Advertisement

Experimental Models

  • Jiro Suzuki

Abstract

A large number of experiments using various methods and various animal species have been reported in the development of animal models of cerebral infarction. Various aspects of the pathophysiology of cerebral ischemia have thus been clarified and progress has been made in the clinical treatment of patients with cerebral infarction. Further progress is still needed, however, and even in the realm of experimental models alone, there are still many unsolved problems—a fact which is clearly reflected in the large volume of research on such models and the continuing development of new animal models.

Keywords

Middle Cerebral Artery Basilar Artery Optic Chiasma Ophthalmic Artery Infarction Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branston NM, Symon L, Crockard HA et al (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute cerebral artery occlusion in the baboon. Exp. Neurol 45: 195–208PubMedCrossRefGoogle Scholar
  2. 2.
    Crowell RM, Olsson Y, Klatzo I et al (1970) Temporary occlusion of the MCA in monkey, clinical and pathological observation. Stroke 1: 439–448PubMedCrossRefGoogle Scholar
  3. 3.
    Diaz FG, Mastri AR, Ausmann JI et al (1979) Acute cerebral revascularization: Part I. Cerebral ischemia experimental animal model. Surg Neurol 12: 353–362PubMedGoogle Scholar
  4. 4.
    Eklof B, Seisjo BK (1972) The effects of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand 86: 155–165PubMedCrossRefGoogle Scholar
  5. 5.
    Fujishima M, Sugi T, Morotomi Y et al (1975) Effects of bilateral carotid artery ligation on brain lactate and pyruvate concentrations in normotensive and spontaneously hypertensive rats. Stroke 6: 62–66PubMedCrossRefGoogle Scholar
  6. 6.
    Ginsberg MD, Welsh FA, Budd WW et al (1980) Deleterious effect of glucose pre-treatment on recovery from diffuse cerebral ischemia in cat. Stroke 11: 347–354PubMedCrossRefGoogle Scholar
  7. 7.
    Hossmann KA, Zimmermann V (1974) Resuscitatin of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations. Brain Res 81: 59–74PubMedCrossRefGoogle Scholar
  8. 8.
    Hossmann KA, Schuier FJ (1980) Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke 11: 583–592PubMedCrossRefGoogle Scholar
  9. 9.
    Hossman V, Hossman KA, Takagi S (1980) Effect of intravascular platelet aggregation on blood recirculation following prolonged ischemia of the cat brain. J Neurol 222: 159–170CrossRefGoogle Scholar
  10. 10.
    Hudgins WR, Garcia JH (1970) Transorbital approach to the middle cerebral artery of the squirrel monkey. A technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke 1: 107–111PubMedCrossRefGoogle Scholar
  11. 11.
    Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32: 209–223CrossRefGoogle Scholar
  12. 12.
    Jarrott DM, Domer FR (1980) A gerbil model of cerebral ischemia suitable for drug evaluation. Stroke 11: 203–209PubMedCrossRefGoogle Scholar
  13. 13.
    Kameyama M, Shirane R, Suzuki J et al (1985) A new model of bilateral hemispheric ischemia in the rat three vessel occlusion model. Stroke 16: 489–493PubMedCrossRefGoogle Scholar
  14. 14.
    Kayama T, Mizoi K, Suzuki J (1981) A canine model of a completely ischemic brain regulated with the perfusion method. Surg Neurol 16: 167–172CrossRefGoogle Scholar
  15. 15.
    Kogure K, Busto R, Scheinberg P et al (1974) Energy metabolites and water content in rat brain during the early stage development of cerebral infarction. Brain 97: 103–114PubMedCrossRefGoogle Scholar
  16. 16.
    Kudo M, Aoyama A, Ichimori S et al (1982) An animal model of cerebral infarction, Homologous blood clot emboli in rats, Stroke 13: 505–508PubMedCrossRefGoogle Scholar
  17. 17.
    Laha RK, Israeli J, Dujouny M et al (1980) Low molecular weight dextran in experimental embolectomy. Stroke 11: 59–63PubMedCrossRefGoogle Scholar
  18. 18.
    Lavyne MH, Hariri RJ, Tankosic T et al (1983) Effect of low dose y-butyrolactone therapy on forebrain neuronal ischemia ir the unanesthetized, awake rat. Neurosurgery 12: 430–434PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer JS (1958) Circulatory changes following occlusion of the middle cerebral artery and their relation to function. J Neurosurg 15: 653–673PubMedCrossRefGoogle Scholar
  20. 20.
    Miller CL, Lampard DG, Alexander K et al (1980) Local cerebral blood flow following transient cerebral ischemia. I. Onset of impaired reperfusion within the first hour following global ischemia. Stroke 1: 534–541CrossRefGoogle Scholar
