Advertisement

Abstract

This review has been written in order to update the literature on anthraquinones occurring in the Rubiaceae. Since appearance of the excellent book on naturally-occurring quinones by R.H. Thomson (120) in 1971 about 50 new anthraquinones have been isolated from members of the Rubiaceae. Also several new methods have been used for structure analysis and separation of the anthraquinones which have not been subject to review before. For this review we have confined ourselves to the naturally occurring anthraquinones and therefore the synthesis of anthraquinones is not included. The article covers the literature from 1969 to 1984.

Keywords

Cell Suspension Culture Dimethyl Ether Shikimic Acid Rubia Tinctorum Anthraquinone Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adesida, G.A., and E.K. Adesogan: Oruwal, a Novel Dihydroanthraquinone Pigment from Morinda lucida Benth. J. Chem. Soc. Chem. Commun. 1972, 405.Google Scholar
  2. 2.
    Adesogan, E.K.: Anthraquinones and Anthraquinols from Morinda lucida. Tetrahedron 29, 4099 (1973).Google Scholar
  3. 3.
    Amrhein, N., B. Deus, P. Gehrke, and H.C. Steinrucken: The Site of Inhibition of the Shikimate Pathway by Glyphosate. Plant Physiol. 66, 830 (1980).Google Scholar
  4. 4.
    André, R., F. Bailleul, P. Delaveau, R.R. Paris, and A. Jacquemin: Etude chimique du Danais fragrans Gaertn. (Rubiacees). Plant. Med. Phytother. 10 (2), 110 (1976).Google Scholar
  5. 5.
    Arnone, A., G. Fronza, R. Mondelli, and J.St. Pyrek: 13C-NMR Analysis of Anthraquinones as Models for Anthracycline Antibiotics. J. Magn. Reson. 28, 69 (1977).Google Scholar
  6. 6.
    Aszalos, A.: Analysis of Antitumour Antibiotics by HPLC. J. Liquid Chromatogr. 7 (s-1), 69 (1984).Google Scholar
  7. 7.
    Banks, S., S.J. Saunders, I.N. Marks, B.H. Novis, and B.O. Barbezat: In: Drug Treatment, 2nd ed. ( Avery, G.S., ed.), p. 712. Sydney-New York: ADIS Press. 1980.Google Scholar
  8. 8.
    Banville, J., J.-L. Grandmaison, G. Lang, and P. Brassard: Reactions of ketene acetals. Part I. A Simple Synthesis of Some Naturally Occurring Anthraquinones. Can. J. Chem. 52, 80 (1974).Google Scholar
  9. 9.
    Barre, F.P.: Anthraquinone Substances in Relbunium hypocarpium. Soc. Venez. Cienc. Natur. Bol. 27 (112), 314 (1967).Google Scholar
  10. 10.
    Barrowcliff, M., and F. Tutin: Chemical Examination of the Root and Leaves of Morinda longiflora. J. Chem. Soc. 91, 1907 (1907).Google Scholar
  11. 11.
    Bauch, H.-J., and E. Leistner: Aromatic Metabolites in Cell Suspension Cultures of Galium mollugo L. Planta Med. 33, 105 (1978).Google Scholar
  12. 12.
    Bauch, H.-J., and E. Leistner: Attempts to Demonstrate Incorporation of Labelled Precursors into Aromatic Metabolites in Cell Suspension Cultures of Galium mollugo L. Planta Med. 33, 124 (1978).Google Scholar
  13. 13.
    Bender, M.: Colours for Textiles (Ancient and Modern). J. Chem. Educ. 24, 2 (1947)Google Scholar
  14. 14.
    Berg, A. van den: Personal Communication.Google Scholar
  15. 15.
    Berg, W., A. Hesse, M. Herrmann, and R. Kraft: Zur Strukturaufklarung von neuen Anthrachinonderivaten aus Rubia tinctorum L. Pharmazie 30, 330 (1975)Google Scholar
  16. 16.
    Berg, W., A. Hesse, R. Kraft, and M. Herrmann: Zur Strukturaufklarung von neuen Anthrachinonderivaten aus Rubia tinctorum L. Pharmazie 29, 478 (1974).Google Scholar
  17. 17.
    Berger, Y., and A. Castonguay: The 13C-NMR spectra of Anthraquinone, Eight Polyhydroxyanthraquinones and Eight Polymethoxyanthraquinones. Org. Magn. Reson. 11 (8), 375 (1978).Google Scholar
  18. 18.
