Isocoumarins have been isolated from a wide variety of microbial, plant and insect sources and have been shown to possess an impressive array of biological activities. Since the review by Barry in 1963 (24), the number of known naturally occurring isocoumarins has increased dramatically. This increase is largely due to improvements in isolation procedures and structural analysis. Previous reviews have concentrated on fungal isocoumarins (293, 294) and mycotoxic isocoumarins (301). This review lists over 160 naturally occurring isocoumarins. Leading references on isolation, structure elucidation, biosynthesis and synthesis are given in the accompanying Tables.


Bacillus Pumilus Aspergillus Terreus Tetrahedron Letter Artemisia Dracunculus Aspergillus Ochraceus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abell, C., M.J. Garson, F.J. Leeper, and J. Stauton: Biosynthesis of the Fungal Metabolites Alternariol, Mellein, Rubrofusarin, and 6-Methylsalicylic Acid from Acetic Acid-2,2,2-d3. Chem. Commun. 1982, 1011.Google Scholar
  2. 2.
    Afzal, S.M., R. Pike, N.H. Rama, L.R. Smith, E.S. Turner, and W.B. Whalley: The Chemistry of Fungi - Part 74. Synthesis of (±)-5-Butyl-6,8-dihydroxy-3-pentyl- 3,4-dihydroisocoumarin. J. Chem. Soc. Perkin Trans. I 1978, 81.Google Scholar
  3. 3.
    Akita, T., K. Kawai, H. Shimonaka, Y. Nozawa, Y. Ito, S. Nishibe, and Y. Ogihara: Biochemical Studies on Pigments from the Dermatophyte Microsporum cookei II. Effects of Luteosporin on the Oxidative Phosphorylation of Rat Liver Mitochondria. Shinkin to Shinkinsho. 16,177 (1975); Chem. Abstr. 88, 69634 (1978).Google Scholar
  4. 4.
    Aldridge, D.C., J.F. Grove, and W.B. Turner: 4-Acetyl-6,8-dihydroxy-5-methyl-2- benzopyran-l-one, a Metabolite of Aspergillus viridinutans. J. Chem. Soc. (C) 1966, 126.Google Scholar
  5. 5.
    Aldridge, D.C., S. Galt, D. Giles, and W.B. Turner: Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. (C) 1971, 1623.Google Scholar
  6. 6.
    Aldridge, D.C., and W.B. Turner: Metabolites of Helminthosporium monoceras, Structure of Monocerin and Related Benzopyrans. J. Chem. Soc. (C) 1970, 2598.Google Scholar
  7. 7.
    Anderson, J.R., R.L. Edwards and A.J.S. Whalley: Metabolites of the Higher Fungi - Part 21. 3-Methyl-3,4-dihydroisocoumarins and Related Compounds from the Ascomycete Family Xylariaceae. J. Chem. Soc. Perkin Trans. I 1983, 2185.Google Scholar
  8. 8.
    Antosz, F.J., D.B. Nelson, D.L. Herald, Jr, and M. E. Munk: The Structure and Chemistry of Actinobolin. J. Amer. Chem. Soc. 92, 4933 (1970).Google Scholar
  9. 9.
    Antus, S., G. Snatzke, and I. Steinhe: Synthesis and Circular Dichroism of Steroids with an Isochromanone chromophore. Liebigs Ann. Chem. 1983, 2247.Google Scholar
  10. 10.
    Arai, Y., T. Kamikawa, and T. Kubota: A Facile Synthesis of Mellein. Bull. Chem. Soc. Japan 46, 3311 (1973).Google Scholar
  11. 11.
    Aray, K., T. Yoshimura, Y. Itatani, and Y. Yamamoto: Metabolic Products of Aspergillus terreus. VIII Astepyrone, a Novel Metabolite of the Strain IFO 4100. Chem. Pharm. Bull. (Japan) 31, 925 (1983).Google Scholar
  12. 12.
    Arakawa, H.: Absolute Configuration of Mellein. Bull. Chem. Soc. (Japan) 41, 2541 (1968).Google Scholar
  13. 13.
    Arakawa, H., N. Torimoto, and Y. Masui: The Absolute Configuration of (–)-β- Tetralol and Agrimolide. Tetrahedron Letters 1968, 4115.Google Scholar
  14. 14.
    Arakawa, H., N. Torimoto, and Y. Masui: Absolute Configuration of Optically Active Naturally Occuring Isocoumarins. II Determination of the Absolute Configuration of Agrimonolide and Mellein. Liebigs Ann. Chem. 728, 152 (1969).Google Scholar
  15. 15.
    Arazashvili, A.I., G.K. Nikonov, and E.P. Kemertelidze: The Structure of Del- phoside, a New Isocoumarin Glycoside. Khim. Prior. Soedin. 1974, 705.Google Scholar
  16. 16.
    Arahina, H., and J. Asano: Synthesis of Phyllodulcin Dimethyl Ether. Chem. Ber. 64, 1252 (1931).Google Scholar
  17. 17.
    Assante, G., R. Locci, L. Camarda, L. Merlini, and G. Nasini: Metabolites of Cercospora. Part 4. Screening of the Genus Cercospora of secondary Metabolites. Phytochem. 16, 243 (1977).Google Scholar
  18. 18.
    Aue, R., R. Mauli, and H. P. Sigg: Production of 6-Methoxymellein by Sporormia bipartes. Experientia 22, 575 (1966).Google Scholar
  19. 19.
    Baker, T.C., R. Nishida, and W. Roelofs: Close-range Attraction of Female Oriental Fruit Moths to Herbal Scent of Male Hairpencils. Science 214, 1359 (1981).Google Scholar
  20. 20.
    Ballio, A., S. Barcellona, and B. Santurbano: 5-Methylmellein, a New Natural Dihydroisocoumarin. Tetrahedron Letters 1966, 3723.Google Scholar
  21. 21.
    Barber, J., M.J. Garson, and J. Stauton: The Biosynthesis of Fungal Metabolites: Sclerin, a Plant Growth Hormone from Sclerotinia sclerotiorum. J. Chem. Soc. Perkin I 1981, 2584Google Scholar
  22. 22.
    Barber, J., and J. Stauton: Protium as a Tracer in Polyketide Biosynthesis: Incorporation of 13CH313CO2H into Citrinin Produced on a Medium Based on D2O. Chem. Commun. 1979, 1098.Google Scholar
  23. 23.
    Batu, G., and R. Stevenson: Synthesis of Natural Isocoumarins, Artemidin and 3-Propylisocoumarin. J. Organ. Chem. (USA) 45, 1532 (1980).Google Scholar
  24. 24.
    Barry, R.D.: Isocoumarins. Developments since 1950. Chem. Rev. 64, 229 (1964).Google Scholar
  25. 25.
    Belgaonkar, V.H., and R.N. Usgaonkar: Isocoumarins Part XIX. Synthesis of 8-Hydroy-3-methylisocoumarin and (±)-Mellein from m-Dinitrobenzene and a Convenient Synthesis of 3-Methoxyhomophthalic Acid. Indian J. Chem. 17B, 430 (1979).Google Scholar
  26. 26.
    Bellinger, G.C.A., W.E. Campbell, R.G.F. Giles, and J.D. Tobias: Formation of Some 3-Aryl-3,4-dihydroisocoumarins by Thermal Ring Closure of Stilbene-2- carboxylic Acids. J. Chem. Soc. Perkin Trans. I 1982, 2819.Google Scholar
  27. 27.
    Bernauer, K., and O.T. Schmidt: The Synthesis of Brevifolin Trimethyl Ether. Liebigs Ann. Chem. 591, 153 (1955).Google Scholar
  28. 28.
    Bhide, B.H., and D.I. Brahmbhatt: Isocoumarins Part 4. Synthesis of 5,6-dimeth- oxy-, 6,7-dimethoxy-, 7,8-dimethoxy-, 5,7-dimethoxy-, 5,8-dimethoxy-3-methyliso- coumarins and a New Synthesis of (±)-6-Methoxymellein. Proc. Indian Acad. Sci. 89, 525 (1980).Google Scholar
  29. 29.
    Bhide, B.H., and V.P. Gupta: Isocoumarins Part I. Synthesis of 5,6,7-Trimethoxy- isocoumarin and a Novel Synthesis of Kigelin. Indian J. Chem. 15B, 512 (1977).Google Scholar
  30. 30.
    Bhide, B.H., V.P. Gupta, N.S. Narasimhan, and R.S. Mali: Novel Synthesis of (±)-Kigelin. Chem. and Ind. 1975, 519.Google Scholar
  31. 31.
    Bhide, B.H., V.P. Gupta, and K.K. Sham: Synthesis of Artemidin. Chem. and Ind. 1980, 84.Google Scholar
  32. 32.
    Bhide, B.H., and K.K. Sham: Isocoumarins Part III. Synthesis of Methyl and Methy- lenedioxy-dihydroisocoumarins and a New Synthesis of (±)-5-Methylmellein. Indian J. Chem. 19B, 9 (1980).Google Scholar
  33. 33.
    Billek, G., and H. Kindl: Phenolic Content of the Saxifragaceae Family. Monatsh. Chem. 93, 85 (1962).Google Scholar
  34. 34.
    Billek, G., and H. Kindl: Biosynthesis of Plant Stilbenes Part II. Formation of Ring A of Hydrangenol. Monatsh. Chem. 93, 814 (1962).Google Scholar
  35. 35.
    Birch, A.J., J.H. Birkinshaw, P. Chaplen, L. Mo, A.H. Manchanda, A. Pelter, and M. Riano-Martin: The Structure of Canescin A and B. Austral. J. Chem. 22, 1933 (1969).Google Scholar
  36. 36.
    Birch, A.J., F. Gager, L. Mo, A. Pelter, and J.J. Wright: Studies in Relation to Biosynthesis Part XLI. Canescin. Austral. J. Chem. 22, 2429 (1969).Google Scholar
  37. 37.
    Birch, A. J., J.J. Wright, F. Gager, L. Mo, and A. Pelter: Biosynthesis of Canescin, a C1 Unit in a Chain. Tetrahedron Letters 1969, 1519.Google Scholar
  38. 38.
    Blackburn, G.M., D.E.U. Ekong, A.H. Neilson, and Lord Todd: Xylindein from Chlorociboria aeruginosa. Chimia 19, 208 (1965).Google Scholar
  39. 39.
