PubMedCrossRefGoogle Scholar
  65. 65.
    Yoshimine T, Morimoto K, Yanagihara T (1982) Immunohistochemical investigation on cerebral ischemia. Stroke 13: 119Google Scholar
  66. 66.
    Yoshimine T, Yanagihara T (1983) Regional cerebral ischemia by occlusion of the posterior communicating artery and of the middle cerebral artery in gerbils. J Neu-rosurg 58: 362–367Google Scholar
  67. 67.
    Yoshimoto T, Sakamoto T, Suzuki J (1978) Experimental cerebral infarction. Part I. Production of thalamic infarction in dogs. Stroke 9: 211–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • Jiro Suzuki
    • 1
  1. 1.Division of Neurosurgery, Institute for Brain DiseasesTohoku University School of MedicineNagamachi, SendaiJapan

Personalised recommendations