    Berger, Y., A. Castonguay, and P. Brassard: Carbon-13 Nuclear Magnetic Reso­nance Studies of Anthraquinones. Part II. Hydroxymethoxyanthraquinones, Acetox- ymethoxyanthraquinones and Naturally Occurring Anthraquinone Analogues. Org. Magn. Reson. 14 (2), 103 (1980).Google Scholar
  19. 19.
    Berger, S., and A. Rieker: Identification and Determination of Quinones. In: The Chemistry of the Quinonoid Compounds, Part I (Patai, S., ed.), p. 215. London-New York-Sydney-Toronto: J. Wiley and Sons. 1974.Google Scholar
  20. 20.
    Beynon, J.H., and A.E. Williams: Mass Spectra of Various Quinones and Polycylic Ketones. Appl. Spectrosc. 14 (6), 156 (1960).Google Scholar
  21. 21.
    Borisov, M.I.: Anthraquinone Glycosides oiAsperula besseriana and Galium ruthenicum. Rastit. Resur. 11 (3), 362 (1975).Google Scholar
  22. 22.
    Borisov, M.I., N.S. Zhuravlev, and T.I. Isakova: Quantitative Content of Anthraquinones in Some Woodruff and Bedstraw Species. Rastit. Resur. 12 (4), 536 (1976).Google Scholar
  23. 23.
    Bowie, J.H., and R.G. Cooke: Colouring Matters of Australian Plants. IX Anthraquinones from Morinda Species. Aust. J. Chem. 15, 332 (1962).Google Scholar
  24. 24.
    Bowie, J.H., R.G. Cooke, and P.E. Wilkin: Colouring Matters of Australian Plants. X. Anthraquinones from Coelospermum species. Aust. J. Chem. 15, 336 (1962).Google Scholar
  25. 25.
    Bowie, J.H., and P.Y. White: Electron Impact Studies. Part XXXIX. Proximity Effects in the Mass Spectra of Aromatic Carbonyl Compounds Containing Adjacent Methoxy-substituents. J. Chem. Soc. (b) 1969, 89.Google Scholar
  26. 26.
    Brew, E.J.C., and R.H. Thomson: Naturally occurring Quinones. Part XIX. Anthraquinones in Hymenodictyon excelsum and Damnacanthus major J. Chem. Soc. (c) 1971, 2001.Google Scholar
  27. 27.
    Briggs, L.H., J.F. Beachen, R.C. Cambie, N.P.B. Dudman, A.W. Steggles, and P.S. Rutledge: Chemistry of the Coprosma Genus. Part XIV. Constituents of Five New Zealand Species. J. Chem. Soc., Perk. Trans. I 1976, 1789.Google Scholar
  28. 28.
    Briggs, L.H., M.R. Craw, and J.C. Dacre: Chemistry of the Coprosma Genus. Part II. The Colouring Matters from Coprosma areolata. J. Chem. Soc. 1948, 568.Google Scholar
  29. 29.
    Briggs, L.H., and J.C.Dacre: Chemistry of the Coprosma Genus. Part I. The Colouring Matters from Coprosma australis. J. Chem. Soc. 1948, 564.Google Scholar
  30. 30.
    Briggs, L.H., and P.W. Le Quesne: Chemistry of the Coprosma Genus. Part XII. The Glycoside of Morindone from Coprosma australis. J. Chem. Soc. 1963, 3471.Google Scholar
  31. 31.
    Briggs, L.H., and G.A. Nicholls: Chemistry of the Coprosma Genus. Part IV. The Monoglycosidic Anthraquinone Compounds from Coprosma lucida. J. Chem. Soc. 1949, 1241.Google Scholar
  32. 32.
    Briggs, L.H., G.A. Nicholls, and R.M.L. Paterson: Chemistry of the Coprosma Genus. Part VI. Minor Anthraquinone Colouring Matters from Coprosma australis. J. Chem. Soc. 1952, 1718.Google Scholar
  33. 33.
    Briggs, L.H., and A.R. Taylor: Chemistry of the Coprosma Genus. Part X. The Colouring Matters from Coprosma rhamnoides. J. Chem. Soc. 1955, 3298.Google Scholar
  34. 34.
