Composite Quarks and Leptons

  • W. Buchmüller
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 27/1985)


The present theory of particle physics is the standard model of strong and electroweak interactions [1]. It is a renormalizable quantum field theory which describes sucessfully all our experimental information about the structure of matter down to distances of 10−16 cm. Despite its extraordinary success, however, there appears to be a general consensus that the standard model can only be an effective “low energy” Lagrangian of a more fundamental theory. Indeed, the gauge structure of strong, electromagnetic and weak interactions suggests a unification of all forces [2,3], the replication of families and the hierachical pattern of fermion masses point towards a common underlying structure of quarks and leptons, and the “naturalness problem” [4–6] of fundamental scalar fields seems to require a modification of the Higgs sector.


Yukawa Coupling Chiral Symmetry Global Symmetry Vector Boson Goldstone Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.L. Glashow, Nucl. Phys. 22 (1961) 579.Google Scholar
  2. S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.ADSGoogle Scholar
  3. A. Salam, in Elementary Particle Theory, ed. N. Svartholm (Almqvist and Wiksell, Stockholm, 1968) 367.Google Scholar
  4. 2.
    J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 275.ADSGoogle Scholar
  5. 3.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974) 438.ADSGoogle Scholar
  6. 4.
    K.G. Wilson, Phys. Rev. D3 (1971) 1818.ADSGoogle Scholar
  7. 5.
    L. Susskind, Phys, Rev. D20 (1979) 2619.Google Scholar
  8. G. ‘t Hooft, in Recent Developments in Gauge Theories, Cargese 1979, eds. G. ‘t Hooft et al. (Plenum, New York and London).Google Scholar
  9. 7.
    For a review and an extensive list of references, see: L. Lyons, Progress in Particle and Nuclear Physics 10 (1983) 227; Oxford preprint 2/84 (1984).ADSGoogle Scholar
  10. 8.
    For an introduction, see, for instance: G.G. Ross, Grand unified theories (The Benjamin/Cummings Publishing Company, Inc., 1985).Google Scholar
  11. 9.
    For a recent review, see: D. Wyler, Lectures given at the Escuela Mexicana de Partículas y Campos, Oaxtebec, Mexico, December 1984, ETH preprint (1985).Google Scholar
  12. 10.
    There exists a vast literature on this subject. For recent reviews, see: G. Ecker, Acta Phys. Pol. B15 (1984) 179;Google Scholar
  13. B. Stech, in Proceedings of the Europhysics Topical Conference on Flavor Mixing in Weak Interactions, Erice, 1984, ed. by L.L. Chau (Plenum Press, New York, 1984).Google Scholar
  14. 11.
    L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.ADSGoogle Scholar
  15. 12.
    P.H. Frampton and C. Jarlskog, Phys. Lett. 154B (1985) 421.ADSGoogle Scholar
  16. 13.
    J. Gasserand H. Leutwyler, Phys. Rep. 87C (1982) 77.ADSGoogle Scholar
  17. J.C. Pati and A. Salam, ref.2, footnote 7.Google Scholar
  18. 15.
    O.W. Greenberg and C.A. Nelson, Phys. Rev. D10 (1974) 2567.ADSGoogle Scholar
  19. 16.
    K. Matumoto, Prog. Theor. Phys. 52 (1974) 1973.ADSGoogle Scholar
  20. 17.
    J.C. Pati, A. Salam and J. Strathdee, Phys. Lett. 59B (1975) 265.ADSGoogle Scholar
  21. 18.
    M.E. Peskin, in Proc. of the Lepton Photon Symposium, Bonn University, ed. W. Pfeil (1981), p.880.Google Scholar
  22. 19.
    R.D. Peccei, in Proc. of the Fourth Topical Workshop on Proton-Antiproton Collider Physics, Bern, eds. H. Hanni and J. Schacher (1984), p.483.Google Scholar
  23. 20.
    H. Terazawa, in Proc. of the XXII International Conference on High Energy Physics, Leipzig, eds. A. Meyer and E. Wieczorek (1984), p.63.Google Scholar
  24. 21.