    Blackburn, G.M., A.H. Neilson, and Lord Todd: The Structure of Xylindein. Proc. Chem. Soc. ( London ) 1962, 327.Google Scholar
  40. 40.
    Blank, F., A.S. Ng, and G. Just: Isolation and Tentative Structures of Vioxanthin and Viopurpurin, Two Coloured Metabolites of Trichophyton violaceum. Canad. J. Chem. 44, 2873 (1966).Google Scholar
  41. 41.
    Blum, M.S., T.H. Jones, D.F. Howard, and W.L. Overal: Biochemistry of Termite Defences: Coptotermes, Rhinotermes and Cornitermes Species. Comp. Biochem. Physiol. 71B, 731 (1982).Google Scholar
  42. 42.
    Bohlmann, F., and K. Dieter: Polyacetylene Compounds Part CIX. Synthesis of Naturally Occurring Aromatic Substituted Acetylene Compounds. Chem. Ber. 99, 2822 (1966).Google Scholar
  43. 43.
    Bohlmann, F., and C. Zdero: Polyacetylenic Compounds Part 184. Constituents of Anthemis fuscata. Chem. Ber. 103, 2856. (1970).Google Scholar
  44. 44.
    Bohlmann, F., and C. Zdero: New Constituents from Felicia Species. Phytochem. 15, 1318 (1976).Google Scholar
  45. 45.
    Boit, H.-G.: The Alkaloids of Leucoium vernum and Narcissus poeticus var, ornatus. Chem. Ber. 87, 681 (1954).Google Scholar
  46. 46.
    Boit, H.-G.: Alkaloids from Chidanthus fragram, Vallota purpurea, Nerine undulata, and Hippeastrum vittatum. Chem. Ber. 89, 1129 (1956).Google Scholar
  47. 47.
    Boit, H.-G., and H. Ehmke: Alkaloids from Nerine bowdenii, Crinumpowellii, Amaryllis belladonna, and Pancratium maritimus. Chem. Ber. 89, 2093 (1956).Google Scholar
  48. 48.
    Brand, J.M., H.M. Fales, E.A. Sokoloski, J.G. Macconnell, M.S. Blum, and R.M. Duffield: Identification of Mellein in the Mandibular Gland Secretion of Carpenter Ants. Life Science 13, 201 (1973).Google Scholar
  49. 49.
    Braz Filho, R., M.P.L. de Moraes, and O.R. Gottlieb: Pterocarpans from Swartzia laevicarpa. Phytochem. 19, 2003 (1980).Google Scholar
  50. 50.
    Braz Filho, R., C.A.S. Miranda, O.R. Gottlieb, and M.T. Magalhaes: Chemical Constituents of Tovomita brasiliensis. Acta Amazonica 12, 801 (1982); Chem. Abstr. 99, 155230 (1983).Google Scholar
  51. 51.
    Brian, P.W., H.G. Hemming, J.S. Moffat, and C.H. Unwin: Canescin, an Antibiotic Produced by Penicillium canescens. Trans. Brit. Mycol. Soc. 36, 243 (1953).Google Scholar
  52. 52.
    Brophy, J.J., G.W.K. Cavil, and W.D. Plant: Volatile Constituents of an Australian Ponerine Ant, Rhytidoponera metallica. Insect Biochem. 11, 307 (1981).Google Scholar
  53. 53.
    Camarda, L., L. Merlini, and G. Nasini: Metabolites of Cercospora, Taiwapyrone, and α-Pyrone of Unusual Structure from Cercospora taiwanensis. Phytochem. 15, 537 (1976).Google Scholar
  54. 54.
    Carpenter, R.C., S. Sotheeswaran, M.U.S. Sultanbawa, and S. Balusubramaniam: (–)-5-Methylmellein and Catechol Derivatives from Four Semicarpus species. Phytochem. 19, 445 (1980).Google Scholar
  55. 55.
    Carruthers, W.R., J.E. Hay, and L.J. Haynes: Isolation of Bergenin from Shorea leprosula. The Identity of Vakerin and Bergenin. Chem. and Ind. 1957, 76.Google Scholar
  56. 56.
    Carter, R.H., M.J. Garson, and J. Staunton: Biosynthesis of Citrinin: Incorporation Studies with Advanced Precursors. Chem. Commun. 1979, 1097.Google Scholar
  57. 57.
    Cattel, L., J.F. Grove, and D. Shaw: New Metabolic Products of Aspergillus flavus, III Biosynthesis of Asperentin. J. Chem. Soc. Perkin Trans I 1973, 2626.Google Scholar
  58. 58.
    Charubala, R., A. Guggisberg, M. Hesse, and H. Schmid: Natural Occurrence of 3-Phenylisocoumarin. Helv. Chim. Acta 57, 1096 (1974).Google Scholar
  59. 59.
    Chatterjea, J.N., B.K. Banerjee, C. Bhakta, and I. Mukerji: Synthesis of 0,0- Dimethylreticulol and (±)-5-Methylmellein. J. Indian Chem. Soc. 49, 797 (1972).Google Scholar
  60. 60.
    Chatterjea, J.N., C. Bhakta, and S.K. Mukherjee: Synthesis of cis- and trans- Artemidins. Indian J. Chem. 20B, 992 (1981).Google Scholar
  61. 61.
    Chatterjea, J.N., C. Bhakta, and S.K. Mukherjee: On the Synthesis of Some Chlorinated Isocoumarins J. Indian Chem. Soc. 58, 888 (1981).Google Scholar
  62. 62.
    Chatterjea, J.N., C. Bhakta, and N.D. Sinha: A Synthesis of O-Methylkigelin. J. Indian Chem. Soc. 52, 158 (1975).Google Scholar
  63. 63.
    Chatterjea, J.N., C. Bhakta, and T.R. Vakula: Synthesis of Some 3-Methyliso- coumarins. J. Indian Chem. Soc. 49, 1161 (1972).Google Scholar
  64. 64.
    Chatterjea, J.N., J. Mukrji, C. Bhakta, and B.K. Banerjee: Synthesis of the O,O-Dimethyl Ether of Reticulol and (±)-5-Methylmellein. Current Sci. (India) 38, 493 (1969).Google Scholar
  65. 65.
    Chatterjea, J.N., S.K. Mukherjee, and C. Bhakta: New Synthesis of trans-Artemidin, Artemidinal, and Tetrahydrocapillarin. Indian J. Chem. 20B, 359 (1981).Google Scholar
  66. 66.
    Chatterjea, J.N., S.K. Mukherjee, C. Bhakta, H.C. Jha, and F. Zilliken: A New Synthesis of Tetrahydrocapillarin, O-Methylglomellin, and Oospolactone. Chem. Ber. 113, 3927 (1980).Google Scholar
  67. 67.
    Chaudhury, G.R.: Chemical Examination of the Roots of Caesalpinia digyna. Identy of Vakerin with Bergenin. J. Sci. Indust. Res. (India) 16B, 511 (1957).Google Scholar
  68. 68.
    Chexal, K.K., CH. Tamm, K. Hirotsu, and J. Clardy: Gilmaniellin and Dechloro- gilmeniellin, Two Novel Dimeric Oxaphenalenones. Helv. Chim. Acta 62, 1785 (1979).Google Scholar
  69. 69.
    Chien, M.M., P.L. Schiff, Jr, D.J. Slathin, and J.E. Knapp: The Isolation of Citrinin, Dihydrocitrinin and Sclerin from Aspergillus carneus. Lloydia 40, 301 (1977).Google Scholar
  70. 70.
    Ciegler, A., D.J. Fennell, H.-J. Mintzlaff, and L. Leistner: Ochratoxin Synthesis by Penicillium Species. Naturwiss. 59, 365 (1972).Google Scholar
  71. 71.
    Claydon, N., J.F. Grove, and M. Hoshen: Phenolic Metabolic Products of Ceratocystis ulmi. Chem. and Ind. 1974, 344.Google Scholar
  72. 72.
    Claydon, N., J.F. Grove, and M. Hoshen: Phenolic Metabolites of Ceratocystis ulmi. Phytochem. 13, 2567 (1974).Google Scholar
  73. 73.
    Clutterbuck, P.W., A.E. Oxford, H. Raistrick, and G. Smith: The Metabolic Products of the Penicillium brevi–compactum Series. Biochem. J. 26, 1441 (1932).Google Scholar
  74. 74.
    Cole, R.J., J.H. Moore, N.D. Davis, J.W. Kirksey, and U.L. Diener: 4-Hydroxy- mellein, a New Metabolite of Aspergillus ochraceus. J. Agric. Food Chem. 19, 909 (1971).Google Scholar
  75. 75.
    Colombo, L., C. Gennari, D. Potenza, C. Scolastico, F. Aragozzini, and C. Merendi: Biosynthesis of Citrinin and Synthesis of its Biogenetic Precursors. J. Chem. Soc. Perkin Trans. I 1981, 2594.Google Scholar
  76. 76.
    Colombo, L., C. Gennari, C. Scolastico, F. Aragozzini, and C. Merendi: Biosynthesis of Ascochitine: Incorporation Studies with Advanced Precursors. Chem. Commun. 1979, 492.Google Scholar
  77. 77.
    Colombo, L., C. Gennari, C. Scolastico, F. Aragozzini, and C. Merendi: Biosynthesis of Aschochitine and Synthesis of its Biogenetic Precursors. J. Chem. Soc. Perkin Trans. I 1980, 2549.Google Scholar
  78. 78.
    Condon, P., J. Kuc., and H.N. Draudt: Production of 3-Methyl-6-methoxy-8- hydroxy-3,4-dihydroisocoumarin by Carrot Root Tissue. Phytopathology 53, 1244 (1963).Google Scholar
  79. 79.
    Coombe, R.G., J. J. Jacobs, and T. R. Watson: Metabolites of Some Alternaria species. The Structures of Altenusin and Dehydroaltenusin. Austral. J. Chem. 23, 2343 (970).Google Scholar
  80. 79a.
    Cordova, R., and B.B. Snider: A Synthetic Approach to Actinobolin. Total synthesis of (±)-Ramulosin. Tetrahedron Letters 25, 2945 (1984).Google Scholar
  81. 80.
    Coxon, D.T., R.F. Curtis, K.R. Price, and G. Levett: Abnormal Metabolites Produced by Daucus carota roots stored under Conditions of Stress. Phytochem. 12, 1881 (1973).Google Scholar
  82. 81.