    Briggs, L.H., and B.R. Thomas: Chemistry of the Coprosma Genus. Part V. The Anthraquinone Colouring Matters from Coprosma acerosa. J. Chem. Soc. 1949, 1246.Google Scholar
  35. 35.
    Brisson, C., and P. Brassard: Regio-specific Reactions of some Vinylogous Ketene Acetals with Haloquinones and Their Regio-selective Formation by Dienolization. J. Org. Chem. 46, 1810 (1981).Google Scholar
  36. 36.
    Burnett, A.R., and R.H. Thomson: Biogenesis of Anthraquinones in Rubiaceae. J. Chem. Soc. Chem. Commun. 1967, 1125.Google Scholar
  37. 37.
    Burnett, A.R., and R.H. Thomson: Naturally Occurring Quinones. Part XIII. Anthraquinones and Related Naphtalenic Compounds in Galium spp. and in Asperula odorata. J. Chem. Soc. (c) 1968, 854.Google Scholar
  38. 38.
    Burnett, A.R., and R.H. Thomson: Naturally Occurring Quinones. Part XV. Biogenesis of the Anthraquinones in Rubia tinctorum L. (Madder). J. Chem. Soc. (c) 1968, 2437.Google Scholar
  39. 39.
    Burnett, A.R., and R.H. Thomson: Anthraquinones in Morinda umbellata L. Phytochemistry 7, 1421 (1968)Google Scholar
  40. 40.
    Cameron D.W., and M.J. Crossley: Synthesis of Emodin Methyl Ethers. Aust. J. Chem. 30, 1161 (1977).Google Scholar
  41. 41.
    Chang, P., K.-H. Lee, T. Shingu, T. Hirayama, and I.H. Hall: Antitumor Agents 50. Morindaparvin-A, a New Antileukemic Anthraquinone, and Alizarin 1-Methyl Ether from Morinda parvifolia, and the Antileukemic Activity of the Related Deriva­tives. J. Nat. Prod. 45 (2), 206 (1982).Google Scholar
  42. 42.
    Chang, P., and K.-H. Lee: Cytotoxic Antileukemic Anthraquinones from Morinda parvifolia. Phytochemistry 23 (8), 1733 (1984).Google Scholar
  43. 43.
    Covello, M., O. Schettino, M.I. La Rotonda, and P. Forgione: Riconoscimento e determinazione quantitativa dei derivati anthrachinonici di origine vegetale per via cromatografica. Boll. Soc. Ital. Biol. Sper. 46, 500 (1970).Google Scholar
  44. 44.
    Demagos, G.P., W. Baltus, and G. Hòfle: New Anthraquinones and Anthraqui­none Glycosides from Morinda lucida. Z. Naturforsch. 36b, 1180 (1981).Google Scholar
  45. 45.
    Dodsworth, D.J., M.-P. Calcagno, E.U. Ehrmann, B. Devadas, and P.G. Sommes: A New Route to Anthraquinones. J. Chem. Soc., Perkin Trans. I 1981, 2120.Google Scholar
  46. 46.
    Dosseh, Ch., A.M. Tessier, and P. Delaveau: Racines de Rubia cordifolia. II: Nouvelles quinones. Pianta Med. 43, 141 (1981).Google Scholar
  47. 47.
    Dosseh, Ch., A.M. Tessier, and P. Delaveau: Nouvelles quinones des racines de Rubia cordi/olia L. III. Pianta Med. 43, 360 (1981).Google Scholar
  48. 48.
    El Ezaby, M.S., T.M. Salem, A.H. Zewail, and R. Issa: Spectral Studies of some Hydroxy Derivatives of Anthraquinones. J. Chem. Soc. (b) 1970, 1293.Google Scholar
  49. 49.
    Eswaran, V., V. Narayanan, S. Neelakantan, and P.V. Raman: Tinctomorone - A New Anthraquinone Ester from the Heart Wood of Morinda tinctoria. Indian J. Chem. 17B, 650 (1979).Google Scholar
  50. 50.
    Fieser, L.F.: The Discovery of Synthetic Alizarin. J. Chem. Educ. 7 (11), 2609 (1930).Google Scholar
  51. 51.
    Fingl, E.: In: The Pharmacological Basis of Therapeutics, 6th ed. ( Goodman Gilman, A., L.S. Goodman, and A. Gilman, eds.), p. 1007. New York: MacMillan Publishing Co., Inc. 1980.Google Scholar
  52. 52.
