Analysis of Thin Chromate Layers on Aluminium I. Opportunities and Limitations of Surface Analytical Methods

  • A. Quentmeier
  • H. Bubert
  • R. P. H. Garten
  • H. J. Heinen
  • H. Puderbach
  • S. Storp
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


Commercially produced conversion layers on aluminium are used for corrosion protection purposes and adhesion for organic coatings. To obtain a characterization with respect to i) morphology, ii) detection and iii) quantitative concentration determination of elements, iv) element in-depth profiles, v) element mapping, and vi) chemical compounds, a combination of thin film analytical methods has to be designed according to more general rules1. This multi-methods approach is complicated bv the very thin (30–300 nm-range2) water and oxide containing layers to be analysed on rough surface material. In the present study, we have used TEM, AES, XPS, SIMS, ISS, and additionally LAMMA to get more information about chemical compounds, and GDOS to obtain fast in-depth profiling including determination of hydrogen.


Auger Electron Spectrometry Thin Chromate Layer Cluster Series Conversion Layer Surface Analytical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Werner and R. P. H. Garten, Rep. Progr. Phys. 47, 221 (1984).CrossRefGoogle Scholar
  2. 2.
    H. Puderbach, H. Bubert, and R. P. H. Garten, UKESAUG-SCADEG Meeting, Cambridge 1984, Spectrochim. Acta 40B, 817 (1985).Google Scholar
  3. 3.
    H. Puderbach, H. Bubert, A. Quentmeier, R. P. H. Garten, and S. Storp, these proceedings, p. 103.Google Scholar
  4. 4.
    S. Storp, UKESAUG-SCADEG Meeting, Cambridge 1984, Spectrochim. Acta 40B, 745 (1985).CrossRefGoogle Scholar
  5. 5.
    D. C. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg (eds.), Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Minnesota: Perkin-Elmer-Corp. 1979.Google Scholar
  6. 6.
    R. Holm and S. Storp, in: Analysen- und Meßverfahren, Ullmanns Encyclopädie der technischen Chemie, Band 5 (H. Kelker, ed.). Weinheim: Verlag Chemie 1980, pp. 519–576.Google Scholar
  7. 7.
    D. Briggs, in: Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (D. Briggs and M. P. Seah, eds.). Chichester, New York: Wiley 1983, pp. 364–366.Google Scholar
  8. 8.
    S. Storp and R. Holm, J. Electron. Spectrosc. Relat. Phenom. 16, 183 (1979).Google Scholar
  9. 9.
    S. W. Graham, P. Dowd, and D. M. Hercules, Anal. Chem. 54, 649 (1982).CrossRefGoogle Scholar
  10. 10.
    L. van Vaeck, J. de Waele, and R. Gijbels, Mikrochim. Acta [Wien] 1984 III, 237.CrossRefGoogle Scholar
  11. 11.
    H. Vogt, H. J. Heinen, S. Meier, and R. Wechsung, Fresenius’ Z. Anal. Chem. 308, 195 (1981).Google Scholar
  12. 12.
    J. B. Ko, Spectrochim. Acta 39B, 1405 (1985).Google Scholar
  13. 13.
    R. Berneron and J. C. Charbonnier, Surf. Interface Anal. 3, 134 (1981).CrossRefGoogle Scholar
  14. 14.
    A. Quentmeier and K. Laqua, in: 13. Spektrometertagung ( K. H. Koch and H. Massmann, eds.). Berlin-New York: Walter de Gruyter 1981, pp. 37–49.Google Scholar
  15. 15.
    K. H. Koch, M. Kretschmer, and D. Grunenberg, Mikrochim. Acta [Wien] 1983 II, 225.Google Scholar
  16. 16.
    I. Kenawy, PhD Thesis, Ruhr-Universität Bochum 1980.Google Scholar
  17. 17.
    J. M. Sanz and S. Hofmann, Surf. Interface Anal. 5, 210 (1983).CrossRefGoogle Scholar
  18. 18.
    S. Storp and H. Holm, Surf. Sci. 10, 68 (1977).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Quentmeier
    • 1
  • H. Bubert
    • 1
  • R. P. H. Garten
    • 2
  • H. J. Heinen
    • 3
  • H. Puderbach
    • 4
  • S. Storp
    • 5
  1. 1.Institut für Spektrochemie und angewandte SpektroskopieDortmundFederal Republic of Germany
  2. 2.Laboratorium für ReinststoffanalytikMax-Planck-Instituts für MetallforschungDortmundFederal Republic of Germany
  3. 3.Leybold-Heraeus GmbHKölnFederal Republic of Germany
  4. 4.Henkel KGaADüsseldorfFederal Republic of Germany
  5. 5.Bayer AGLeverkusenFederal Republic of Germany

Personalised recommendations