    Curtis, R.F.: 6-Methoxymellein as a Phytoalexin. Experientia 24, 1187 (1968).Google Scholar
  83. 82.
    Curtis, R.F., P.C. Harries, and C.H. Hassal: The Synthesis of (2-Carboxy-3,5- dihydroxyphenyl)propan-2-one (C-Acetyl-o-orsellinic Acid). J. Chem. Soc. ( London ) 1964, 5382.Google Scholar
  84. 83.
    Curtis, R.F., P.C. Harries, C.H. Hassall, and J.D. Levi: The Relationship of Some Phenolic Metabolites of Mutants of Aspergillus terreus Thorn I.M.I. 16043. Biochem. J. 90, 43 (1964).Google Scholar
  85. 84.
    Curtis, R.F., C.H. Hassal, and M. Nazar: The Biosynthesis of Phenols Part XV. Some Metabolites of Penicillium citrinum related to Citrinin. J. Chem. Soc. (C) 1968, 85.Google Scholar
  86. 85.
    Davies, W.P., and B.G. Lewis: Antifungal Activity in Carrot Roots in Relation to Storage Infection by Mycocentrospora acerina (Hartig) Deighton. New Phytol. 89, 109 (1981).Google Scholar
  87. 86.
    De Alvarenga, M.A., Braz FO, O.R. Gottlieb, J.P. de P. Dias, A.F. Magalhaes, E.G. Magalhaes, G.C. de Magalhaes, M.T. Magalhaes, J.G.S. Maia, R. Marques, A.J. Marsaioli, A.A.L. Mesquita, A.A. de Moraes, A.B. de Oliveira, G.G. de Oliveira, G. Pedreira, S.A. Pereira, S.L.V. Pinho, A.E.G. Sant’ana, and C.C. Santos: Dihydroisocoumarins and Phalides from Wood Samples Infested by Fungi. Phytochem. 17, 511 (1978).Google Scholar
  88. 87.
    Dean, B.M., and J. Walker: A New Source of Bergenin. Chem. and Ind. 1958, 1696.Google Scholar
  89. 88.
    De Jesus, A.E., P.S. Steyn, R. Vleggar, and P.L. Wessels: Carbon-13 Nuclear Magnetic Resonance Assignments and Biosynthesis of the Mycotoxin Ochratoxin A.J. Chem. Soc. Perkin Trans. I 1980, 52.Google Scholar
  90. 89.
    Devys, M., J.F. Bousquet, A. Kollmann, and M. Barbier: Dihydroisocoumarins and Mycophenolic Acid from the Culture Medium of the Mushroom Phytopathogen, Septoria nodorum. Phytochem. 19, 2221 (1980).Google Scholar
  91. 90.
    Devys, M., J.F. Bousquet, M. Skajennikoff, and M. Barbier: Ochracin (Mellein), a Phytotoxin from the Culture Medium of Septoria nodorum. Phytopathol. Z. 81, 92 (1974).Google Scholar
  92. 91.
    Dick, Jr, W.E.: Structure-taste Correlations for Flavans and Flavones Conforma- tionally Equivalent to Phyllodulcin. J. Agric. Food Chem. 29, 305 (1981).Google Scholar
  93. 92.
    Dunn, A.W., R.A.W. Johnstone, T.J. King, L. Lessinger, and B. Sklarz: Struc­tures of C25 Compounds from Aspergillus variecolor. J. Chem. Soc. Perkin Trans. I 1979, 2113.Google Scholar
  94. 93.
    Durley, R.C., J. MacMillan, T.J. Simpson, A.T. Glen, and W.B. Turner: Xan- thomegnin, Viomellein, Rubrosulphin, and Viopurpurin, Pigments from Aspergillus sulphureus and Aspergillus melleus. J. Chem. Soc. Perkin Trans. I 1975, 163.Google Scholar
  95. 94.
    Eaton, M.A.W., and D.W. Hutchinson: Isocoumarins from Streptomyces mobaraensis. Tetrahedron Letters 1971, 1337.Google Scholar
  96. 95.
    Edwards, R.L., and N. Kale: The Structure of Xylindein. Tetrahedron 21, 2095 (1965).Google Scholar
  97. 96.
    Ellestad, G.A., F.M. Lovell, N.A. Perkinson, R.T. Hargreaves, and W.J. McGahren: New Zearalenone Related Macrolides and Isocoumarins from an Un­identified Fungus. J. Organ. Chem. (USA) 43, 2339 (1978).Google Scholar
  98. 97.
    Ellestad, G.A., P. Mirando, and M.P. Kunstmann: Structure of the Metabolite LL-S4908 from an Unidentified Aspergillus species. J. Organ. Chem. (USA) 38, 4204 (1973).Google Scholar
  99. 98.
    Farrell, I.W., T.G. Halsall, V. Thaller, A.P.W. Bradshaw, and J.R. Hanson: Structures of Some New Sesquiterpenoid Metabolites of Marasmius alliaceus. J. Chem. Soc. Perkin Trans. I 1981, 1790.Google Scholar
  100. 99.
    Ferreira, N.P., and M.J. Pitout: The Biogenesis of Ochratoxin A.J.S. Afr. Chem. Inst. 22, 1S (1969).Google Scholar
  101. 100.
    Findlay, J.A., J.M. Matsoukas, and J. Krepinsky: Synthesis of dl-Epiramulosin and the Configuration of Ramulosin. Cañad. J. Chem. 54, 3419 (1976).Google Scholar
  102. 101.
    Freeman, G.G.: Isolation of Alternariol and Alternariol Monomethyl Ether from Alternaría dauci (Khuhn) Groves and Sholko. Phytochem. 5, 719 (1966).Google Scholar
  103. 102.
    Fujise, S., M. Suzuki, Y. Watanabe, and S. Matsueda: The Structure of Bergenin. Bull. Chem. Soc. Japan 32, 97 (1959).Google Scholar
  104. 103.
    Furutani, Y., H. Naganawa, T. Takeuchi, and H. Umezawa: Isolation and Struc­ture of New Isocoumarins. Agrie. Biol. Chem. 41, 1179 (1977).Google Scholar
  105. 104.
    Furutani, Y., I. Tsuchiya, H. Naganawa, T. Takeuchi, and H. Umezawa: Biosynthetic Studies of Reticulol, an Isocoumarin, by Carbon-13 NMR Spectroscopy. Agrie. Biol. Chem. 41, 1581 (1977).Google Scholar
  106. 105.
    Gandhi, R.N.: Biosynthesis of Methyl Carbonate Unit in 4-O-Carbomethoxylamelli- colic Anhydride. Indian J. Chem. 15B, 482 (1977).Google Scholar
  107. 106.
    Garson, M.J., and J. Staunton: Biosynthesis of Sclerin: Incorporation Studies with Advanced Precursors. Chem. Commun. 1978, 158.Google Scholar
  108. 107.
    Gatenbeck, S., and S. Hermodsson: Enzymatic synthesis of the Aromatic Product Alternariol. Acta Chem. Scand. 19, 65 (1965).Google Scholar
  109. 108.
    Giles, D., and W.B. Turner: Chlorine-containing Metabolites of Periconia macrospinosa. J. Chem. Soc. (C) 1969, 2187.Google Scholar
  110. 109.
    Govindachari, T.R., P.C. Parthasarathy, H.K. Desai, and K.S. Ramachandran: Homalicine and (–)-Dihydrohomalicine, Two New Isocoumarin Glucosides from Homalium zeylanicum Benth. Indian J. Chem. 13, 537 (1975).Google Scholar
  111. 110.
    Govindachari, T.R., S.J. Patankar, and N. Viswanathan: Synthesis of dl-Kigelin. Indian J. Chem. 9, 507 (1971).Google Scholar
  112. 111.
    Isolation and Structure of Two New Dihydroisocoumarins from Kigelia pinnata. Phytochem. 10, 1603 (1971).Google Scholar
  113. 112.
    Greger, H.: Aromatic Acetylenes and Dehydrofalcurinone Derivatives from the Artemisia dracunculus group. Phytochem. 18, 1319 (1979).Google Scholar
  114. 113.
    Greger, H., and F. Bohlmann: 8-Hydroxycapillarin. A new Isocoumarin from Artemisia dracunculus. Phytochem. 18, 1244 (1979).Google Scholar
  115. 114.
    Greger, H., F. Bohlmann, and C. Zdero: New Isocoumarins from Artemisia dra­cunculus. Phytochem. 16, 795 (1977).Google Scholar
  116. 115.
    Gridenberg, J.: Peniolactol Obtained from Wood Attacked by the Fungus Penio- phora sanguínea. Acta Chem. Scand. 28B, 505 (1974).Google Scholar
  117. 116.
    Grimshaw, J., and R.D. Ha worth: The Position of the Carboxyl Group in Isogal- loflavin and a Synthesis of Trimethylbrevifolin. J. Chem. Soc. (London) 1956, 418.Google Scholar
  118. 117.
    Grove, J.F.: Asperentin, its Methyl Ethers and 5’-Hydroxyasperentin, New Metabolic Products of Aspergillus flavus. J. Chem. Soc. Perkin Trans. I 1972, 2400.Google Scholar
  119. 118.
    Grove, J.F.: 4’-Hydroxyasperentin and 5’-Hydroxyasperentin 8-Methyl Ether, New Metabolic Products of Aspergillus flavus. J. Chem. Soc. Perkin Trans. I 1973, 2704.Google Scholar
  120. 119.
    Grove, J.F., and M. Pople: The Synthesis and Reactions of Some Derivatives of C-Acetylorsellinic Acid. J. Chem. Soc. Perkin Trans. I 1979, 337.Google Scholar
  121. 120.
    Grove, J.F., and M. Pople: Metabolic Products of Fusarium larvarum Fuckel. The Fusarentins and the Abso­lute Configuration of Monocerin. J. Chem. Soc. Perkin I 1979, 2048.Google Scholar
  122. 121.
    Grove, J.F., and M. Pople: The Insecticidal Activity of Some Fungal Dihydroisocoumarins. Mycopathologia 76, 65 (1981).Google Scholar
  123. 122.
    Guyut, M., and D. Molho: New Method of Homophthalic Acid and Homophthalimide Synthesis by an Aryne Route. Application to the Synthesis of Mellein. Tetrahedron Letters 1973, 3433.Google Scholar
  124. 123.
    Hardegger, E., W. Rieder, A. Walser, and F. Kugler: Structure of the Diaporthins and the Synthesis of Diaporthic Acid. Helv. Chim. Acta 49, 1283 (1966).Google Scholar
  125. 124.