    Formanek, I.: Studiul chromatographic al principilor anthrachinonice din Roiba (Rubia tinctorum L.). Rev. Med. (Tirgu-Mures, Rom.) 15 (3), 337 (1969).Google Scholar
  53. 53.
    Formanek, I.: Studiul metodelor de dozare a derivatilor anthrachinonici din Roiba (Rubia tinctorum L.). Rev. Med. (Tirgu-Mures, Rom.) 16 (2), 206 (1970).Google Scholar
  54. 54.
    Formanek, I.: Continutul in derivati anthrachinonici al radacinilor de Roiba (Rubia tinctorum L.) in functie de diferiti factori. Rev. Med. (Tirgu-Mures, Rom.) 16 (3-4) 380 (1970)Google Scholar
  55. 55.
    Formanek, I., and G. Ràcz: Prezenta principiilor anthracenice din Rubia tinctorum L. in alti reprezentanti ai familiei Rubiaceae. Farmacia (Bucharest) 21 (4), 201 (1973).Google Scholar
  56. 56.
    Formanek, I., and G. Ràcz: Date comparative privind continutul de derivati anthrachinonic al unor specii din Familia Rubiaceae. Rev. Med. (Tirgu-Mures, Rom.) 25 (1-2), 138 (1979).Google Scholar
  57. 57.
    Gonzalez, A.C., J.T. Barroso, R.J. Cardona, J.M. Medina, and L.F. Rodriguez: Quimica de las Rubiaceas. II. Componentes de la Putoria calabrica Perss. An. Quim. 73, 538 (1977).Google Scholar
  58. 58.
    Gonzalez, A.G., R. J. Cardona, H. Lopez Dorta, J.M.Medina, and L.F. Rodri­guez: Quimica de las Rubiaceas. III. antraquinonas de la Ploclama pendula Ait. An. Quim. 73, 869 (1977).Google Scholar
  59. 59.
    Gonzalez, A.G., R. Freire, J. Salazar, and E. Suarez: Quinonas naturales I. Antraquinonas de la Isoplexis sceptrum. An. Quirn. 68, 53 (1971)Google Scholar
  60. 60.
    Hassal, C.H., and B.A. Morgan: Tetracycline Studies. Part IV. Some Novel Cycli- sations through Benzophenone Carbanions, Including a New Synthesis of Anthraquinones. J. Chem. Soc., Perkin Trans. I 1973, 2853.Google Scholar
  61. 61.
    Heide L., and E. Leistner: 2-Methoxycarbonyl-3-prenyl-l,4-naphtoquinone, a Metabolite related to the Biosynthesis of Mollugin and Anthraquinones in Galium mollugo L. J. Chem. Soc. Chem. Commun. 1981, 334.Google Scholar
  62. 62.
    Heide L., and E. Leistner: Enzyme Activities in Extracts of Anthraquinone-containing Cells of Galium mol- lugo. Phytochemistry 22 (3), 659 (1983).Google Scholar
  63. 63.
    Henriksen, L.M., and H. Kjosen: Derivatization of Natural Anthraquinones by Reductive Silylation for Gas Chromatographic and Gas Chromatographic-Mass Spectrometric Analysis. J. Chromatogr. 258, 252 (1983)Google Scholar
  64. 64.
    Hirose, Y.: Synthesis of Damnacanthal, Damnacanthol, Norjuzunal and Norju- zunol, the Coloring Matters of Damnacanthus Spp. Chem. Pharm. Bull. (Tokyo) 8, 417 (1960).Google Scholar
  65. 65.
    Hirose, Y., J. Kusuda, S. Nonomura, and H. Fukui: Studies on the Synthesis of Munjistin. IV. Synthesis of Munjistin through l,4-Dihydroxy-2-methyl-anthraquinone. Chem. Parm. Bull. (Tokyo) 16 (7), 1377 (1968).Google Scholar
  66. 66.
    Hocquemiller, R., A. Fournet, A. Bouquet, J. Bruneton, and A. Cave: Note sur le Commitheca liebrechtsiana (Rubiacees). Plant. Med. Phytother. 10 (2), 110 (1976).Google Scholar
  67. 67.
    Höfle, G.: 13C-NMR-Spektroscopie chinoider Verbindungen - II. Substituierte 1,4- Naphthochinone und Anthrachinone. Tetrahedron 33, 1693 (1977).Google Scholar
  68. 68.
