Positron Studies of Defects in Metals and Semiconductors

  • Otto Brümmer
  • G. Dlubek
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


The study of defect properties in metallic and semiconducting material is important from the fundamental as well from the technological point of view. Positron annihilation is a method which is sensitive to defects on a microscopic and atomic scale. The method has its special potential in detecting vacancy-type defects. Positrons have found wide applications in studying defects in metals. Recently the positron method has also turned out to be a potential tool for defects in semiconductors. In this paper we present examples of applying positron annihilation in three different fields: (i) recovery and recrystallization of plastically deformed metals, (ii) decomposition phenomena in alloys, and (iii) vacancy-defects in compound semiconductors.


Electron Spin Resonance Positron Annihilation Deep Level Transient Spectroscopy Positron Lifetime Vacancy Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hautojärvi (ed.), Positrons in Solids, Topics in Current Physics, Vol. 12. Berlin-Heidelberg-New York: Springer 1979.Google Scholar
  2. 2.
    W. Brandt and A. Dupasquier (eds.), Positron Solid State Physics, Proc. Int. School of Physics “Enrico Fermi”, Varenna 1981. New York-Amsterdam: North-Holland Publ. Comp. 1982.Google Scholar
  3. 3.
    G. Dlubek, in: Ausgewählte Untersuchungsverfahren in der Metallkunde. Leipzig: VEB Deutscher Verlag für Grundstoffindustrie 1983, p. 266.Google Scholar
  4. 4.
    Th. Hehenkamp, W. Lühr-Tauck, and A. Sager, Mikrochim. Acta [Wien], Suppl. 10, 9 (1983).Google Scholar
  5. 5.
    N. Meyendorf, G. Dlubek, O. Brümmer, A. Baranowski, and B. Rozenfeld, Crystal Res. Technol. 19, 507 (1984).CrossRefGoogle Scholar
  6. 6.
    F. Pleiter and C. Hohenemser, Phys. Rev. B25, 106 (1982).CrossRefGoogle Scholar
  7. 7.
    T. Gorecki, Ber. Bunsenges. Phys. Chemie 87, 801 (1983).Google Scholar
  8. 8.
    G. Dlubek, O. Kabisch, O. Brümmer, and H. Löffler, phys. stat. sol. (a) 55, 509 (1979).Google Scholar
  9. 9.
    W. B. Gauster and W. R. Wampler, Phil. Mag. A41, 145 (1980).CrossRefGoogle Scholar
  10. 10.
    G. Dlubek, O. Brümmer, R. Krause, A. Baranowski, and B. Rozenfeld, phys. stat. sol. (a) 78,, 217 (1983).Google Scholar
  11. 11.
    G. Dlubek, Crystal Res. Technol. 19, 1319 (1984).CrossRefGoogle Scholar
  12. 12.
    G. M. Martin and S. Makram-Ebeid,Physica 116 B+C, 371 (1983).Google Scholar
  13. 13.
    S. Dannefaer, G. W. Dean, D. P. Kerr, and B. G. Hogg, Phys. Rev. B14, 2709 (1976).CrossRefGoogle Scholar
  14. 14.
    W. Fuchs, U. Holzhauer, S. Mantl, F. W. Richter, and R. Sturm, phys. stat. sol. (b) 89,69(1978).Google Scholar
  15. 15.
    S. Dannefaer, B. Hogg, and D. Kerr, Phys. Rev. B30, 3355 (1984).Google Scholar
  16. 16.
    G. Dlubek, O. Brümmer, F. Plazaola and P. Hautojärvi, to be published.Google Scholar
  17. 17.
    P. V. Lang, in: Radiation Effects in Semiconductors 1976, Inst. Phys. Conf. Ser. 31 ( N. B. Urli and J. W. Corbett, eds.). Bristol, London: The Inst, of Phys. 1977, p. 70.Google Scholar
  18. 18.
    R. Wörner, U. Kaufman, and J. Schneider, Appl. Phys. Lett. 40, 141 (1982).CrossRefGoogle Scholar
  19. 19.
    D. Pons, Physica 116 B+C, 388 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Otto Brümmer
    • 1
  • G. Dlubek
    • 1
  1. 1.Sektion PhysikMartin-Luther-Universität Halle-WittenbergHalle-SaaleGerman Democratic Republic

Personalised recommendations