    Harding, V.K., and J.B. Heale: Isolation and Identification of the Antifungal Compounds Accumulation in the Induced Resistance Response to Carrot Root Slices of Botrytis cinerea. Physiol. Plant. Pathol. 17, 277 (1980).Google Scholar
  126. 125.
    Harwig, J., and Y.-K. Chen: Some Conditions Favouring Production of Ochratoxin A and Citrinin by Penicillium viridicatum in Wheat and Barley. Canad. J. Plant Sci. 54, 17 (1974).Google Scholar
  127. 126.
    Harwood, L.M.: Trifluoroacetic Acid-Catalyzed Claisen Rearrangement of 5-Ally- loxy-2-hydroxybenzoic Acid and Esters: An Efficient Synthesis of Mellein. Chem. Commun. 1982, 1120.Google Scholar
  128. 127.
    Harwood, L.M.: An Investigation into the Regioselectivity of the Acid Catalyzed Claisen Rearrangement of Methyl 4- and 5-Allyloxy-2-hydroxybenzoate and derivatives. Chem. Commun. 1983, 530.Google Scholar
  129. 128.
    Hassal, C.H., and D.W. Jones: The Biosynthesis of Phenols Part IV. A New Metabolic Product of Aspergillus terreus Thom. J. Chem. Soc. ( London ) 1962, 4189.Google Scholar
  130. 129.
    Hattori, S.: Corylopsin, a crystalline Constituent of the Bark of Corylopsis spicata. Acta Phytochim. (Tokyo) 4, 327 (1929); Chem. Abstr. 24, 1862 (1930).Google Scholar
  131. 130.
    Hawksworth, W.A., P.W. Jeffs, B.K. Tidd, and T.P. Toube: The Aromatic Oxy­genation Patterns and Stereochemistry of Some Trioxyaryl Alkaloids of the Hemiacetal and Lactone Series. J. Chem. Soc. ( London ) 1965, 1991.Google Scholar
  132. 131.
    Haworth, R.D., and J. Grimshaw: Synthesis of Trimethylbrevifolin. Chem. and Ind. 1955, 199.Google Scholar
  133. 132.
    Hay, J.E., and L.J. Haynes: Bergenin, a C-Glycopyranosyl Derivative of 4-O-Meth- ylgallic Acid. J. Chem. Soc. ( London ) 1958, 2231.Google Scholar
  134. 133.
    Henderson, G.B., and R.A. Hill: Synthesis of Chlorinated Isocoumarin Deriva­tives. J. Chem. Soc. Perkin Trans. I 1982, 1111.Google Scholar
  135. 134.
    Henderson, G.B., and R.A. Hill: The Biosynthesis of Chlorine-containing Metabolites of Periconia macrospinosa. J. Chem. Soc. Perkin Trans. I 1982, 3037.Google Scholar
  136. 135.
    Hemingway, R.W., G.W. McGraw, and S.J. Barras: Polyphenols in Ceratocystis minor infected Pinus taeda: Fungal Metabolites, Phloem and Xylem Phenols. J. Agric. Food Chem. 25, 717 (1977).Google Scholar
  137. 136.
    Heller, K., and R. Roschenthaler: Inhibition of Protein Synthesis in Streptococcus faecalis by Ochratoxin A. Canad. J. Microbiol. 24, 466 (1978).Google Scholar
  138. 137.
    Hill, R.A., R.H. Carter, and J. Staunton: Biosynthesis of Terrein, a Metabolite of Aspergillus terreus Thom. Chem. Commun. 1975, 380.Google Scholar
  139. 138.
    Hill, R.A., R.H. Carter, and J. Staunton: Biosynthesis of Fungal Metabolites. Terrein, a Metabolite of Aspergillus terreus Thom. J. Chem. Soc. Perkin Trans. I 1981, 2570.Google Scholar
  140. 139.
    Hofle, G., and K. Roser: Structure of Xanthomegnin and Related Pigments: Reinvestigation by 13C Nuclear Magnetic Resonance Spectroscopy. Chem. Commun. 1978, 611.Google Scholar
  141. 140.
    Holker, J.S.E. and T.J. Simpson: Studies on Fungal Metabolites Part 2. Carbon-13 Nuclear Magnetic Resonance Studies on Pentaketide Metabolites of Aspergillus melleus: 3-(l’,2’-Epoxypropyl)-5,6-dihydro-5-hydroxy-6-methylpyran-2-one and Mellein. J. Chem. Soc. Perkin Trans. I 1981, 1397.Google Scholar
  142. 141.
    Holker, J.S.E., and K. Young: Biosynthesis of Metabolites of Periconia macrospin­osa from [1-13C]-, [2-13C]- and [l,2-13C2]acetate. Chem. Commun. 1975, 525.Google Scholar
  143. 142.
    Homma, K.: Chemical Constituents of Mallotus japonicus J. Mueller I. J. Agric. Chem. Soc. Japan 15, 394 (1939); Chem. Abstr. 33, 6303 (1939).Google Scholar
  144. 143.
    Homma, K., K. Fukuyama, Y. Katsube, Y. Kimura, and T. Hamasaki: Structure and Absolute Configuration of an Atrovenetin-like Metabolite from Aspergillus silvaticus. Agric. Biol. Chem. 44, 1333 (1980).Google Scholar
  145. 144.
    Houlchein, W.J., and J. Nadelson: British Patent 1374337 (1974); Chem. Abstr. 83, 43196 (1975).Google Scholar
  146. 145.
    Hsu, H.-Y., and M.-C. Liau: Constituents of Astilbe macroflora. J. Taiwan Pharm. Assoc. 11, 2 (1959); Chem. Abstr. 54, 13556 (1960).Google Scholar
  147. 146.
    Hung, S.-H., and J.-H. Chu: The Constituents of the Chinese Drug, Kai-Ho-Chien, Ardisia hortorum II. Identification of Ardisic Acid B as Bergenin. Hua Hsueh Hsueh Pao 23, 255 (1957); Chem. Abstr. 52, 15827 (1958).Google Scholar
  148. 147.
    Hutchinson, R.D., and P.S. Steyn: The Isolation and Structure of 4-Hydroxyochra- toxin A and 7-Carboxy-3,4-dihydro-8-hydroxy-3-methylisocoumarin from Penicillium viridicatum. Tetrahedron Letters 1971, 4033.Google Scholar
  149. 148.
    Ibrahim, R.K., and G.H.N. Towers: Studies in Hydrangenol in Hydrangea macro- phylla Part II. Biosynthesis of Hydrangenol from 14C-Labelled Compounds. Canad. J. Biochem. Physiol. 40, 449 (1962).Google Scholar
  150. 149.
    Itoh, J., S. Omoto, N. Nishzawa, Y. Kodama, and S. Inoye: Chemical Structures of Amicoumacins Produced by Bacillus pumilus. Agric. Biol. Chem. 46, 2659 (1982).Google Scholar
  151. 150.
    Itoh, J., T. Shomura, S. Omoto, S. Miyato, Y. Yuda, U. Shibata, and S. Inouye: Isolation, Physio-chemical Properties and Biological Activities of Amicoumacins Produced by Bacillus pumilus. Agric. Biol. Chem. 46, 1255 (1982).Google Scholar
  152. 151.
    Iwasaki, S., H. Muro, K. Sasaki, S. Nozoe, S. Okuda, and Z. Sato: Isolation of Phytotoxic Substances Produced by Pyricularia oryzae. Tetrahedron Letters 1973, 3537.Google Scholar
  153. 152.
    Jarrah, M.Y., and V. Thaller: Isolation and Partial Synthesis of 3-Methoxycar- bonyl-7-formyl-l-benzoxepin-5(2H)-one, the Ester of a Metabolite from Shake Cultures of the Fungus Marasmiellus ramealis (Bull, ex Fr.) Singer. J.Chem. Soc. Perkin Trans. I 1983, 1719.Google Scholar
  154. 153.
    Joshi, B.S., and V.N. Kamat: Identity of Peltophorin with Bergenin. Naturwiss. 56, 89 (1969).Google Scholar
  155. 154.
    Joshi, K.C., P. Singh, and S. Taneja: Crystalline Components of the Stem Heart- wood of Randia dumatorium and the Roots Heartwood of Kigelia pinnata. J. Indian Chem. Soc. 58, 825 (1981).Google Scholar
  156. 155.
    Jui, J., and S. Mizuba: Metabolic Products from Spiricaria divaricata. J. Antibiotics 27, 760 (1974).Google Scholar
  157. 156.
    Just, G., W.C. Day, and F. Blank: The Structure of Xanthomegnin. Canad. J. Chem. 41, 74 (1963).Google Scholar
  158. 157.
    Kaiser, P., and J. Schnehenburger: Acyl Derivatives of Methylene Active Dicar- bonyl Compounds Part 12. 3-Substituted Isocoumarins from 4-Acylhomphthalic An­hydrides. Z. Naturforsch. 25B, 1190 (1970).Google Scholar
  159. 158.
    Kalidhar, S.B., M.R. Parthasathy, and P. Sharma: Norbergenin, a New C-Glycoside from Woodfordia fruticosa Kurz. Indian J. Chem. 20, 720 (1981).Google Scholar
  160. 159.
    Kameda, K., H. Aoki, M. Namiki, and J.C. Overeem: An Alternative Structure for Botrallin, A Metabolite of Botrytis allii. Tetrahedron Letters 1974, 103.Google Scholar
  161. 160.
    Kameda, K., H. Aoki, H. Tanaka, and M. Namiki: Metabolites of Alternaria kikuchiana, a Phytopathogenic Fungus of Japanese Pear. Agric. Biol. Chem. 37, 2137 (1973).Google Scholar
  162. 161.
    Kaneko, H., T. Fujimori, H. Matsushita, and M. Nogcuhi: Chemical Constituents in Amacha Extract. Nippon Nogei Kagaku Zasshi 47, 605; Chem. Abstr. 80, 93153 (1974).Google Scholar
  163. 162.
    Kaneko, Y, K. Oshita, H. Takamatsu, Y. Asao, and T. Yokotsuka: Compounds Produced by Moulds Part VII. Isolation of Isocoumarin Compounds. Agrie. Biol. Chem. 34, 1296 (1970).Google Scholar
  164. 163.