    Hui, W.H., S.K. Szeto, and C.W. Yee: an Examination of the Rubiaceae of Hong Kong. Phytochemistry 6, 1299 (1967).Google Scholar
  69. 69.
    Imre, S., and L. Ersoy: Die Struktur Digiferrol und Digiferruginol. Z. Naturforsch. 28c, 471 (1973).Google Scholar
  70. 70.
    Inoue, K., H. Nayeshiro, H. Inouye, and M.H. Zenk: Anthraquinones in Cell Suspension Cultures of Morinda citrifolia. Phytochemistry 20 (7), 1693 (1981).Google Scholar
  71. 71.
    Inoue, K., Y. Shiobara, H. Nayeshiro, H. Inouye, G. Wilson, and M.H. Zenk: Site of Prenylation in Anthraquinone Biosynthesis in Cell Cultures of Galium mollugo. J. Chem. Soc. Chem. Commun. 1979, 957.Google Scholar
  72. 72.
    Inoue, K., Y. Shiobara, H. Nayeshiro, H. Inouye, G. Wilson, and M.H. Zenk: Biosynthesis of Anthraquinones and Related Compounds in Galium mollugo Cell Suspension Cultures. Phytochemistry 23 (2), 307 (1984).Google Scholar
  73. 73.
    Inoue, K., S. Ueda, H. Nayeshiro, and H. Inouye: Quinones of Streptocarpus dunnii. Phytochemistry 22 (3), 737 (1984).Google Scholar
  74. 74.
    Itokawa, H., K. Mihara, and K. Takeya: Studies on a Novel Anthraquinone and its Glycosides Isolated from Rubia cordifolia and R. akane. Chem. Pharm. Bull. (Tokyo) 31 (7), 2353 (1983).Google Scholar
  75. 75.
    Kuiper, J., and R.P. Labadie: Polyploid Complexes Within the Genus Galium. Part I: Anthraquinones of Galium album. Planta Med. 42, 390 (1981).Google Scholar
  76. 76.
    Kuiper, J., and R.P. Labadie: Polyploid Complexes Within the Genus Galium. Part 2: Galiprenylin a New A-Ring Prenylated Anthraquinone of Galium album. Planta Med. 48, 24 (1983).Google Scholar
  77. 77.
    Lee, H.H.: Colouring Matters from Prismatomeris malayana. Phytochemistry 8, 501 (1969).Google Scholar
  78. 78.
    Leistner, E.: Mode of Incorporation of Precursors Into Alizarin (1,2-dihydroxy- 9,10-anthraquinone). Phytochemistry 12, 337 (1973).Google Scholar
  79. 79.
    Leistner, E.: Biosynthesis of Molindone and Alizarin in Intact Plants and Cell Suspension Cultures of Morinda citrifolia. Phytochemistry 12, 1669 (1973).Google Scholar
  80. 80.
    Leistner, E.: Isolation, Identification and Biosynthesis of Anthraquinones in Cell Suspension Cultures of Morinda citrifolia. Planta Med. Suppl. 1975, 214.Google Scholar
  81. 81.
    Leistner, E.: Biosynthesis of Plant Quinones. In: The Biochemistry of Plants, Vol. 7 (P.K. Stumpf, and E.E. Conn, eds.), p. 403. New York-London-Toronto-Sydney-San Francisco: Academic Press 1981.Google Scholar
  82. 82.
    Leistner, E., and M.H. Zenk: Incorporation of Shikimic Acid into 1,2-Dihydroxy- anthraquinone ( Alizarin) by Rubia tinctorum L. Tetrahedron Lett. 1967, 475.Google Scholar
  83. 83.
    Leistner, E., and M.H. Zenk: Ein neuer Biosyntheseweg fur Anthrachinone: Der Einbau von Shikimisàure in 1,2-dihydroxyanthrachinon (Alizarin) und 1,2,4-trihydroxyanthrachinon (Pur- purin) in Rubia tinctorum L. Z. Naturforsch. 22b, 865 (1967).Google Scholar
  84. 84.
    Leistner, E., and M.H. Zenk: Incorporation of 1,4-Naphtoquinone into 1,2-Dihydroxyanthraquinone ( Ali­zarin) in Rubia tinctorum L. Tetrahedron Lett. 1968, 861.Google Scholar
  85. 85.
