Quantitative Distribution Analysis of Phosphorus in Silicon with Secondary Ion Mass Spectrometry

  • G. Stingeder
  • M. Grasserbauer
  • U. Traxlmayr
  • E. Guerrero
  • H. Pötzl
Part of the Mikrochimica Acta Supplementum book series (MIKROCHIMICA, volume 11)


In VLSI-technology (Very Large Scale Integration) tolerances of process parameters are decreasing. Process modelling (in this paper the simulation of dopant profiles) has become an essential development tool. Thermal diffusion is occurring in every temperature step (typical temperature 800–1100 °C). Therefore basic understanding of the physical process influencing the diffusion is very important (e.g. mutual diffusion of different dopant elements, oxidation, nitriding). Since the early 60’s it was already known that at high concentrations (> ~ 1020 cm−3) classical theories (complementary error function, Gaussian distribution) do not correctly describe dopant profiles in silicon. Because of the lack of suitable models they were used up to the early 70’s. After this period more complex models which tried to take into account basic physical concepts were developed. The calculations are mathematically complicated requiring simultaneous partial differential equations.


Neutron Activation Analysis Depth Profile Mass Number High Mass Resolution Dopant Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Hu, Proceedings of the 3rd Int. Symp. on VLSI Science and Technology (W. M. Bullis, ed. ), Electrochemical Society, May 1985.Google Scholar
  2. 2.
    T. Y. Tan and U. Gösele, Appl. Phys. Lett. 40/7, 616 (1982).Google Scholar
  3. 3.
    G. Stingeder, M. Grasserbauer, E. Guerrero, H. Pötzl, and R. Tielert, Fresenius’ Z. Anal. Chem. 314, 304 (1983).CrossRefGoogle Scholar
  4. 4.
    M. Grasserbauer and G. Stingeder, Trends in Analytical Chemistry 3/5, 133 (1984).Google Scholar
  5. 5.
    M. Grasserbauer, S. Stingeder, H. Pötzl, and E. Guerrero, to be published in Fresenius’ Z. Anal. Chem. (1985).Google Scholar
  6. 6.
    S. M. Hu, P. Fahey, and R. W. Dutton, J. Appl. Phys. 54/12, 6912 (1983).Google Scholar
  7. 7.
    F. Burkhardt, A. Mertens, and C. Wagner, phys. stat. sol. (a) 22, K45 (1974).Google Scholar
  8. 8.
    A. Benninghoven, J. Giber, J. Laszlo, M. Riedel, and H. W. Werner (eds.), Secondary Ion Mass Spectrometry SIMS III, Springer Ser. Chem. Phys. 19. Berlin-Heidelberg- New York: Springer 1982.Google Scholar
  9. 9.
    A. Benninghoven, J. Okano, R. Shimizu, and H. W. Werner (eds.), Secondary Ion Mass Spectrometry SIMS IV, Springer Ser. Chem. Phys. 36. Berlin-Heidelberg- New York-Tokyo: Springer 1984.Google Scholar
  10. 10.
    R. A. Burdo and G. H. Morrison, Table of Atomic and Molecular Lines for Spark Source Mass Spectrometry of Complex Sample-Graphite Mixes. Department of Chemistry, Cornell University, Ithaca, N.Y., U.SA.Google Scholar
  11. 11.
    K.Wittmaack, Phys. Lett. 29/9,552(1976).Google Scholar
  12. 12.
    U. Traxlmayr and K. Riedling, Int. J. Mass Spectrom. Ion Proc. 61, 261 (1984).CrossRefGoogle Scholar
  13. 13.
    H. W. Werner, Fresenius’ Z. Anal. Chem. 314, 274 (1983).CrossRefGoogle Scholar
  14. 14.
    D. Shaw (ed.), Atomic Diffusion in Semiconductors. London: Plenum Press 1973.Google Scholar
  15. 15.
    J. Narayan and T. Y. Tan (eds.), Defect in Semiconductors, North-Holland 1981.Google Scholar
  16. 16.
    S. Mahajan and J. W. Corbett (eds.), Defects in Semiconductors, North-Holland 1983.Google Scholar
  17. 17.
    L. E. Miller and H. Gatos (ed.), Properties of Elemental and Compound Semiconductors. New York: Interscience 1960, p. 303.Google Scholar
  18. 18.
    D. B. Lee, Philips Res. Rept. Suppl. 5 (1974).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • G. Stingeder
    • 1
  • M. Grasserbauer
    • 1
  • U. Traxlmayr
    • 2
  • E. Guerrero
    • 2
  • H. Pötzl
    • 2
    • 3
  1. 1.Institute for Analytical ChemistryTechnical University ViennaWienAustria
  2. 2.Institute for General Electrical Engineering and ElectronicsTechnical University ViennaViennaAustria
  3. 3.Ludwig Boltzmann-Institute for Solid State PhysicsViennaAustria

Personalised recommendations