  21. 21.
    Molinali GF (1970) Experimental cerebral infarction I: Selective segmental occlusion of intracranial arteries in the dog. Stroke 1: 224–231CrossRefGoogle Scholar
  22. 22.
    Morawetz RB, DeGirolami U, Ojeman RG et al (1978) Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetized monkeys. Stroke 9: 143–149PubMedCrossRefGoogle Scholar
  23. 23.
    Nakagawa Y, Yamamoto YL, Meyer E et al (1981) Effects of hypercapnia on enhancement of decreaced perfusion flow in nonin-farcted brain tissues. Stroke 12: 86–92CrossRefGoogle Scholar
  24. 24.
    Okada Y, Shima T, Yokoyama N et al (1983) Comparison of middle cerebral artery trunk occlusion by silicone cylinder embolization and by trapping. J Neurosurg 58: 492–499PubMedCrossRefGoogle Scholar
  25. 25.
    Okamoto K, Yamori Y, Nagaoka A (1974) Establishment of the stroke-prone spontaneously hypertensive rats (SHR). Circ Rec SL 34: 143–153Google Scholar
  26. 26.
    Osterholm JL, Alderman JB, Triolo AJ et al (1983) Severe cerebral ischemia treatment by ventriculosubarachnoid perfusion with an oxygenated fluorocarbon emulsion. Neurosurgery 13: 381–387PubMedCrossRefGoogle Scholar
  27. 27.
    Pulsinelli WA, Brierly JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267–272PubMedCrossRefGoogle Scholar
  28. 28.
    Sakamoto T, Tanaka S, Yoshimoto T et al (1978) Experimental cerebral infarction. Part 2: Electroencephalographic changes produced by experimental thalamic infarction in dogs. Stroke 9: 214–216PubMedCrossRefGoogle Scholar
  29. 29.
    Sakurada O, Kennedy C, Jehle J et al (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am J Physiol 234: H59–H66PubMedGoogle Scholar
  30. 30.
    Shibata S, Hodge CP, Pappius HM (1974) Effect of experimental ischemia on cerebral water and electrolyte. J Neurosurg 41: 146–159PubMedCrossRefGoogle Scholar
  31. 31.
    Steen PA, Newberg LA, Milde JH et al (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab: 3: 38–43PubMedCrossRefGoogle Scholar
  32. 32.
    Sundt TM Jr, Waltz AG (1966) Experimental cerebral infarction, retro-orbital extradural approach for occluding the middle cerebral artery. Mayo Clin Proc 41: 159–168PubMedGoogle Scholar
  33. 33.
    Sundt TM, Grant WC, Garcia JH (1969) Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31: 311–322PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki J, Yoshimoto T, Tanaka S et al (1980) Production of various models of cerebral infarction in the dog by means of occlusion of intracranial trunk arteries. Stroke 11: 337–341PubMedCrossRefGoogle Scholar
  35. 35.
    Tamura A, Asano T, Sano K (1980) Correlation between rCBF and histological changes following temporary middle cerebral artery occlusion. Stroke 11: 487–493PubMedCrossRefGoogle Scholar
  36. 36.
    Tamura A, Graham DI, McCulloch J et al (1981) Focal cerebral ischemia in the rat: 1. Description of technique and early neuro-pathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60PubMedCrossRefGoogle Scholar
  37. 37.
    Todd MM, Dunlop BJ, Shapiro HM et al (1981) Ventricular fibrillation in the cat. A model for global cerebral ischemia. Stroke 12: 808–815PubMedCrossRefGoogle Scholar
  38. 38.
    Welch FA, Oconnor MJ, Marcy VR et al (1982) Factors limiting regeneration of ATP following temporary ischemia in cat brain. Stroke 13: 234–242CrossRefGoogle Scholar
  39. 39.
    Wexler BC (1980) Comparative effects of unilateral and bilateral carotid artery ligation in the spontaneously hypertensive rat. Stroke 11: 72–78PubMedCrossRefGoogle Scholar
  40. 40.
    Yamada K, Hayakawa T, Yoshimine T et al (1984) A new model of transient hind brain ischemia in gerbils. J Neurosurg 60: 1054–1058PubMedCrossRefGoogle Scholar
  41. 41.
    Yonas H, Walfson SK Jr, Dujovny M et al (1981) Selective lenticulostriate occlusion in the primate. A high focal cerebral ischemia model. Stroke 12: 567–572PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshimine T, Yanagihara T (1983) Regional cerebral ischemia by occlusion of the posterior communicating artery and the middle cerebral artery in gerbils. J Neu- Experimental cerebral infarction. Part 1: rosurg 58: 362–367Google Scholar
  43. 43.
    Yoshimoto T, Sakamoto T, Suzuki J (1978) Stroke 9: 211–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1987

Authors and Affiliations

  • Jiro Suzuki
    • 1
  1. 1.Division of Neurosurgery, Institute for Brain DiseasesTohoku University School of MedicineNagamachi, SendaiJapan

Personalised recommendations