    Leistner, E., and M.H. Zenk: Mevalonic Acid, a Precursor of the Substituted Benzenoid Ring of Rubiaceae Anthraquinones. Tetrahedron Lett. 1968 (11), 1395.Google Scholar
  86. 86.
    Leistner, E., and M.H. Zenk: Chrysophanol (l,8-Dihydroxy-3-methylanthraquinone) Biosynthesis in Higher Plants. J. Chem. Soc. Chem. Commun. 1969, 210.Google Scholar
  87. 87.
    Leistner, E., and M.H. Zenk: Nonsymmetric Incorporation of Carboxyl-14C-shikimic Acid into Alizarin (1,2- Dihydroxyanthraquinone) in Rubia tinctorum L. Tetrahedron Lett. 20, 1677 (1971).Google Scholar
  88. 88.
    Li, G.-W., Q.-C. Pan, X.-P. Yang, and B.-P. Ying: Isolation and Structural Determination of 8-Hydroxydamnacanthol ω-Ethyl Ether From the Root of Damnacanthus subspinosus Hand-Mazz. Acta Pharm. Sinica 19 (9), 681 (1984).Google Scholar
  89. 89.
    Li, G., Z. Zhao, R. Xu, B. Ying, and Q. Pan: Studies on the Chemical Constituents of the Root of Damnacanthus subspinosus Hand-Mazz. I. The Isolation and Structur­al Determination of Subspinosin and 8-Hydroxysubspinosin. Acta Pharm. Sinica 16 (8), 576 (1981).Google Scholar
  90. 90.
    Lutomski, J., and W. Raszeja: Jakósciowe i ilosciove wahania glikozydow antrachinonowych w marzannie barwierskiej (Rubia tinctorum L.) w zaleznosci od organurosliny i okresu zbioru. Qualitative and Quantitative Variations of Anthraquinone Glucosides in Madder Plant Parts in Relation to the Harvesting Time. Farm. Pol. 23, 613 (1967).Google Scholar
  91. 91.
    Mihai, G.G., P.G. Tarassoff, and N.J. Filipescu: Photohydroxylation of Anthra­quinone in Concentrated Sulphuric Acid. J. Chem. Soc., Perkin Trans. I 1975, 1374.Google Scholar
  92. 92.
    Mishra, G., and N. Gupta: Chemical Investigation of Roots of Morinda tinctoria Roxb. J. Inst. Chem, Calcutta 54 (1), 22 (1982).Google Scholar
  93. 93.
    Moorthy, N.K, and G.S. Reddy: Preliminary Phytochemical and Pharmacological Study of Morinda citrifolia L. Antiseptic 67 (3), 167 (1970).Google Scholar
  94. 94.
    Mulder-Krieger, Th, R. Verpoorte, A. de Water, M. van Gessel, B.C.J.A. van Oeveren, and A. Baerheim Svendsen: Identification of the Alkaloids and An­thraquinones in Cinchona ledgeriana Callus Cultures. Pianta Med. 46, 19 (1982).Google Scholar
  95. 95.
    Mulder-Krieger, Th, R. Verpoorte, M. van der Kreek, and A. Baerheim Svend­sen: Identification of Alkaloids and Anthraquinones in Cinchona pubescens Callus Cultures; the Effect of Plant Growth Regulators and Light on the Alkaloid Content. Pianta Med. 50 (1), 17 (1984)Google Scholar
  96. 96.
    Murti, V.V.S, T.R. Seshadri, and S. Sivakumaran: Anthraquinones of Rubia cordifolia L. Phytochemistry 11, 1524 (1972).Google Scholar
  97. 97.
    Murti, V.V.S, T.R. Seshadri, and S. Sivakumaran: A Study of Madder, the Roots of Rubia tinctorum L. Indian J. Chem. 8, 779 (1970).Google Scholar
  98. 98.
    Chemical Components of Rubia iberica C. Koch. Indian J. Chem. 10, 246 (1972).Google Scholar
  99. 99.
    Oshima, Y, and K. Takahashi: Separation Methods for Sennosides. J. Chromatogr. 258, 292 (1983).Google Scholar
  100. 100.
    Parham, W.E, C.K. Bradsher, and K.J. Edgar: o-Benzoylbenzoic Acids by the Reaction of Lithium 2-Lithiobenzoates With Acid Chlorides. A Contribution to the Chemistry of Alizarin and Podophyllotoxin. J. Org. Chem. 46, 1057 (1981).Google Scholar
  101. 101.