    H. Harari, Phys. Lett. 86B (1979) 83.ADSGoogle Scholar
  25. 22.
    M.A. Shupe, Phys. Lett. 86B (1979) 87.ADSGoogle Scholar
  26. 23.
    H. Harari and N. Seiberg, Phys. Lett. 98B (1981) 269;ADSGoogle Scholar
  27. H. Harari and N. Seiberg, Nucl. Phys. B204 (1982) 141.ADSGoogle Scholar
  28. 24.
    I. Bars, Nucl. Phys. B208 (1982) 77.ADSGoogle Scholar
  29. 25.
    B. Schrempp and F. Schrempp, Nucl. Phys. B231 (1984) 109; ibid. B242 (1984) 203.ADSGoogle Scholar
  30. 26.
    H. Georgi and D.B. Kaplan, Phys. Lett. 145B (1984) 216;ADSGoogle Scholar
  31. H. Georgi, Phys. Lett. 151B (1985) 57.ADSGoogle Scholar
  32. 27.
    R. Barbieri, A. Masiero and R.N. Mohapatra, Phys. Lett. 105B (1981) 369.ADSGoogle Scholar
  33. 28.
    L. Abbott and E. Farhi, Phys. Lett. 101B (1981) 69.ADSGoogle Scholar
  34. 29.
    O.W. Greenberg and J. Sucher, Phys. Lett. 99B (1981) 339.ADSGoogle Scholar
  35. 30.
    H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B (1981) 369.Google Scholar
  36. 31.
    R. Casalbuoni and R. Gatto, Phys. Lett. 103B (1981) 113.ADSGoogle Scholar
  37. 32.
    H. Terazawa and K. Akama, Phys. Lett. 96B (1980) 276.ADSGoogle Scholar
  38. 33.
    H. Harari, Phys. Rep. 104 (1984) 159.ADSGoogle Scholar
  39. 34.
    For a more complete discussion, see: S. Yamada, in Proc. of the XXII International Conference on High Energy Physics, Leipzig, eds. A. Meyer and E. Wieczorek (1984) p.72.Google Scholar
  40. 35.
    E.J. Eichten, K.D. Lane and M.E. Peskin, Phys. Rev. Lett. 50 (1983) 811.ADSGoogle Scholar
  41. 36.
    M. Aboxins et al., in Proc. of the 1982 Summer Study on Elementary Particles and Fields, Snowmass, eds. R. Donaldson et al. (Amer. Inst. Phys. N.Y., 1983) p.274.Google Scholar
  42. 37.
    R. Riickl, Phys. Lett. 129B (1983) 363.ADSGoogle Scholar
  43. 38.
    R. Riickl, Nucl. Phys. B234 (1984) 91.ADSGoogle Scholar
  44. 39.
    T. Maehara and T. Yanagida, Prog. Theor. Phys. 61 (1979) 1434.Google Scholar
  45. 40.
    R.N. Cahn and H. Harari, Nucl. Phys. B176 (1980) 135.ADSGoogle Scholar
  46. 41.
    G.L. Kane and R. Thun, Phys. Lett. 94B (1980) 513.ADSGoogle Scholar
  47. 42.
    S. Dimopoulos and J. Ellis, Nucl. Phys. B182 (1981) 505.ADSGoogle Scholar
  48. 43.
    I. Bars, in Proc. Moriond Workshop on Quarks, Leptons and Supersymmetry, ed. J. Tran Thanh Van (1982) p.541.Google Scholar
  49. 44.
    C.N. Leung, S.T. Love and S. Rao, preprint Fermilab-Pub-84/74-T (1984).Google Scholar
  50. 45.
    Ch. Kopper, Phys. Lett. 155B (1985) 409.ADSGoogle Scholar
  51. W. Buchmiiller and D. Wyler, in preparation.Google Scholar
  52. 47.