    Kazlauskas, R., J. Mulder, P.T. Murphy, and R.J. Wells: New Metabolites from the Brown Alga Caulocystis cephalornithos. Austral. J. Chem. 33, 2097 (1980).Google Scholar
  165. 164.
    Kiagawa, H., W.I. Taylor, S. Uyeo, and H. Yajima: The Constitution of Homoly- corine and Lycorenine. J. Chem. Soc. ( London ) 1955, 1066.Google Scholar
  166. 165.
    Kitagawa, T., S. Uyeo, and N. Yokoyama: The Stereochemistry of Lycorenine, Homolycorine, Pluviine, and Their Hydrogenation Products. J. Chem. Soc. ( London ) 1959, 3741.Google Scholar
  167. 166.
    Kolle, F., and K.E. Gloppe: Alkaloids of Narcissus poeticus L. Pharm. Zentralhalle 75, 237 (1934).Google Scholar
  168. 167.
    Kopanski, L., M. Klaar, and W. Steglich: Leprocybin, the Fluorescent Principle of Cortinarius coteneus and Related Leprocybes (Agaricales). Liebigs Ann. Chem. 1982, 1280.Google Scholar
  169. 168.
    Krivoshchekova, O.E., N.P. Mishchenko, L.S. Stepanenko, and O.B. Maksimov: Aromatic Metabolites of Parmeliaceae Lichens. Part I Depsidones. Khim. Prior. Soedin 19, 13 (1983).Google Scholar
  170. 169.
    Kubota, T., T. Tokoroyama, T. Kamikawa, and Y. Satomura: Structures of Sclerin and Sclerolide, Metabolites of Sclerotinia libertiana. Tetrahedron Letters 1966, 5205.Google Scholar
  171. 170.
    Kuhr, I., J. Fuska, P. Sedmera, M. Podojil, J. Vokoun, and Z. Vanek: Antitumour Antibiotic Produced by Penicillium stipitatum. Its Identity with Duclauxin. J. Antibiotics 26, 535 (1973).Google Scholar
  172. 171.
    Le Blanc, G.D., and L.M. Babineau: 2,5-Dimethoxybenzoquinone, 3,4-Dimethyl-8- hydroxyisocoumarin and Eburicoic Acid Isolated from Lenzites thermophila. Canad. J. Microbiol. 18, 261 (1972).Google Scholar
  173. 172.
    Lin, J.-Y., S. Yoshida, and N. Takahashi: Metabolites Produced by Streptomyes mobaraensis. Agrie. Biol. Chem. 35, 363 (1971).Google Scholar
  174. 173.
    Lin, J.-Y., S. Yoshida, and N. Takahashi: Synthesis of Some Isocoumarin Derivatives. Agrie. Biol. Chem. 36, 506 (1972).Google Scholar
  175. 174.
    Lillehoj, E.B., and M.S. Milburn: Viriditoxin Production by Aspergillus viridinutans and Related Species. Appl. Microbiol. 26, 202 (1973).Google Scholar
  176. 175.
    Lloyd, H.A., S.L. Evans, A.H. Khan, W.R. Tschinkel, and M.S. Blum: 8-Hyd- roxyisocoumarin and 3,4-Dihydro-8-hydroxyisocoumarin in the Defensive Secretion of the Tenbrionid Beetle Apsena pubescens. Insect Biochem. 8, 333 (1978).Google Scholar
  177. 176.
    McCorkindale, N.J.: Personal Communication.Google Scholar
  178. 176a.
    McCorkindale, N.J.: Lamellicolic Anhydride, 4-0-Carbomethoxylamellicolic anhydride and Mono- methyl 3-Chlorlamellicolate. Metabolites of Verticillium lamellicola. Tetrahedron 39, 2283 (1983).Google Scholar
  179. 177.
    McGahren, W.J., and L.A. Mitscher: Dihydroisocoumarins from a Sporormia Fungus. J. Organ. Chem. (USA) 33, 1577 (1968).Google Scholar
  180. 178.
    McGraw, G.W., and R.W. Hemmingway: 6,8-Dihydroxy-3-methylisocoumarin and Other Phenolic Metabolites of Ceratocystis minor. Phytochem. 16, 1315 (1977).Google Scholar
  181. 179.
    McPhail, A.T., R.W. Miller, D. Harvan, and R.W. Pero: X-Ray Crystal Structure Revision for the Fungal Metabolite (±)-Altenuene. Chem. Commun. 1973, 682.Google Scholar
  182. 180.
    Maebayashi, Y., K. Miyaki, and M. Yamazaki: Application of 13C-NMR to Biosynthetic Investigations. I. Biosynthesis of Ochratoxin A. Chem. Pharm. Bull. (Japan) 20, 2172 (1972).Google Scholar
  183. 181.
    Mallabaev, A., I.M. Saibaeva, and G.P. Sidyakin: Structure of the Isocoumarin Artemidin. Khim. Prior. Spedin 6, 531 (1970).Google Scholar
  184. 182.
    Mallabaev, A., I.M. Saibaeva, and G.P. Sidyakin: Artemidinal, an Isocoumarin from Artemisia dracunculus. Khim. Prior. Soedin 7, 257 (1971).Google Scholar
  185. 183.
    Malabaev, A., and G.P. Sidyakin: Artemidiol, a New Isocoumarin from Artemisia dracunculus. Khim. Prior. Soedin 1974, 720.Google Scholar
  186. 184.
    Malabaev, A., and G.P. Sidyakin: Artemidinol, a New Isocoumarin from Artemisia dracunculus. Khim. Prior. Soedin 1976, 811.Google Scholar
  187. 185.
    Mallabaev, A., M.R. Yagudaev, I.M. Saitbaeva, and G.P. Sidyakin: Isocoumarin Artemidin from Artemisia dracunculus. Khim. Prior. Soedin 6, 467 (1970).Google Scholar
  188. 186.
    Matsui, M., K. Mori, and S. Arasaki: Synthesis of Isocoumarins I (±)-Mellein. Agric. Biol. Chem. 28, 896 (1964).Google Scholar
  189. 187.
    Matsui, M., K. Mori, and Y. Ozawa: Synthesis of Isocoumarins II Oospolactone. Agric. Biol. Chem. 30, 193 (1966).Google Scholar
  190. 188.
    Mir, I., S. Ahmed, and A. Hamid: Chemical Investigation on Lenzites trabea. Pak. J. Sci. Inf. Res. 14, 479 (1971).Google Scholar
  191. 189.
    Mitscher, L.A., W.W. Andres, and W. McCrae: Reticulol, a New Metabolic Isocoumarin. Experientia 20, 258 (1964).Google Scholar
  192. 190.
    Mizuba, S.S., C.F.J. Hsu, and J. Jiu: A Third Metabolite from Spicaria divaricata NRRL 5771. J. Antibiotics 30, 670 (1977).Google Scholar
  193. 191.
    Money, T., F.W. Comer, G.R.B. Webster, I.G. Wright, and A.I. Scott: Pyrone Studies. I. Biogenetic Type Synthesis of Phenolic Compounds. Tetrahedron 23, 3435 (1967).Google Scholar
  194. 192.
    Money, T., I.H. Qureshi, G.B. Webster, and A.I. Scott: Chemistry of Polypyrones. A Model for Acetogenin Biosynthesis. J. Amer. Chem. Soc. 87, 3004 (1965).Google Scholar
  195. 193.
    Moore, J.H., N.D. Davis, and U.L. Diener: Mellein and 4-Hydroxymellein Produc­tion by Aspergillus ochraceus. Appl. Microbiol. 23, 1067 (1972).Google Scholar
  196. 194.
    Mueller, H.: Studies on the Formation of 3-Methyl-6-methoxy-8-hydroxy-3,4-di- hydroisocoumarin during Carrot Storage. Phytopathol. Z. 93, 241 (1978).Google Scholar
  197. 195.
    Munakata, T.: Bactobolins, Antitumour Antibiotics from Pseudomonas. Part 2. Synthesis and Microbial Activity of Related Compounds. Yakugaku Zasshi 101, 138 (1981); Chem. Abstr. 95, 42826 (1981).Google Scholar
  198. 196.
    Munakata, T., and T. Okumoto: Some Structure-activity Relationships for Bactobolin Analogs in the Treatment of Mouse Leukemia P 388. Chem. Parm. Bull. (Japan) 29, 891 (1981).Google Scholar
  199. 197.
    Munk, M.E., D.B. Nelson, F.J. Antosz, D.L. Herald, Jr, and T.H. Haskell: The Structure of Actinobolin. J. Amer. Chem. Soc. 90, 1087 (1968).Google Scholar
  200. 198.
    Nadkarni, D.R., and R.N. Usgaonkar: Convenient Syntheses of Naturally Occurring 3-Propylisocoumarin and 3-Propyl-l(2H)-isoquinoline and Related Compounds. Indian J. Chem. 16B, 320 (1978).Google Scholar
  201. 199.
    Nair, M.S.R., and S.T. Carey: Metabolites of Pyrenomycetes: XII. Polyketides from Hypocreales. Mycologia 71, 1089 (1979).Google Scholar
  202. 200.
    Nakajima, S., K. Kawai, and S. Yamada: The Identification of Lenzitin as Oosponol. Pytochem. 15, 327 (1976).Google Scholar
  203. 201.
    Nakajima, S., K. Kawai, S. Yamada, and Y. Sawai: Isolation of Oospolactone as the Antifungal Principle of Gloephyllum sepiarum. Agric. Biol. Chem. 40, 811 (1976).Google Scholar
  204. 202.
    Naoi, Y., S. Higuchi, H. Ito, T. Nakano, K. Sakai, T. Matsui, S. Wagatsuma, A. Nishi, and S. Sano: Total Synthesis of dl-Phyllodulcin. Org Prep. Proceed. Int. 7, 129 (1975).Google Scholar
  205. 203.
    Naoi, Y., S. Higuchi, T. Nakano, K. Sakai, A. Nishi, and S. Sano: New Synthesis of Hydrangenol. Synth. Commun. 5, 387 (1975).Google Scholar
  206. 204.
    Narasimhachari, N., and L.C. Vining: Studies on the Pigments of Penicillium herquei. Canad. J. Chem. 41, 641 (1963).Google Scholar
  207. 205.
    Narasimhan, N.S., and C.P. Bapat: A New Synthesis of Kigelin. Conversion of Elemicin into Kigelin. J. Chem. Soc. Perkin Trans. I 1982, 2099.Google Scholar
  208. 206.
