Skip to main content

Kossel Technique and Positron Annihilation Used to Clarify Sintering Processes

  • Conference paper
Progress in Materials Analysis

Part of the book series: Mikrochimica Acta Supplementum ((MIKROCHIMICA,volume 11))

  • 123 Accesses

Abstract

For the densification of metal powder compacts during sintering, in the stage of intensive shrinkage (as also for the steady-state high-temperature creep) a Nabarro-Herring mechanism is assumed, as a rule1. Due to the capillary pressure, vacancies are emitted from the pores and absorbed by the grain boundaries. The pores are filled up by an equivalent, but oppositely directed flow of atoms. In the classical experiments by Alexander and Baluffi2 this process of material transport was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. V. Lenel, Powder Metallurgy, Principles and Applications, Metal Powder Industries Federation, Princeton, New Jersey 1980, pp. 251–257.

    Google Scholar 

  2. B. H. Alexander and R. W. Baluffi, Acta Met. 5, 666 (1957).

    Article  CAS  Google Scholar 

  3. J. E. Geguzin and J. I. Klincuk, Poroskov.Metall. 7, 17 (1976).

    Google Scholar 

  4. W. Schatt and E. Friedrich, Powd. Met. Int. 13, 15 (1981).

    CAS  Google Scholar 

  5. W. Schatt, E. Friedrich, and K.-P. Wieters, Versetzungsaktiviertes Festphasen- intern. Leipzig: VEB Dt. Verl. f. Grundstoffindustrie 1985.

    Google Scholar 

  6. C. Herring, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy. New York: McGrawHill 1951.

    Google Scholar 

  7. J. P. Hirth, in: Proc. Conf. on the Relation Between Structure and Mechanical Properties of Metals, H. M. Stationery Office, London 1963.

    Google Scholar 

  8. K. E. Easterling and A. N. Thölen, Met. Sci. J. 4, 130 (1970).

    Google Scholar 

  9. J. E. Sheehan, F. V. Lenel, and G. S. Ansell, Physics of Sintering 5, 15 (1973).

    Google Scholar 

  10. C. S. Morgan and C. S. Yust, J. Nucl. Mat. 10, 182 (1963).

    Article  CAS  Google Scholar 

  11. C. S. Morgan, in: Modern Developments in Powder Metallurgy (H. Hausner, ed.), Vol. 4. New York-London: Plenum Press 1971.

    Google Scholar 

  12. J. E. Geguzin, Physik des Sinterns. Leipzig: VEB Dt. Verl. f. Grundstoffindustrie 1973.

    Google Scholar 

  13. J. E. Geguzin, A. C. Dsjuba, W. L. Indenbom, and N. N. Ovcarenko, Kristallografia 18,800(1973).

    Google Scholar 

  14. F. V. Lenel, G. S. Ansell, and R. C. Morris, in: Modern Developments in Powder Metallurgy (H. Hausner, ed.), Vol. 4. New York-London: Plenum Press 1971.

    Google Scholar 

  15. D. L. Johnson, J. Appl. Phys. 40, 192 (1969).

    Article  CAS  Google Scholar 

  16. R. C. Morris, Acta Met. 23, 463 (1975).

    Article  CAS  Google Scholar 

  17. J. I. Boiko, J. E. Geguzin, W. G. Kononenko, E. Friedrich, and W. Schatt, Poroskov. Metall. 10,14(1980).

    Google Scholar 

  18. P. Lany, VII. Internat. Pulvermetall. Tagung der DDR 1981, Vol. 2, p. 10.

    Google Scholar 

  19. W. Schatt, E. Friedrich, and D. Joensson, Acta Met. 31, 121 (1983).

    Article  Google Scholar 

  20. D. Joensson, Technische Mechanik 4, 64 (1983).

    Google Scholar 

  21. B. Kieback and W. Hermel, 1984 Powder Metallurgy Group Meeting, Sintering: Theory and Practice, Harrogate, Paper 6.

    Google Scholar 

  22. F. Sauerwald and L. Holub, Z. Elektrochemie 39, 70 (1933).

    Google Scholar 

  23. W. Schatt and S. E. Heinrich, Planseeber. f. Pulveraiet. 18, 7 (1970).

    CAS  Google Scholar 

  24. W. Schatt and E. Friedrich, Planseeber. f. Pulvermet. 25, 145 (1977).

    CAS  Google Scholar 

  25. H.-J. Ullrich, A. Herenz, E. Friedrich, W. Schatt, and Ch. Döring, Mikrochim. Acta [Wien] 19831, 175.

    Google Scholar 

  26. E. Friedrich and W. Schatt, Powder Metallurgy 4, 193 (1980).

    Google Scholar 

  27. W. Schatt and E. Friedrich, Z. Metallk. 73, 56 (1982).

    CAS  Google Scholar 

  28. G. Naumann, J. I. Boiko, and W. Schatt, Planseeber. f. Pulvermet. 25, 145 (1977).

    Google Scholar 

  29. G. C. Kuczynski, J. Metals 1, 196 (1949).

    Google Scholar 

  30. G. C. Kuczynski, J. Appl. Phys. 20, 1160 (1949).

    Article  CAS  Google Scholar 

  31. G. C. Kuczynski, Metals Transactions, February 1949, p. 169.

    Google Scholar 

  32. Landqlt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, Technik, Vol. IV/2b. Berlin-Göttingen-Heidelberg-New York: Springer- Verlag 1964.

    Google Scholar 

  33. W. Schatt, H. E. Exner, E. Friedrich, and G. Petzow, Acta Met. 30, 1367 (1982).

    Article  Google Scholar 

  34. E. Arzt, E. Friedrich, W. Schatt, and A. Scheibe, in Vorbereitung.

    Google Scholar 

  35. W. Schatt, K.-P. Wieters, and M. Rolle, in Vorbereitung.

    Google Scholar 

  36. M. Slesar, M. Besterci, and E. Dudrova, 5th Symposium on Powder-Metallurgy, Rydzina, Poland, 22.-24.9. 1980, p. 167.

    Google Scholar 

  37. W. Schatt, J. I. Boiko, E. Friedrich, and A. Scheibe, Powd. Met. Int. 16, 9 (1984).

    CAS  Google Scholar 

  38. A. M. Kosevic, Uspechi fisiceskich nauk 114, 509 (1974).

    Article  Google Scholar 

  39. J. E. Geguzin, Solid State Physics (UdSSR) 1950 (1975).

    Google Scholar 

  40. R. Raj, and M. F. Ashby, Met. Trans. 2, 1113 (1971).

    Google Scholar 

  41. A. Scheibe, Dissertation A, TU Dresden, Fakultät für Maschinenwesen, 1984.

    Google Scholar 

  42. J. E. Geguzin, Fisika spekanija, Moskwa “Nauka”, II. isdanije, 1984, p. 284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Schatt, W. (1985). Kossel Technique and Positron Annihilation Used to Clarify Sintering Processes. In: Grasserbauer, M., Wegscheider, W. (eds) Progress in Materials Analysis. Mikrochimica Acta Supplementum, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8840-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8840-8_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81905-0

  • Online ISBN: 978-3-7091-8840-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics