Quantitative Microstructural Analysis of Sintered Silicon Nitride by Using a Thin-Window Energy Dispersive X-Ray Detector System

  • W. Braue
  • H. J. Dudek
  • G. Ziegler
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


Special ceramics such as Si3N4 have found broad application as structural components in high-temperature environments. Due to its strong covalent character Si3N4 may only be densified via a liquid phase sintering process after adding suitable metal oxides, e.g. Y2O3 and Al2O3 as sintering aids. By means of hot-pressing, pressureless sintering or hot-isostatic pressing a dense, polyphase material with excellent mechanical properties has been achieved, if the primary powder properties, the nature and amount of sintering aids and the processing parameters are carefully controlled. Dense Si3N4 is characterized by an amorphous grain boundary phase at intergranular contacts and triple grain junctions. In the case of (Y2O3+Al2O3)-fluxed material this glassy phase has been identified by high spatial resolution techniques1 as a Y-Al-Si-O-N oxinitride which shows a typical pattern of impurity elements depending on the sintering powder and the processing technique employed2,3.


Isothermal Section Spot Measurement Pressureless Sinter Sinter Silicon Nitride Liquid Phase Sinter Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Clarke, Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
  2. 2.
    O. L. Krivanek, T. M. Shaw, and G. Thomas, J. Am. Ceram. Soc. 62, 585 (1979).CrossRefGoogle Scholar
  3. 3.
    C. C. Ahn and G. Thomas, J. Am. Ceram. Soc. 66, 14 (1983).CrossRefGoogle Scholar
  4. 4.
    R. A. L. Drew, S. Hampshire, and K. H. Jack, Proc. of International Symposium on Ceramic Components of Engine, Hakone, Japan 1983, p. 394.Google Scholar
  5. 5.
    J. E.Marion,A. G. Evans, M. D. Drory, and D. R. Clarke, ActaMetall. 31, 1445 (1983).Google Scholar
  6. 6.
    P. C. Martinengo, A. Giachello, P. Popper, A. Burri, and F. Branda, Proc. of Inter national Symposium on Factors in Densification and Sintering of Oxide and Non- Oxide Ceramics, Hakone, Japan 1978, p. 516.Google Scholar
  7. 7.
    R. E. Loehman and D. J. Rowcliffe, J. Am. Ceram. Soc. 63, 144 (1980).CrossRefGoogle Scholar
  8. 8.
    K. H. Jack, J. Mat. Sci. 11, 1135 (1976).CrossRefGoogle Scholar
  9. 9.
    S. Schneider, H. A. Schaeffer, W. Braue, G. Wotting, and G. Ziegler, to be published.Google Scholar
  10. 10.
    A. O. Sandberg and A. B. Merkle, Scanning Electron Microscopy 1981, p. 63.Google Scholar
  11. 11.
    D. L. Bloomfield, G. Love, and V. D. Scott, Journal de Physique C2, 181 (1984).Google Scholar
  12. 12.
    K. Jurek and V. Hulinsky, Mikrochim. Acta [Wien] 19801, 183.Google Scholar
  13. 13.
    D. R. Messier and E. J. Deguire, J. Amer. Ceram. Soc. 67, 602 (1984).CrossRefGoogle Scholar
  14. 14.
    L. Kaufman, F. Hayes, and D. Birnie, Calphad 5, 163 (1981).CrossRefGoogle Scholar
  15. 15.
    D. R. Clarke and G. Thomas, J. Am. Ceram. Soc. 61, 114 (1978).CrossRefGoogle Scholar
  16. 16.
    W. Y. Sun, Z. K. Huang, and J. X. Cheng, Trans. J. Br. Ceram. Soc. 82, 173 (1983).Google Scholar
  17. 17.
    W. Braue, G. Wotting, and G. Ziegler, submitted to Science of Ceramics (1985).Google Scholar
  18. 18.
    L. J. Gauckler, H. Hohnke, and T. Y. Tien, J. Am. Ceram. Soc. 63, 35 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. Braue
    • 1
  • H. J. Dudek
    • 1
  • G. Ziegler
    • 1
  1. 1.Institut für Werkstoff-ForschungDeutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (DFVLR)Köln 90Federal Republic of Germany

Personalised recommendations