    Narasimhan, N.S., and B.H. Bhide: A Novel Synthesis of (±)-Mellein. Chem. Commun. 1970, 1552.Google Scholar
  209. 207.
    Narasimhan, N.S., and B.H. Bhide: Synthetic Applications of Lithiation Reactions. V. Novel Synthesis of Methoxy- isocoumarin. Synthesis of ( + )-Mellein. Tetrahedron 27, 6171 (1971).Google Scholar
  210. 208.
    Narasimhan, N.S., R.S. Mali, and B.K. Kulkarnt: Synthesis of (±)-3,4-Dihydro- 3-phenylisocoumarin and Aglycone of (±)-Dihydrohomalicine. Indian J. Chem. 22B, 850 (1983).Google Scholar
  211. 209.
    Nelson, D.B., and M.E. Munk: Alanylactinobone. A Basic Hydrolisis Product of the Antibiotic Actinobolin. J. Organ. Chem. (USA) 35, 3832 (1970).Google Scholar
  212. 209a.
    Ng, A.S., G. Just, and F. Blank: Metabolites of Pathogenic Fungi. VII. On the Structure and Stereochemistry of Xanthomegnin, Vioxanthin and Viopurpurin, Pigments from Trichophyton violaceus. Canad. J. Chem. 47, 1223 (1969).Google Scholar
  213. 210.
    Niazi, H.M.: Isolation and Characterization of the Metabolites of Aspergillus cervinus Massee (Monoliaceae) and Isolation and Characterization of Certain Constituents of Piper guineese Schum and Thom. (Piperaceae). Univ. of Pittsburgh PhD. Thesis; Diss. Abstr. Int. 37B, 1644 (1976).Google Scholar
  214. 211.
    Nishida, R., T.C. Baker, and W.L. Roelofs: Hairpencil Pheromone Components of Male Oriental Fruit Moths, Grapholitha molesta. J. Chem. Ecol. 8, 947 (1982).Google Scholar
  215. 212.
    Nishikawa, W.: A Metabolic Product of Aspergillus melleus Yukawa. J. Agric. Chem. Soc. Japan 9, 772 (1933); Chem. Abstr. 28, 2751 (1934).Google Scholar
  216. 213.
    Nitta, K., J. Imai, I. Yamamoto, and Y. Yamamoto: Determination of the Structure of Oosponol by Synthesis. Agric. Biol. Chem. 27, 817 (1963).Google Scholar
  217. 214.
    Nitta, K., Y. Yamamoto, T. Inoue, and T. Hyado: Biogenesis of Oospolactone and Oosponol. Chem. Parm. Bull. (Japan) 14, 363 (1966).Google Scholar
  218. 215.
    Nitta, K., Y. Yamamoto, I. Yamamoto, and S. Yamatodani: Chemical Structure of Oospoglycol and its Formation from Ooponol by Fungus. Agric. Biol. Chem. 27, 822 (1963).Google Scholar
  219. 216.
    Northolt, M.D., H.P. Van Egmond, and W.E. Paulsch: Ochratoxin A Production by Some Fungal Species in Relation to Water Activity and Temperature. J. Food Prot. 42, 485 (1979).Google Scholar
  220. 217.
    Nozawa, K., S. Nakajima, M. Yamada, and K.-I. Kawai.: Synthesis of Two Micro­bial Metabolites, 5-Chloro-3,4-dihydro-8-hydroxy-6-methoxy-3-methyl-isocoumarin and 8-Hydroxy-6-methoxy-3-methylisocoumarin. Chem. Pharm. Bull. (Japan) 28, 1622 (1980).Google Scholar
  221. 218.
    Nozawa, K., M. Yamada, Y. Tsuda, K. Kawai, and S. Nakajima: Synthesis and Antifungal Activity of 3-Substituted Isocoumarins. Chem. Pharm. Bull. (Japan) 29, 2491 (1981).Google Scholar
  222. 219.
    Nozawa, K., M. Yamada, Y. Tsuda, K. Kawai, and S. Nakajima: Antifungal Activity of Oosponol, Oospolactone, Phylloducin, Hydrangenol and Some Related Compounds. Chem. Pharm. Bull. (Japan) 29, 2689 (1981).Google Scholar
  223. 220.
    Nukina, M., T. Sassa, and S. Marumo: Chemical Studies on Aversion-antagonism among Different Strains of the Same Fungal Species. Aversion Factor and New Metabolites of Cochliobolus lunata. Tennen. Yuki Kagobutsu Toronkai Koen. Yosh- ishu 1978, 141; Chem. Abstr. 90, 99737 (1979).Google Scholar
  224. 221.
    Ogihara, Y., Y. Iitaka, and S. Shibata: The X-Ray Study of Monobromduclauxin. Tetrahedron Letters 1965, 1289.Google Scholar
  225. 222.
    Ogihara, Y., O. Tanaka, and S. Shibata: The Reactions of Duclauxin with Ammo­nia and Primary Amines. The Structures of Desacetylduclauxin, Neoduclauxin, Xen- oclauxin and Cryptoclauxin. Tetrahedron Letters 1966, 2867.Google Scholar
  226. 223.
    Okazaki, H., T. Kishi, T. Beppu, and K. Arima: A New Antibiotic, Baciphelacin. J. Antibiotics 28, 717 (1975).Google Scholar
  227. 224.
    Overeem, J.C., and A von Dijkman: Botrallin, a Novel Quinone Produced by Botrytis allii. Rec. trav. chim. Pays-Bas 87, 940 (1968).Google Scholar
  228. 225.
    Oxford, A.E., and H. Raistrick: The Molecular Constitution of the Metabolic Products of Penicillium brevi-compactum Dierckx and Related Species. Biochem. J. 27, 634 (1933).Google Scholar
  229. 226.
    Patterson, E.L., W.W. Andres, and N. Bohonos: Isolation of The Optical Antipode of Mellein from an Unidentified Fungus. Experientia 22, 209 (1966).Google Scholar
  230. 227.
    Pelter, A., R.S. Ward, and T.I. Gray: The Carbon-13 Nuclear Magnetic Reso­nance Spectra of Flavonoids and Related Compounds. J. Chem. Soc. Perkin Trans. I 1976, 2475.Google Scholar
  231. 228.
    Pero, R.W., D. Harvon, and M.-C. Blois: Isolation of the Toxin, Altenuisol, from the Fungus Alternaria tenuis Auct. Tetrahedron Letters 1973, 945.Google Scholar
  232. 229.
    Pero, R.W., R.G. Owens, S.W. Dale, and D. Harvon: Isolation and Identification of a New Toxin, Altenuene, from the Fungus Alternaria tenuis. Biochem. Biophys. Acta 230, 170 (1971).Google Scholar
  233. 230.
    Piller, N.B.: Conservative Treatment of Acute and Chronic Lymphoedema with Benzopyrones. Lymphology 9, 132 (1976).Google Scholar
  234. 231.
    Plouvier, V.: The Study of Quinic and Shikimic Acids, Bergenin and Heterosides from Some Hamamelideae. C.R. hebd, seances Acad. Sci. 252, 599 (1961).Google Scholar
  235. 232.
    Posternak, T., and K. Durr: The Structure of Bergenin. Helv. Chim. Acta 41, 1159 (1958).Google Scholar
  236. 233.
    Raistrick, H., and C.E. Stickings: Ustic Acid, a Metabolic Product of Aspergillus ustus (Bainier) Thom and Church. Biochem. J. 48, 53 (1951).Google Scholar
  237. 234.
    Raistrick, H., C.E. Stickings, and R. Thomas: Alternariol and Alternariol Mono- methyl Ether. Metabolic Products of Alternaria tenuis. Biochem. J. 55, 421 (1953).Google Scholar
  238. 235.
    Regan, A.C., and J. Staunton: Asymmetric Synthesis of Mellein Methyl Ether: Use of orthzo-Toluate Carbanions Generated by Chiral Bases. Chem. Commun. 1983, 764.Google Scholar
  239. 236.
    Renson, M., and L. Christaens: Preparation of 1-Isochromanones from Chlorides of o-(α,α-Dimethylacetonyl)- and o-(a,a-Dimethylphenacyl)-benzoic Acids. Bull soc. chim. Beiges 71, 394 (1962).Google Scholar
  240. 237.
    Roberts, J.C., and P. Woolven: Synthesis of Ochratoxin A, a Metabolite of Aspergillus ochraceus. J. Chem. Soc. (C) 1970, 278.Google Scholar
  241. 238.
    Rogers, D., D.J. Williams, and R. Thomas: The Crystal Structure of (±)-Dehydroaltenusin. Chem Commun. 1971, 393.Google Scholar
  242. 239.
    Rosett, T., R.H. Sankhala, C.E. Stickings, M.E.U. Taylor, and R. Thomas: Biochem. J. 67, 390 (1957).Google Scholar
  243. 240.
    Rossi, C., and R. Ubaldi: Characterization of a Pigment Produced by Fusicoccum putrifaciens. Ann. 1st. Super. Sanita 9, 320 (1973): Chem. Abstr. 82, 82634 (1975).Google Scholar
  244. 241.
    Saluja, M.P., R.S. Kapil, and S.P. Popli: Chemical Constituents of Moringa oleifera Lamk. (Hybrid Variety) and Isolation of 4-Hydroxymellein. Indian J. Chem. 16B, 1044 (1978).Google Scholar
  245. 242.
    San Feliciano, A., A.F. Barrero, M. Medarde, J.M. Miguel del Carrol, and M.V. Calle: An Isocoumarin and Other Phenolic Components of Ononis natrix. Phytochem. 22, 2031 (1983).Google Scholar
  246. 243.
    Sankawa, U., H. Taguchi, Y. Ogihara, and S. Shibita: The Biosynthesis of Duc- lauxin. Tetrahedron Letters 1966, 2883.Google Scholar
  247. 244.
    Sarkar, S.K., and C.T. Phan: Biosynthesis of 8-Hydroxy-6-methoxy-3-methyl-3,4- dihydroisocoumarin and 5-Hydroxy-7-methoxy-2-methylchromone in Carrot Root Tissues Treated with Ethylene. Physiol. Plant 33, 108 (1975).Google Scholar
  248. 245.
    Sassa, T., H. Aoki, and K. Munakata: Synthesis of Sclerotinin B. Tetrahedron Letters 1968, 5703.Google Scholar
  249. 246.