    R. Barbieri, L. Maiani and R. Petronzio, Phys. Lett. 96B (1980) 63.ADSGoogle Scholar
  53. 48.
    S. Brodsky and S.D. Drell, Phys. Rev. D22 (1980) 2236.ADSGoogle Scholar
  54. 49.
    T. Kinoshita and W.B. Lindquist, Phys. Rev. Lett. 47 (1981) 1573;ADSGoogle Scholar
  55. T. Kinoshita, B. Nižić, and Y. Okamoto, Phys. Rev. Lett. 54 (1984) 717.ADSGoogle Scholar
  56. 50.
    Review of Particle Properties, Rev. Mod. Phys. 56 (1984) No.2, Part II.Google Scholar
  57. 51.
    O.W. Greenberg, R.N. Mohapatra and S. Nussinov, Phys. Lett. 148B (1984) 465.ADSGoogle Scholar
  58. 52.
    J.D. Bjorken, Phys. Rev. (1979) 335.Google Scholar
  59. 53.
    P.Q. Hung and J.J. Sakurai, Nucl. Phys. B143 (1978) 81.ADSGoogle Scholar
  60. 54.
    R. Kögerler and D. Schildknecht, preprint CERN-TH 3231 (1982).Google Scholar
  61. 55.
    H. Fritzsch, R. Kögerler and D. Schildknecht, Phys. Lett. 114B (1982) 157.ADSGoogle Scholar
  62. 56.
    H.G. Dosch, M. Kremer and M.G. Schmidt, Phys. Lett. 137B (1984) 88;ADSGoogle Scholar
  63. H.G. Dosch, M. Kremer and M.G. Schmidt, Z. Phys. C26 (1985) 569.ADSGoogle Scholar
  64. 57.
    V.A. Matveev, M.E. Shaposhnikov and A.N. Tavkhelidze, Moscow preprint P-0325 (1983).Google Scholar
  65. 58.
    S. Narison, Montpellier preprint PM 84/23 (1984).Google Scholar
  66. 59.
    W. Buchmüller and M.G. Schmidt, Nucl. Phys. B285 (1985) 230.Google Scholar
  67. 60.
    B. Schrempp and F. Schrempp, preprint DESY 84–055 (1984).Google Scholar
  68. 61.
    N.M. Kroll, T.D. Lee and B. Zumino, Phys. Rev. 157 (1967) 1376.ADSGoogle Scholar
  69. 62.
    J.J. Sakurai, Acta Phys. Aust. Suppl. XXIV (1982) 275.Google Scholar
  70. 63.
    P. Chen and J.J. Sakurai, Phys. Lett. 110B (1982):481.ADSGoogle Scholar
  71. 64.
    H. Fritzsch and G. Mandelbaum, Phys. Lett. 109B (1982) 224.ADSGoogle Scholar
  72. 65.
    W. Buchmüller, Phys. Lett. 145B (1984) 151.ADSGoogle Scholar
  73. 66.
    M. Kuroda, D. Schildknecht and K.-H. Schwarzer, Bielefeld preprint BI-TP 84/2 2 (1984).Google Scholar
  74. 67.
    R.D. Peccei, in Proc. of the ECFA-CERN Workshop, Lausanne, ed. M. Jacob, (1984) p.329.Google Scholar
  75. 68.
    F.M. Renard, Montpellier preprint PM/84/4 (1984).Google Scholar
  76. 69.
    B. Schrempp and F. Schrempp, Phys. Lett. 153B (1985) 101.ADSGoogle Scholar
  77. CELLO collaboration, H.J. Behrend et al., Phys, Lett. 141B (1984) 145ADSGoogle Scholar
  78. 71.
    UA1 collaboration, G. Arnison et al., Phys. Lett. 155B (1985) 442.ADSGoogle Scholar
  79. 72.
    O. Dumbrajs et al., Nucl. Phys. B216 (1983) 304.Google Scholar
  80. For a thorough review of “chiral symmetry and chiral symmetry breaking”, see: M.E. Peskin, Lectures given at the 1982 Los Houches Summer School of Theoretical Physics, preprint SLAC-PUB-3021 (1982).Google Scholar
  81. 74.
