Kossel Technique and Positron Annihilation Used to Clarify Sintering Processes

  • W. Schatt
Conference paper
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


For the densification of metal powder compacts during sintering, in the stage of intensive shrinkage (as also for the steady-state high-temperature creep) a Nabarro-Herring mechanism is assumed, as a rule1. Due to the capillary pressure, vacancies are emitted from the pores and absorbed by the grain boundaries. The pores are filled up by an equivalent, but oppositely directed flow of atoms. In the classical experiments by Alexander and Baluffi2 this process of material transport was demonstrated.


Dislocation Density Contact Zone Capillary Force Positron Annihilation Material Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. V. Lenel, Powder Metallurgy, Principles and Applications, Metal Powder Industries Federation, Princeton, New Jersey 1980, pp. 251–257.Google Scholar
  2. 2.
    B. H. Alexander and R. W. Baluffi, Acta Met. 5, 666 (1957).CrossRefGoogle Scholar
  3. 3.
    J. E. Geguzin and J. I. Klincuk, Poroskov.Metall. 7, 17 (1976).Google Scholar
  4. 4.
    W. Schatt and E. Friedrich, Powd. Met. Int. 13, 15 (1981).Google Scholar
  5. 5.
    W. Schatt, E. Friedrich, and K.-P. Wieters, Versetzungsaktiviertes Festphasen- intern. Leipzig: VEB Dt. Verl. f. Grundstoffindustrie 1985.Google Scholar
  6. 6.
    C. Herring, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy. New York: McGrawHill 1951.Google Scholar
  7. 7.
    J. P. Hirth, in: Proc. Conf. on the Relation Between Structure and Mechanical Properties of Metals, H. M. Stationery Office, London 1963.Google Scholar
  8. 8.
    K. E. Easterling and A. N. Thölen, Met. Sci. J. 4, 130 (1970).Google Scholar
  9. 9.
    J. E. Sheehan, F. V. Lenel, and G. S. Ansell, Physics of Sintering 5, 15 (1973).Google Scholar
  10. 10.
    C. S. Morgan and C. S. Yust, J. Nucl. Mat. 10, 182 (1963).CrossRefGoogle Scholar
  11. 11.
    C. S. Morgan, in: Modern Developments in Powder Metallurgy (H. Hausner, ed.), Vol. 4. New York-London: Plenum Press 1971.Google Scholar
  12. 12.
    J. E. Geguzin, Physik des Sinterns. Leipzig: VEB Dt. Verl. f. Grundstoffindustrie 1973.Google Scholar
  13. 13.
    J. E. Geguzin, A. C. Dsjuba, W. L. Indenbom, and N. N. Ovcarenko, Kristallografia 18,800(1973).Google Scholar
  14. 14.
    F. V. Lenel, G. S. Ansell, and R. C. Morris, in: Modern Developments in Powder Metallurgy (H. Hausner, ed.), Vol. 4. New York-London: Plenum Press 1971.Google Scholar
  15. 15.
    D. L. Johnson, J. Appl. Phys. 40, 192 (1969).CrossRefGoogle Scholar
  16. 16.
    R. C. Morris, Acta Met. 23, 463 (1975).CrossRefGoogle Scholar
  17. 17.
    J. I. Boiko, J. E. Geguzin, W. G. Kononenko, E. Friedrich, and W. Schatt, Poroskov. Metall. 10,14(1980).Google Scholar
  18. 18.
    P. Lany, VII. Internat. Pulvermetall. Tagung der DDR 1981, Vol. 2, p. 10.Google Scholar
  19. 19.
    W. Schatt, E. Friedrich, and D. Joensson, Acta Met. 31, 121 (1983).CrossRefGoogle Scholar
  20. 20.
    D. Joensson, Technische Mechanik 4, 64 (1983).Google Scholar
  21. 21.
    B. Kieback and W. Hermel, 1984 Powder Metallurgy Group Meeting, Sintering: Theory and Practice, Harrogate, Paper 6.Google Scholar
  22. 22.
    F. Sauerwald and L. Holub, Z. Elektrochemie 39, 70 (1933).Google Scholar
  23. 23.
    W. Schatt and S. E. Heinrich, Planseeber. f. Pulveraiet. 18, 7 (1970).Google Scholar
  24. 24.
    W. Schatt and E. Friedrich, Planseeber. f. Pulvermet. 25, 145 (1977).Google Scholar
  25. 25.
    H.-J. Ullrich, A. Herenz, E. Friedrich, W. Schatt, and Ch. Döring, Mikrochim. Acta [Wien] 19831, 175.Google Scholar
  26. 26.
    E. Friedrich and W. Schatt, Powder Metallurgy 4, 193 (1980).Google Scholar
  27. 27.
    W. Schatt and E. Friedrich, Z. Metallk. 73, 56 (1982).Google Scholar
  28. 28.
    G. Naumann, J. I. Boiko, and W. Schatt, Planseeber. f. Pulvermet. 25, 145 (1977).Google Scholar
  29. 29.
    G. C. Kuczynski, J. Metals 1, 196 (1949).Google Scholar
  30. 30.
    G. C. Kuczynski, J. Appl. Phys. 20, 1160 (1949).CrossRefGoogle Scholar
  31. 31.
    G. C. Kuczynski, Metals Transactions, February 1949, p. 169.Google Scholar
  32. 32.
    Landqlt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, Technik, Vol. IV/2b. Berlin-Göttingen-Heidelberg-New York: Springer- Verlag 1964.Google Scholar
  33. 33.
    W. Schatt, H. E. Exner, E. Friedrich, and G. Petzow, Acta Met. 30, 1367 (1982).CrossRefGoogle Scholar
  34. 34.
    E. Arzt, E. Friedrich, W. Schatt, and A. Scheibe, in Vorbereitung.Google Scholar
  35. 35.
    W. Schatt, K.-P. Wieters, and M. Rolle, in Vorbereitung.Google Scholar
  36. 36.
    M. Slesar, M. Besterci, and E. Dudrova, 5th Symposium on Powder-Metallurgy, Rydzina, Poland, 22.-24.9. 1980, p. 167.Google Scholar
  37. 37.
    W. Schatt, J. I. Boiko, E. Friedrich, and A. Scheibe, Powd. Met. Int. 16, 9 (1984).Google Scholar
  38. 38.
    A. M. Kosevic, Uspechi fisiceskich nauk 114, 509 (1974).CrossRefGoogle Scholar
  39. 39.
    J. E. Geguzin, Solid State Physics (UdSSR) 1950 (1975).Google Scholar
  40. 40.
    R. Raj, and M. F. Ashby, Met. Trans. 2, 1113 (1971).Google Scholar
  41. 41.
    A. Scheibe, Dissertation A, TU Dresden, Fakultät für Maschinenwesen, 1984.Google Scholar
  42. 42.
    J. E. Geguzin, Fisika spekanija, Moskwa “Nauka”, II. isdanije, 1984, p. 284.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. Schatt
    • 1
  1. 1.Department of Materials ScienceTechnical University DresdenGerman Democratic Republic

Personalised recommendations