    Sassa, T., H. Aoki, M. Namiki, and K. Munakata: Isolation and Structures of Sclerotinins A and B. Agric. Biol. Chem. 32, 1432 (1968).Google Scholar
  250. 247.
    Sato, H., T. Takashima, N. Otomo, and S. Sakamura: Phytotoxins Produced by the Fungus of the Larch Shoot Blight. Nippon Nogei Kagaku Kaishi 56, 649 (1982); Chem. Abstr. 98, 84628 (1983).Google Scholar
  251. 248.
    Satomura, Y., and A. Sato: Isolation and Physiological Activity of Sclerin, a Metabolite of Sclerotinia Fungus. Agrie. Biol. Chem. 29, 337 (1965).Google Scholar
  252. 249.
    Schmalle, H.W., O.H. Jarchaw, B.M. Hausen, and K.H. Schulz: 3,4-Dihydro-8- hydroxy-3-(4-Hydroxyphenyl)isocoumarin, Hydrangenol. Acta Crystallogr. 38B, 2938 (1982).Google Scholar
  253. 250.
    Schmidt, O.T., and K. Bernauer: Brevifolin and Brevifolin Carboxylic Acid. Liebigs Ann. Chem. 588, 211 (1954).Google Scholar
  254. 251.
    Schmidt, O.T., and R. Eckert: The Structure of Brevifolin Carboxylic Acid. Liebigs Ann. Chem. 618, 71 (1958).Google Scholar
  255. 252.
    Schroeder, H.W., and R.D. Stipanovic: Production of 3-Methyl-6-methoxy-8-hy- droxy-3,4-dihydroisocoumarin by Aspergillus caespitosus. Appl. Microbiol. 29, 706 (1975).Google Scholar
  256. 252a.
    Scott, F.E., T.J. Simpson, L.A. Trimble, and J.C. Vederas: Biosynthesis of Monocerin. Incorporation of 2H-, 13C- and l8O-Labelled Acetates. Chem. Commun. 1984, 756.Google Scholar
  257. 253.
    Scott, P.M., and W. van Walbeek: Cladosporin, a New Antifungal Metabolite from Cladosporium cladospioides. J. Antibiotics 24, 747 (1971).Google Scholar
  258. 254.
    Scott, P.M., W. van Walbeek, J. Harwig, and D.I. Fennell: Occurrence of a Mycotoxin, Ochratoxin A, in Wheat and Isolation of Ochratoxin A and Citrinin Producing Strains of Penicillium viridicatum. Cañad. J. Plant Sci. 50, 583 (1970).Google Scholar
  259. 255.
    Sedmera, P., J. Volc, J. Weijer, J. Vokoun, and V. Musilek: Xanthomegnin and Viomellein Derivatives from Submerged Cultures of the Ascomycete Nannizzia caje- tani. Collect. Czech. Chem. Comm. 46, 1210 (1981).Google Scholar
  260. 256.
    Shibatu, S., Y. Ogihara, N. Tokutahe, and O. Tanaka: Duclauxin, a Metabolite oí Penicillium duclauxi ( Delacroix ). Tetrahedron Letters 1965, 1287.Google Scholar
  261. 257.
    Shimada, H., T. Sawada, and S. Fukuda: Constituents of Astilbe thunbergi. J. Pharm. Soc. Japan 72, 578 (1952): Chem. Abstr. 46, 8810 (1952).Google Scholar
  262. 258.
    Shimojima, Y., and H. Hayashi: lH-2-Benzopyran-l-one derivatives, Microbial Products with Pharmacological Activity. Relationships between Structure and Activi­ty in 6-[[l S-(3 S,4-Dihydro-8-hydroxy-l -oxo-1 H-2-benzopyranon-3-yl-3-methylbutyl]amino]-4S,5S-dihydroxy-6-oxo-3S-ammoniohexanate. J. Med. Chem. 26, 1370 (1983).Google Scholar
  263. 259.
    Shimojima, Y., H. Hayashi, T. Ooka, M. Shibkawa, and Y. Ittaka: Studies on AI-77s, Microbial Products with Gastroprotective Activity: Structures and the Chemical Nature of AI-77s. Tetrahedron 40, 2519 (1984).Google Scholar
  264. 260.
    Shiozaki, M., K. Mori, and M. Matsui: Synthesis of Isocoumarins III Oosponol Diacetate. Agrie. Biol. Chem. 32, 42 (1968).Google Scholar
  265. 261.
    Sibi, M.P., M.A. Miah, and S.V. Jalil: Ortho-lithiated Tertiary Benzamides. Magnesium Transmetalation and Synthesis of Phthalides and Isocoumarins including Mellein and Kigelin. J. Organ. Chem. (USA) 49, 737 (1984).Google Scholar
  266. 262.
    Simpson, T.J.: 13C Nuclear Magnetic Resonance Spectra and Biosynthetic Studies of Xanthomegnin and Related Pigments from Aspergillus sulphureus and melleus. J. Chem. Soc. Perkin Trans. I 1977, 592.Google Scholar
  267. 263.
    Use of Long Range Proton-Carbon-13 Couplings in Structure Determination. Stellatin, a Novel Dihydrisocoumarin from Aspergillus variecolor. Chem. Commun. 1978, 627.Google Scholar
  268. 264.
    Slates, H.L., S. Weber, and N.L. Wendler: 3,5-Dimethoxyhomophthalic Acid and its Transformation into Intermediates in Mold Metabolite Synthesis. Chimia 21, 468 (1967).Google Scholar
  269. 265.
    Spasor, S., I. Atanosova, and M. Haimova: Carbon-13 NMR Spectra of Isocoumarins, N-Methyl-1 (2H)-isoquinolines and Related Compounds. Org. Magn. Resonan. 22, 194 (1984).Google Scholar
  270. 266.
    Springer, J.P., H.G. Cutler, F.G. Crumley, R.H. Cox, E.E. Davis, and J.E. Thean: Plant Growth Regulatory Effects and Steroechemistry of Cladosporin, J. Agric. Food Chem. 29, 853 (1981).Google Scholar
  271. 261.
    Stack, M.E., R.M. Eppley, P.A. Dreifuss, and A.E. Pohland: Isolation and Identi­fication of Xanthomegnin, Viomellein, Rubrosulphin, and Viopurpurin as Metabo­lites of Pénicillium viridicatum. Appl. Environ. Microbiol. 33, 351 (1977).Google Scholar
  272. 268.
    Stack, M.E., E.P. Mazzola, and R.M. Eppley: Structures of Xanthoviridicatin D and Xanthoviridicatin G. Metabolites of Pénicillium viridicatum: Application of Proton and Carbon-13 NMR Spectroscopy. Tetrahedron Letters 1979, 4989.Google Scholar
  273. 269.
    Stack, M.E., and P.B. Mislivec: Production of Xanthomegnin and Viomellein by Isolates of Aspergillus ochraceus, Pénicillium cyclopium and Pénicillium viridicatum. Appl. Environ. Microbiol. 36, 552 (1978).Google Scholar
  274. 270.
    Stodola, F.H., C. Cabot, and C.R. Benjamin: Structure of Ramulosin, a Metabolic product of the Fungus Pestalotia ramulosa. Biochem. J. 93, 92 (1964).Google Scholar
  275. 271.
    Stoessl, A.: 8-Hydroxy-6-methoxy-3-methylisocoumarin and Other Metabolites of Ceratocystis fimbriata. Biochem. Biophys. Res. Comm. 35, 186 (1969).Google Scholar
  276. 272.
    Stoessl, A., and J.B. Stothers: Postinfectional Inhibitors from Plants. Part XXXII. A Carbon-13 Biosynthetic Study of Stress Metabolites from Carrot Roots: Eugenin and 6-Methoxymellein. Canad. J. Bot. 56, 2589 (1978).Google Scholar
  277. 273.
    Steyn, P.S.: Ochratoxin and Other Dihydroisocoumarins. Microbial Toxins 6, 179 (1971).Google Scholar
  278. 274.
    Steyn, P.S., and C.W. Holzapfel: Synthesis of Ochratoxin A and B. Metabolites Aspergillus ochraceus. Tetrahedron 23, 4449 (1967).Google Scholar
  279. 275.
    Steyn, P.S., C.W. Holzapfel, and N.P. Ferreira: The Biosynthesis of the Ochratoxins, Metabolites of Aspergillus ochraceus. Phytochem. 9, 1977 (1970).Google Scholar
  280. 276.
    Suzuki, Y.: Fusamarin, a New Metabolite from a Species of Fusarium. Agric. Biol. Chem. 34, 760 (1970).Google Scholar
  281. 277.
    Suzuki, H., T. Ikeda, T. Matsumoto, and M. Noguchi: Isolation and Identification of a New Glycoside, Phyllodulcin-8-O-β-D-glucose from the Cultured Cells and Fresh Leaves of Amacha (Hydrangea macropylla Seringe var. Thunbergii Makino). Agric. Biol. Chem. 41, 1815 (1977).Google Scholar
  282. 278.
    Suzuki, H., T. Matsumoto, and M. Noguchi: Polyphenol Components in the Leaves of Amacha (Hydrangea macrophylla Seringe var Thunbergii Makino). Agric. Biol. Chem. 43, 653 (1979).Google Scholar
  283. 279.
    Takeuchi, N., M. Masayuki, K. Ochi, and S. Tobinaga: Biogenetic-type Synthesis of ( ± )-Phylloducin, a Sweet Principe of Hydrangea serrata Seringe var. Thunbergii Sugimoto. Chem. Commun. 1976, 820.Google Scholar
  284. 280.
    Takeuchi, N., M. Murase, K. Ochi, and S. Tobinago: Biogenetic-type Synthesis of Phyllodulcin, a Sweet Principle of Hydrangea serrata Seringe var. Thunbergii Sugimoto. Chem. Pharm. Bull. (Japan) 28, 3013 (1980).Google Scholar
  285. 281.
    Takeuchi, N., K. Ochi, M. Murase, and S. Tobinaga: An Easy Two Synthon Synthesis of a Sweet Dihydroisocoumarin (±)-Phyllodulcin. Chem. Commun. 1980, 593.Google Scholar
  286. 282.
    Takeuchi, N., K. Ochi, M. Murase, and S. Tobinaga: An Easy Two-Synthon Synthesis of a Sweet Dihydroisocoumarin (±)-Phyllodulcin. Chem. Pharm. Bull. (Japan) 31, 4360 (1983).Google Scholar
  287. 283.