    S. Weinberg, Phys. Rev. (1968) 1568.Google Scholar
  82. 75.
    See, for instance, C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill Inc., 1980).Google Scholar
  83. 76.
    K.M. Case and S. Gasiorowicz, Phys. Rev. 125 (1962) 1055.MathSciNetADSMATHGoogle Scholar
  84. 77.
    S. Weinberg and E. Witten, Phys. Lett. 96B (1980) 59.MathSciNetADSGoogle Scholar
  85. 78.
    J.-M. Gerard, J. Govaerts, Y. Meurice and J. Weyers, Phys. Lett. 116B (1982) 29;ADSGoogle Scholar
  86. J.-M. Gerard, J. Govaerts, Y. Meurice and J. Weyers, Nucl. Phys. B234 (1984) 138.ADSGoogle Scholar
  87. 79.
    R. Barbieri, Phys. Lett. 121B (1983) 43.ADSGoogle Scholar
  88. 80.
    J.C. Pati and A. Salam, Nucl. Phys. B214 (1983) 109.MathSciNetADSGoogle Scholar
  89. 81.
    Y.J. Ng and B.A. Ovru, Phys. Lett. 125B (1983) 147;ADSGoogle Scholar
  90. Y.J. Ng and B.A. Ovru, Phys. Rev. D29 (1984) 138.ADSGoogle Scholar
  91. 82.
    F. Bordi, R. Casalbuoni, D. Dominici and R. Gatto, Phys. Lett. 127B (1983) 419.ADSGoogle Scholar
  92. 83.
    H.P. Nilles, Phys. Lett. 112B (1982) 455.ADSGoogle Scholar
  93. 84.
    W. Buchmiiller and S.T. Love, Nucl. Phys. B204 (1982) 213.ADSGoogle Scholar
  94. 85.
    G. Veneziano, Phys. Lett. 124B (1983) 357.ADSGoogle Scholar
  95. W.A. Bardeen and V. Visnjic, Nucl. Phys. B194 (1982) 422ADSGoogle Scholar
  96. 87.
    W. Buchmiiller, S.T. Love, R.D. Peccei and T. Yanagida, Phys. Lett. 115B (1982) 233;ADSGoogle Scholar
  97. W. Buchmüller, R.D. Peccei and T. Yanagida, Phys. Lett. 124B (1983) 67.ADSGoogle Scholar
  98. 88.
    We use the conventions of J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1983).MATHGoogle Scholar
  99. 89.
    JR. Barbieri, A. Masiero and G. Veneziano, Phys. Lett. 128B (1983) 493.Google Scholar
  100. 90.
    W. Buchmiiller, R.D. Peccei and T. Yanagida, Nucl. Phys. B227 (1983) 503.ADSGoogle Scholar
  101. 91.
    O.W. Greenberg, R.N. Mohapatra and M. Yasue, Phys. Lett. 127B (1983) 419; Phys. Rev. Lett. (1983) 1737.Google Scholar
  102. 92.
    C.L. Ong, Phys. Rev. D27 (1983) 911.MathSciNetADSGoogle Scholar
  103. 93.
    W. Buchmiiller, R.D. Peccei and T. Yanagida, Nucl. Phys. B231 (1984) 53.ADSGoogle Scholar
  104. 94.
    W. Lerche and D. Lüst, Nucl. Phys. B244 (1984) 157.ADSGoogle Scholar
  105. 95.
    W. Buchmüller, R.D. Peccei and T. Yanagida, Nucl. Phys. B244 (1984) 186.ADSGoogle Scholar
  106. 96.
    A. Masiero, R. Pettorine, M. Roncadelli and G. Veneziano, preprint CERN-TH. 4166 (1985)Google Scholar
  107. 97.
    W. Lerche, Nucl. Phys. B238 (1984) 582.MathSciNetADSGoogle Scholar
  108. 98.