    Park, Y.H.: Part I. A Phytochemical Study of Morinda roioc L. (Family Rubiaceae). Part II. Alkaloids in Aged Potatoes, Solanum tuberosum L. (Family Solanaceae). Dissertation, Univ. of Mississippi 1977.Google Scholar
  102. 102.
    Purushothaman, K.K., S. Saradambal, and V. Narayanaswami: Isolation and Identification of Some Anthraquinone Derivatives from Oldenlandia umbellata Linn. Leather Sci. (Madras) 15, 49 (1968).Google Scholar
  103. 103.
    Quercia, V.: HPLC in the Determination of Some Anthraquinone Aglucones. Phar­macology 20 (Suppl. 1), 76 (1980).Google Scholar
  104. 104.
    Rai, P.P., T.D. Turner, and S.A. Matlin: HPLC of Naturally Occurring Anthraquinones. J. Chromatogr. 110 (2), 401 (1975).Google Scholar
  105. 105.
    Rao, R.V.K., J.V.L.N.S. Rao, and C.V. Sudhakar: Chemical Examination of Morinda angustifolia (Heartwood and Leaves). Indian J. Pharm. Sci. 40 (5), 169 (1978).Google Scholar
  106. 106.
    Rao, P.S., and G.C. Veera-Reddy: Isolation and Characterization of the Glycoside of Morindone From the Root Bark of Morinda tinctoria var. tomentosa. Indian J. Chem. 15B, 497 (1977).Google Scholar
  107. 107.
    Ratnagiriswaran, A.N., and K. Venkatachalam: Auricularine - a New Alkaloid from the Roots and Stems of Hedyotis auricularia. J. Indian Chem. Soc. 19, 389 (1942).Google Scholar
  108. 108.
    Roberge, G., and P. Brassard: Reactions of Ketene Acetáis: 12. A Regiospecific Synthesis of Anthragallols. Synthesis, 1981, 381.Google Scholar
  109. 109.
    Roberge, G., and P. Brassard: Reactions of Ketene Acetáis 13. Synthesis of Conti­guously Trihydroxylated Naphto- and Anthraquinones. J. Org. Chem. 46, 1461 (1981).Google Scholar
  110. 110.
    Roberts, J.L., P.S. Rutledge, and M.J. Trebilcock: Experiments Directed Toward the Synthesis of Anthracyclinones. I. Synthesis of 2-Formylmethoxyanthraquinones. Aust. J. Chem. 30, 1553 (1977).Google Scholar
  111. 111.
    Schilcher, H.: Pflanzliche Urologika. Dtsch. Apoth. Ztg. 124, 47, 2431 (1984).Google Scholar
  112. 112.
    Schulte, IL, H. El-Shagi, and M. H. Zenk: Optimization of 19 Rubiaceae Species in Cell Culture for the Production of Anthraquinones. Plant Cell Rep. 3 (2), 51 (1984).Google Scholar
  113. 113.
    Seelkopf, C.: Anthraquinones of Relbunium hypocarpium. Praep. Pharm. 6 (1), 13 (1970); Chemical Abstracts 73: 22149 q (1970).Google Scholar
  114. 114.
    Simonsen, J.L.: LXVI - Morindone. J. Chem. Soc. 113, 766 (1918).Google Scholar
  115. 115.
    Simonsen, J.L.: LIX - Note on the Constituents of Morinda citrifolia. J. Chem. Soc. 117, 561 (1920).Google Scholar
  116. 116.
    Stöckigt, J., U. Srocka, and M.H. Zenk: Structure and Biosynthesis of New Antraquinone from Streptocarpus dunnii. Phytochemistry 12, 2389 (1973).Google Scholar
  117. 117.
    Suzuki, H., T. Matsumoto, and Y. Mikami: Effects of Nutritional Factors on the Formation of Anthraquinones by Rubia cordi/olia Plant Cells in Suspension Culture. Agrie. Biol. Chem. 48 (3), 603 (1984).Google Scholar
  118. 118.
    Suzuki, H., T. Matsumoto, and Y. Obi: Anthraquinones in Cell Suspension Cultures of Rubia cor difolia var. mungista MIQ. Proc. 5th Int. Cong. Plant Tissue and Cell Culture 1982, ed. by A. Fujiwara, Tokyo, 1982, 285.Google Scholar
  119. 119.
