Advertisement

Analytical Electron Microscopy of Rare-Earth Permanent Magnet Materials

  • J. Fidler
  • P. Skalicky
  • F. Rothwarf
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)

Abstract

Permanent magnets with highest energy density products and coercive forces are based on rare-earth (RE) intermetallic compounds. In the “single phase” RECo5 sintered magnets the coercivity is determined by the nucleation field and expansion field of reversed domains1,2. In precipitation hardened “multi phase” Sm2 Co17 sintered magnets the high coercive force is obtained by the pinning of magnetic domain walls at the cell boundaries of a continuous precipitation structure1,3. The newly developed rare-earth iron permanent magnet materials exhibit higher energy density products and remanences than the rare-earth cobalt permanent magnetic materials4,5.

Keywords

Coercive Force High Resolution Electron Microscopy Expansion Field Reversed Domain Sinter Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kronmüller, Proc.7thInt. Workshop RE-Co Perm. Magn., Beijing 1983, p. 339.Google Scholar
  2. 2.
    J. Fidler, Phil. Mag. B46, 565 (1982).Google Scholar
  3. 3.
    J. Fidler, J. Magn. Magn. Mat. 30, 58 (1982).CrossRefGoogle Scholar
  4. 4.
    M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appi. Phys. 55, 2083 (1984).CrossRefGoogle Scholar
  5. 5.
    M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, IEEE Trans. Magn. MAG-20, 1584(1984).Google Scholar
  6. 6.
    K. J. Strnat, IEEE Trans. Magn. MAG-6, 182 (1970).Google Scholar
  7. 7.
    H. H. Stadelmaier, Z. Metallk. 75, 227 (1984).Google Scholar
  8. 8.
    Y. Komura. S. Takeda, and Y. Kitano. Sci. Rep. RITU A29, Suppl. 1, 13 (1981).Google Scholar
  9. 9.
    W. Rodewald and J. Fidler, Proc. 3rd Int. Symp. on Magn. Anisotropy and Coercivity of Rare-Earth Transition Metal Alloys (J. Fidler, ed. ), Baden/Austria 1982,p. 339.Google Scholar
  10. 10.
    M. H. Ghandehari, R. E. Golden, and K. L. McNutt, IEEE Trans. Magn. MAG-20, 1611 (1984).Google Scholar
  11. 11.
    M. H. Ghandehari and J. Fidler, IEEE Trans. Magn., in press.Google Scholar
  12. 12.
    R. K. Mishra, G. Thomas, T. Yoneyama, A. Fukuno, and T. Ojima, J. Appi. Phys. 52,2517(1981).Google Scholar
  13. 13.
    G. C. Hadjipanayis, J. Appi. Phys. 55, 2091 (1984).CrossRefGoogle Scholar
  14. 14.
    J. Fidler and P. Skalicky, Mikrochim. Acta [Wien], Suppl. 10, 315 (1983).Google Scholar
  15. 16.
    J. Fidler, Phil. Mag. Letters A47, L19 (1983).Google Scholar
  16. 17.
    J. Fidler, P. Skalicky, and F. Rothwarf, Proc. 7th Int. Workshop RE-Co Perm. Magn., Beijing 1983, p. 319.Google Scholar
  17. 18.
    A. E. Ray, Proc. 7th Int. Workshop RE-Co Perm. Magn., Beijing 1983, p. 261.Google Scholar
  18. 19.
    A. E. Ray, J. Appi. Phys. 55, 2094 (1984).CrossRefGoogle Scholar
  19. 20.
    J. Fidler and P. Skalieky, Proc. 3rd Int. Symp. on Magn. Anisotropy and Coercivity of Rare-Earth Transition Metal Alloys (J. Fidler, ed.), 1982, Baden/Austria, p. 585.Google Scholar
  20. 21.
    H. E. Bühler, C. Herget, and M. Veliceseu, Appl. Phys. 24, 211 (1981).CrossRefGoogle Scholar
  21. 22.
    K. S. V. L. Narasimhan, INTERMAG Conference 84,1984, Hamburg.Google Scholar
  22. 23.
    A. Bezinge, H. F. Braun, J. Muller, and K. Yvon, Solid State Comm., in press.Google Scholar
  23. 24.
    J. Fidler, IEEE Trans. Magn., in press.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Fidler
    • 1
  • P. Skalicky
    • 1
  • F. Rothwarf
    • 2
  1. 1.Institute of Applied and Technical PhysicsTechnical University of ViennaAustria
  2. 2.European Research OfficeU.S. ArmyLondonGreat Britain

Personalised recommendations