Ion Implantation in the Surface Analysis of Solid Materials

  • W. H. Gries
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


For surface analysing of solid materials instrumental methods are employed which, using excitation by ion, electron or photon beams, monitor the emission of characteristic ions, electrons and photons from the surface under investigation. The intensity of the measured signal depends on detector efficiency, instrument transmission, sample viewing geometry, angular distribution of the emitted signal and certain sample properties. In most cases the influence of these factors on the measured signal is known only approximately, thus making quantitative analysis possible only by standardisation via standard reference materials (standards for short).


Depth Profile Surface Analysis Collision Cascade Light Impurity Surface Binding Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Gries and W. L. Rautenbach, 6th Int. Symp. Microtechniques, Graz, Austria, 1970, Preprints Vol. E, Verlag der Wiener Medizinischen Akademie, Vienna.Google Scholar
  2. 2.
    W. H. Gries, Mikrochimica Acta [Wien] 19811, 335.Google Scholar
  3. 3.
    W.H. Gries, Proc. 7th Int. Vac. Congr. and 3rd Int. Conf. on Solid Surfaces (R. Dobrozemsky, F. Rüdenauer, F.P. Viehböck, and A. Breth, eds.), Vienna 1977, p. 1425.Google Scholar
  4. 4.
    W. H. Gries, Int. J. Mass Spectrom. Ion Phys. 30,97 and 113 (1979).CrossRefGoogle Scholar
  5. 5.
    W. H. Gries and I. L. van Maarseveen, A Table of Ion-Implanted Fluences in Mono- elemental Poly crystalline Solids for 99% and 95% Retention, Report SMAT 4, CSIR, National Institute for Materials Research, P.O. Box 395, Pretoria 1984.Google Scholar
  6. 6.
    B. J. Smith, in an appendix to: G. Dearnaley, J. H. Freeman, R. S. Nelson, and J. Stephen, Ion Implantation, North-Holland, Amsterdam and London 1973.Google Scholar
  7. 7.
    P. Sigmund, Phys. Rev. 184, 383 (1969).CrossRefGoogle Scholar
  8. 8.
    W. H. Gries and H. J. Strydom, A Table of Normalized Sputtering Yields for Mono-elemental Poly crystalline Targets, Report SMAT 3, CSIR, National Institute for Materials Research, P.O. Box 395, Pretoria 1984.Google Scholar
  9. 9.
    W. H. Gries and H. J. Strydom, Fresenius’ Z. Anal. Chem. 319, 727 (1984).CrossRefGoogle Scholar
  10. 10.
    K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2. New York: IFI/Plenum 1975.Google Scholar
  11. 11.
    Proc. 4th Int. Conf. on Ion Beam Modification of Materials (Ithaca, N.Y., U.S.A., July 1984)published in Nucl. Instr. and Meth. B7/8, Parts 1 and 2 (1985).Google Scholar
  12. 12.
    W. H. Gries and J. A. Sawicki, to be published.Google Scholar
  13. 13.
    N. Q. Lam and H. Wiedersich, Rad. Eff. Lett. 67, 107 (1982).CrossRefGoogle Scholar
  14. 14.
    H. H. Andersen, Appl. Phys. 18, 131 (1979).CrossRefGoogle Scholar
  15. 15.
    e.g. M. Ayyoob and M. S. Hedge, Surf. Sci. 147, 361 (1984).CrossRefGoogle Scholar
  16. 16.
    D. M. Follstaedt, Ref. 10, p. 11.Google Scholar
  17. 17.
    e.g. H. E. Schøtt,Rad. Eff. 6, 107 (1970).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. H. Gries
    • 1
  1. 1.Forschungsinstitut der Deutschen Bundespost, FTZDarmstadtFederal Republic of Germany

Personalised recommendations