Advertisement

Microanalytical Characterization of a Powder Metallurgical Ledeburitic Tool Steel by Transmission Electron Microscopy

  • P. Golob
  • F. Hofer
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)

Abstract

Tool steels made of block casting exhibit a difference in chemical composition, carbide grain size and carbide distribution between the core and fringe area. These undesirable properties which are chiefly dependent on the block size and cooling rate can only be sparsely controlled in case of conventional steel production. The disadvantages of the conventional ledeburitic tool steels can be avoided by powder metallurgical production. A fine grained unsegregated tool steel with outstanding technical properties is produced by a diffusion process under pressure and temperature treatment with homogeneous alloy powders which are primarily produced by the inert gas atomizing process1.

Keywords

Electron Energy Loss Spectrometry Steel Matrix Convergent Beam Electron Diffraction Electron Energy Loss Spectrometry Spectrum Convergent Beam Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bayer, G. Moser, and H. Seilstorfer, Arch. Eisenhüttenwesen 52, 370 (1981).Google Scholar
  2. 2.
    E. Bayer and H. Seilstorfer, Arch. Eisenhüttenwesen 53, 495 (1982).Google Scholar
  3. 3.
    J. I. Goldstein, in: Introduction to Analytical Electron Microscopy (J. J. Hren, J. I. Goldstein, and D. C. Joy, eds.), Chapter 3. New York and London: Plenum Press 1979, p. 83.Google Scholar
  4. 4.
    D. C. Joy, in: Introduction to Analytical Electron Microscopy (J. J. Hren, J. I. Goldstein, and D. C. Joy, eds.), Chapter 7. New York and London: Plenum Press 1979, p. 223.Google Scholar
  5. 5.
    G. Cliff and G. W. Lorimer, J. Microscopy 103, 203 (1975).CrossRefGoogle Scholar
  6. 6.
    R. F. Egerton, Ultramicroscopy 3, 243 (1978).CrossRefGoogle Scholar
  7. 7.
    R. F. Egerton, Ultramicroscopy 4, 169 (1979).CrossRefGoogle Scholar
  8. 8.
    R. F. Egerton, in: Scanning Electron Microscopy, SEM Inc., AMF O’Hare (Chicago), II (1984), p. 505.Google Scholar
  9. 9.
    H. J. Goldschmidt, Interstitial Alloys. London: Butterworths 1967.Google Scholar
  10. 10.
    D. R. Liu and L. M. Brown, Inst. Phys. Conf. Ser. No. 61, 201 (1982).Google Scholar
  11. 11.
    G. W. Lorimer, in: Quantitative Electron Microscopy, Proceedings of the 25th Scottish Summer School in Physics ( J. N. Chapman and A. J. Graven, eds.). The Scottish Universities Summer School in Physics, Edinburgh 1984.Google Scholar
  12. 12.
    J. W. Edington, Practical Electron Microscopy in Materials Science. New York: Pub. Van Nostrand Rheinhold 1976.Google Scholar
  13. 13.
    J. W. Steeds, in: Introduction to Analytical Electron Microscopy (J. J. Hren, J. I. Goldstein, and D. C. Joy, eds.), Chapter 15. New York and London: Plenum Press 1979, p. 387.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Golob
    • 1
  • F. Hofer
    • 1
  1. 1.Zentrum für ElektronenmikroskopieGrazAustria

Personalised recommendations