    Tessier, A.M., P. Delaveau, and B. Champion: Nouvelles anthraquinones des racines de Rubia cordifolia. Planta Med. 41, 337 (1981).Google Scholar
  120. 120.
    Thomson, R.H.: The Naturally Occurring Quinones, 2nd ed. London and New York: Academic Press 1971.Google Scholar
  121. 121.
    Tiwari, R.D., and J. Singh: Structural Study of the Anthraquinone Glycoside from the Flowers of Morinda citrifolia. J. Indian Chem. Soc. 54, 429 (1977).Google Scholar
  122. 122.
    Tu, D., Z. Pang, and N. Bi: Studies on Chemical Constituents of Prismatomeris tetrandra (Roxb.) K. Schum. Yaoxue Xuebao 16 (8), 631 (1981); Chemical Abstracts 96: 65676 (1982).Google Scholar
  123. 123.
    Van Eijk, G.W., and H.J. Roeymans: Gas-Liquid Chromatography of Trimethylsilyl Ethers of Naturally Occurring Anthraquinones. J. Chromatogr. 124, 66 (1976).Google Scholar
  124. 124.
    Van Eijk, G.W., and H.J. Roeymans: Separation and Identification of Naturally Occurring Anthraquinones by Capillary Gas Chromatography and Gas Chromatography-Mass Spectrometry. J. Chromatogr. 295, 497 (1984).Google Scholar
  125. 125.
    Vermes, B., L. Farkas, and H. Wagner: Synthesis and Structure Proof of Morin- done 6-0-Primeveroside and 6-0-Rutinoside. Phytochemistry 19, 119 (1980).Google Scholar
  126. 126.
    Wilson, G., and P. Marron: Growth and Anthraquinone Biosynthesis by Galium mollugo L. Cells in Batch and Chemostat Culture. J. Exp. Botany 29, 837 (1978).Google Scholar
  127. 127.
    Wijnsma, R., and R. Verpoorte: unpublished results.Google Scholar
  128. 128.
    Wijnsma, R., R. Verpoorte, Th. Mulder-Krieger, and A. Baerheim Svendsen: Anthraquinones in Callus Cultures of Cinchona ledgeriana. Phytochemistry 23 (10), 2307 (1984).Google Scholar
  129. 129.
    Zenk, M.H., H. El-Shagi, and U. Schulte: Anthraquinone Production by Cell Suspension Cultures of Morinda citrifolia. Planta Med. Suppl. 1975, 79.Google Scholar
  130. 130.
    Zhuravlev, N.S.: Anthraquinones of Galium semiamictum. Khim. Prir. Soedin. 10 (5), 656 (1974).Google Scholar
  131. 131.
    Zhuravlev, N.S., and M.I. Borisov: Anthraquinones of Galium dasypodum. Khim. Prir. Soedin. 5 (2), 118 (1969).Google Scholar
  132. 132.
    Zhuravlev, N.S., and M.I. Borisov: Anthraquinones of Galium dasypodum. Khim. Prir. Soedin. 5 (3), 176 (1969).Google Scholar
  133. 133.
    Zhuravlev, N.S., and M.I. Borisov: Anthraquinones of Galium dasypodum. Farm. Zh. (Kiev) 25 (1), 76 (1970)Google Scholar
  134. 134.
    Weische, A., and E. Leistner: Cell Free Synthesis of o-Succinylbenzoic Acid from Isochorismic acid, the Key Reaction in Vitamin K2 (menaquinone) Biosynthesis. Tetrahedron Lett. 26 (12), 1487 (1985).Google Scholar
  135. 135.
    Leistner, E.: Occurrence and Biosynthesis of Quinones in Woody Plants. In: Biosyn­thesis and Biodégradation of Wood Components, p. 273. New York: Academic Press. 1985.Google Scholar
  136. 136.
    Kolkmann, R., and E. Leistner: Synthesis and Revised Structure of the o-Succinyl benzoic Acid Coenzyme A Ester, an Intermediate in Menaquinone Biosynthesis. Tetrahedron Lett. 26 (14), 1703 (1985)Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • R. Wijnsma
    • 1
  • R. Verpoorte
    • 1
  1. 1.Biotechnology Delft Leiden, Center for Biopharmaceutical Sciences, Division of PharmacognosyState University of Leiden, Gorlaeus LaboratoriesLeidenThe Netherlands

Personalised recommendations