    Tanaka, A.K., A. Kobayashi, and K. Yamashita: A Total Synthesis of Sclerotinin A. Agric. Biol. Chem. 37, 669 (1973).Google Scholar
  288. 284.
    Tanaka, A.K., C. Sato, Y. Shibata, A. Kobayashi, and K. Yamashita: Growth Pro­moting Activities of Sclerotinin A and its Analogs. Agric. Biol. Chem. 38, 1311 (1974).Google Scholar
  289. 285.
    Tanenbaum, S.W., S.C. Agarwal, T. Williams, and R.G. Pitcher: 6-Hydroxyra- mulosin - a New Metabolite from Pestalotia ramulosa. Tetrahedron Letters 1970, 2377.Google Scholar
  290. 286.
    Taneyama, M., and S. Yoshida: Incorporation of Glucose-14C into Bergenin and Arbutin in Saxifraga stolonifera. Botan. Mag. 92, 69 (1979).Google Scholar
  291. 287.
    Tatsumaki, T., and T. Inoue: Distribution of Bergenin in Saxifragaceae. Sigenka- gaku Kenkyusyo Iko 10, 13 (1946); Chem. Abstr. 42, 3034 (1948).Google Scholar
  292. 288.
    Thomas, R.: The Biosynthesis of Alternariol and its Relation to Other Fungal Phe­nols. Biochem. J. 78, 748 (1961).Google Scholar
  293. 289.
    Thomas, R.: The Biosynthesis of Phenalenones. Pure Appl. Chem. 34, 515 (1973).Google Scholar
  294. 290.
    Tirodkar, R.B., and R.N. Usgaonkar: Isocoumarins. New Findings about the Condensation of Homophthalic Anhydride with Benzoic Anhydride and Benzyl Chloride. New Synthesis for Some 3-Phenylisocoumarins. Current Sci. (India) 41, 701 (1972).Google Scholar
  295. 291.
    Tokoroyama, T., T. Kamikawa, and T. Kubota: The Structure of Sclerin, a Metab­olite of Sclerotinia libertiana. Tetrahedron 24, 2345 (1968).Google Scholar
  296. 292.
    Tokoroyama, T., and T. Kubota: Biosynthesis of Sclerin. J. Chem. Soc. (C) 1971, 2703.Google Scholar
  297. 293.
    Turner, W.B.: Fungal Metabolites. London: Academic Press 1971.Google Scholar
  298. 294.
    Turner, W.B., and D.C. Aldridge: Fungal Metabolites II. London: Academic Press 1983.Google Scholar
  299. 295.
    Uemura, M., and T. Sakan: The Synthesis of Oosponol and Oospoglycol. Chem. Commun. 1971, 921.Google Scholar
  300. 296.
    Ulubelen, A., S. Oksuz, Y. Aynehchi, S.M.H. Saleki, and A. Souri: Capillarin and Scaparone from Artemisia lamprocaules. J. Nat. Prod. 47, 170 (1984).Google Scholar
  301. 297.
    Umezawa, H.: Chemistry of Enzyme Inhibitors of Microbial Origin. Pure Appl. Chem. 33, 129 (1973).Google Scholar
  302. 298.
    Van der Merwe, K.J., P.S. Steyn, and L. Fourie: The Constitution of Ochratoxins A, B, and C. Metabolites of Aspergillus ochraceus Wilh. J. Chem. Soc. ( London ) 1965, 7083.Google Scholar
  303. 299.
    Van Eijk, G.W.: A Naphtho[l,2-b]furan Derivative from the Fungus Roesleriapal­lida. Phytochem. 10, 3203 (1971).Google Scholar
  304. 300.
    Van Walbeek, W., P.M. Scott, J. Harwig, and J.W. Laurence: Canad. J. Microbiol. 15, 1281 (1969).Google Scholar
  305. 301.
    Vleggaar, R., and P.S. Steyn: The Biosynthesis of Some Miscellaneous Mycotoxins. In: Steyn, P.S.: The Biosynthesis of Mycotoxins, a Study in Secondary Metabolism. New York: Academic Press 1980.Google Scholar
  306. 302.
    Von Dreele, R.B.: The Crystal and Molecular Structure of N-Acetylactinobolin: the α-Helix. Acta Crystalogr. 32B, 2852 (1976).Google Scholar
  307. 303.
    Vora, V.C.: Metabolic Products of Paecilomyces victoriae. J. Sci. Indust. Res. (India) 13B, 842 (1954).Google Scholar
  308. 304.
    Waitz, J.A., and C.G. Drube: Antifungal Agents. Annu. Rep. Med. Chem. 7, 109 (1972).Google Scholar
  309. 305.
    Watanabe, M., M. Sahara, S. Furukawa, R. Billedeau, and V. Snieckus: Directed Metalation of Tertiary Benzamides. Short Syntheses of Hydrangenol and Phyllodulcin. Tetrahedron Letters 23, 1647 (1982).Google Scholar
  310. 306.
    Watanabe, M., M. Sahara, M. Kubo, S. Furkawa, R.J. Billedeau, and V. Sniekus: Ortho-lithiated Tertiary Benzamides. Chain Extension via o-Toluamide Anion and General Synthesis of Isocoumarins Including Hydrangenol and Phyllodulcin. J. Organ. Chem. (USA) 49, 742 (1984).Google Scholar
  311. 307.
    Wei, R.-D., F.M. Strong, and E.B. Smalley: Incorporation of Chlorine-36 into Ochratoxin A. Appl. Microbiol. 22, 276 (1971).Google Scholar
  312. 308.
    Weisleder, D., and E.B. Lillehoj: Structure of Viriditoxin, a Toxic Metabolite of Aspergillus viridi-nutans. Tetrahedron Letters 1971, 4705.Google Scholar
  313. 309.
    Weisleder, D., and E.B. Lillehoj: Carbon-13 Magnetic Resonance Assignments and Biosynthesis of Ochratoxin A. Tetrahedron Letters 1980, 993.Google Scholar
  314. 310.
    Wetherington, J.B., and J.W. Moncrief: The Crystal Structure and Absolute Configuration of the Antibiotic Actinobolin. Acta Crystallogr. 31B, 501 (1975).Google Scholar
  315. 311.
    Wirth, J.C., T.E. Beesley, and S.R. Anand: The Isolation of Xanthomegnin from Several Strains of the Dermatophyte Trichophyton rubrus. Phytochem. 4, 505 (1965).Google Scholar
  316. 312.
    Yagi, A., Y. Ogata, T. Yamauchi, and I. Nishioka: Metabolism of Phenylpropan- oids in Hydrangea serrata var thunbergii and the Biosynthesis of Phyllodulcin. Phytochem. 16, 1098 (1977).Google Scholar
  317. 313.
    Yamaki, T., and T. Inoue: Isolation of Bergenin from the Roots of Several Saxifragaceae. Acta Phytochim. (Tokyo) 14, 93 (1944); Chem. Abstr. 45, 4308 (1951).Google Scholar
  318. 314.
    Yamaki, T., and T. Inoue: Distribution of Bergenin in Saxifragaceae. Misc. Rep. Res. Inst. Nat. Resources (Tokyo) 10, 13 (1946); Chem. Abstr. 44, 9013 (1950).Google Scholar
  319. 315.
    Yamamoto, I., K. Nitta, and Y. Yamamoto: Chemical Structure of Oosponol. Agric. Biol.Chem. 26, 486 (1962).Google Scholar
  320. 316.
    Yamato, M.: Synthesis and Reactrions of 3,4-Dihydroisocoumarins and Isochro- mans. Yuki Gosei Kagaku Kyokaishi 41, 958 (1983); Chem. Abstr. 100, 68041 (1984).Google Scholar
  321. 317.
    Yamato, M., and K. Hashigaki: Synthesis of dl-Agrimonolide (Constituent of the Rhizome of Agrimonia pilosa Leder). Chem. Pharm. Bull. (Japan) 24, 200 (1976).Google Scholar
  322. 318.
    Yamato, MT. Koyama., K. Hashigaki, E. Honda, K. Sato, and T. Koyama: Chemical Struc­ture and Sweet Taste of Isocoumarin and Related Compounds. Chem. Pharm. Bull. (Japan) 25, 695 (1977).Google Scholar
  323. 319.
    Yamato, M., K. Sato, K. Hashigaki, M. Oki, and T. Koyama: Chemical Structures and Sweet Taste of Isocoumarins and Related Compounds. Chem. Pharm. Bull. (Japan). 22, 475 (1974).Google Scholar
  324. 320.
    Yamatodani, S., T. Yamano, Y. Kozu, and M. Abe: Isolation of a New Isocoumarin Derivative, K-l, from the Saprophytic Culture of Oospora astringens. Nippon Nogei Kagaku Kaishi 37, 240 (1963); Chem. Abstr. 63, 570 (1965).Google Scholar
  325. 321.
    Yamazaki, Y., Y. Maebayashi, and K. Miyaki: Biosynthesis of Ochratoxin A. Tetrahedron Letters 1971, 2301.Google Scholar
  326. 322.
    Yamazaki, Y., Y. Maebayashi, and K. Miyaki: Isolation of a New Metabolite, 6-Methoxy-8-hydroxyisocoumarin-3-carboxylic Acid from Aspergillus ochraceus Wilk. Chem. Pharm. Bull. (Japan) 20, 2276 (1972).Google Scholar
  327. 322a.
    Yoshioka, M., H. Nakai, and M. Ohno: Stereocontrolled Total Synthesis of (+) Actinobolin by an Intramolecular Diels-Aber Reaction of a chiral Z Diene from L-Threonine. J. Amer. Chem. Soc. 106, 1133 (1984).Google Scholar
  328. 323.
    Zamir, L.O., and C.C. Chin: Aromatic Origin of Cyclopentenoid Metabolites. Bioorganic Chem. 11, 338 (1982).Google Scholar
  329. 324.
    Zeeck, A., P. Rub, H. Laatsh, W. Loeffler, H. Wehole, H. Zahner, and H. Holst: Isolation of the Antibiotiv Semi-vioxanthin from Penicillium citreo-viride and Synthesis of Xanthomegnin. Chem. Ber. 112, 957 (1979).Google Scholar

Copyright information

© Springer-Verlag/Wien 1986

Authors and Affiliations

  • R. A. Hill
    • 1
  1. 1.Chemistry DepartmentUniversity of GlasgowScotland

Personalised recommendations