    G. Shore, Nucl. Phys. B248 (1984) 123.ADSGoogle Scholar
  109. 99.
    W. Lerche, thesis, Munich 1985.Google Scholar
  110. 100.
    T. Kugo, S. Uehara and T. Yanagida, Phys. Lett. 147B (1984) 321.ADSGoogle Scholar
  111. 101.
    M. Bando, T. Kuramoto, T. Maskawa and S. Uehara, Phys. Lett. 138B (1984) 94.MathSciNetADSGoogle Scholar
  112. 102.
    For a review, see: J. Bagger, Lectures given at the NATO Advanced Study Institute on Supersymmetry, Bonn 1984, preprint SLAC-PUB-3461 (1984).Google Scholar
  113. 103.
    B. Zumino, Phys. Lett. 87B (1979) 203.ADSGoogle Scholar
  114. 104.
    A. Buras and W. Slominski, Nucl. Phys. B223 (1983) 157.ADSGoogle Scholar
  115. 105.
    W. Buchmüller and U. Ellwanger, preprint CERN-TH 4113 (1985).Google Scholar
  116. 106.
    A. Masiero and G. Veneziano, preprint CERN-TH 3950 (1984).Google Scholar
  117. 107.
    Y. Achiman, S. Aoyama and J.W. van Holten, Phys. Lett. 150B (1985) 153.ADSGoogle Scholar
  118. 108.
    J. Bagger and E. Witten, Phys. Lett. 118B (1982) 103.MathSciNetADSGoogle Scholar
  119. 109.
    W. Buchmüller and U. Ellwanger, Nucl. Phys. B245 (1984) 237.ADSGoogle Scholar
  120. 110.
    For a review, see: H.P. Nilles, Phys. Rep. 110 (1984).Google Scholar
  121. 111.
    L.E. Ibanez and G.G. Ross, Phys. Lett. 110B (1982) 215.ADSGoogle Scholar
  122. 112.
    H. Harari and N. Seiberg, Phys. Lett. 100B (1981) 41.ADSGoogle Scholar
  123. 113.
    O. Napoly, Saclay preprint SPhT-84–51 (1984).Google Scholar
  124. 114.
    R.D. Peccei, Lectures given at CERN, February 1985.Google Scholar
  125. 115.
    T.H.R. Skyrme, Proc. Roy. Soc. A260 (1961) 127;MathSciNetADSGoogle Scholar
  126. E. Witten, Nucl. Phys. B223 (1983) 433.MathSciNetADSGoogle Scholar
  127. 116.
    M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54 (1985) 1215.Google Scholar
  128. 117.
    C.L. Ong, Phys. Rev. D27 (1983) 3044.MathSciNetADSGoogle Scholar
  129. 118.
    T. Kugo and T. Yanagida 134B (1984) 313.MathSciNetGoogle Scholar
  130. 119.
    Y. Achiman, S. Aoyama and J.W. van Holten, Phys. Lett. 141B (1984) 64; Wuppertal preprint WU B 85–2 (1985).ADSGoogle Scholar
  131. 120.
    L.E. Ibanez, Phys. Lett. 150B (1985) 127.MathSciNetADSGoogle Scholar
  132. 121.
    C.L. Ong, preprint SLAC-PUB-3459 (1984).Google Scholar
  133. 122.
    S. Irie and Y. Yasui, Tohoku preprint TU/85/278 (1985).Google Scholar
  134. 123.
    R. Slansky, Phys. Rep. 79 (1981) 1.MathSciNetADSGoogle Scholar
  135. 124.
    M. Bordemann, M, Forger and H. Römer, preprint CERN-TH 4111 (1985).Google Scholar
  136. 125.
    W. Buchmüller and O. Napoly, preprint CERN-TH 4197 (1985)Google Scholar
  137. 126.
    D.I. Olive, in Unification of the Fundamental Particle Interactions II, Erice 1981, edited by J. Ellis and S. Ferrara (Plenum Press, New York, 1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. Buchmüller
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations