That research in the trichothecene field is an area of intense interest cannot be disputed. In the years 1982 and 1983, there were more than 500 publications dealing with this subject, including more than 30 reviews. In addition, a comprehensive monograph has recently appeared (151). Virtually every aspect of the problem has been reviewed, including isolation and structure determination (8, 9, 70, 75, 81, 136), biological and biochemical studies (11, 39, 136, 155), toxicology (110, 154, 156), quantitative methods for determination (7, 108, 126, 153), and biosynthesis (35, 137). Efforts directed at the chemical synthesis of trichothecenes have received less attention (47, 112, 138, 141), primarily due to the relative scarcity of published material on the topic prior to 1980. However, since that time, more than ten total syntheses of naturally occuring trichothecenes have been reported, including some of the structurally more complex members of the family. The data base Federal Research in Progress reveals that for fiscal year 1982, there were nine research groups with U.S. government funding pursuing the chemical synthesis of trichothecenes. In light of this proliferation of synthetic work, the present review will concentrate on that area. One deviation from this plan will be an exhaustive compilation of known naturally occurring compounds with trichothecenoid structures. This listing will be an update of an earlier tabulation by Tamm (137) and will generally follow Tamm’s previous format.


Chemical Synthesis Total Synthesis Tetrahedron Letter Trichothecene Mycotoxin Olefin Isomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrahamsson, S., and B. Nilsson: The molecular structure of trichodermin. Acta Chem. Scand. 20, 1044 (1966).CrossRefGoogle Scholar
  2. 2.
    Direct determination of the molecular structure of trichodermin. Proc. Chem. Soc. (London) 1964, 188.Google Scholar
  3. 3.
    Achilladelis, B., and J. R. Hanson: Minor terpenoids of Trichothecium. Phytochem. 8, 765 (1969).CrossRefGoogle Scholar
  4. 4.
    Adler, S. S., S. Lowenbraun, B. Birch, R. Jarrell, and J. Garrard: Anguidine: a broad phase II study of the Southeastern Cancer Study Group. Cancer Treat. Rep. 68, 423 (1984).Google Scholar
  5. 5.
    Anderson, W. K., E. J. Lavoie, and G. E. Lee: Synthesis of 6,9-bisnormethyl-8methoxy-6,8,10-trichothecatriene. J. Organ. Chem. (USA) 42, 1045 (1977).CrossRefGoogle Scholar
  6. 6.
    Anderson, W. K., and G. E. Lee: Synthesis of C-ring-functionalized A-ring-aromatic trichothecane analogs. J. Organ. Chem. (USA) 45, 501 (1980).CrossRefGoogle Scholar
  7. 7.
    Asake, Y., and S. Takitani: Thin-layer Chromatographie analysis of trichothecene mycotoxins. Dev. Food Sci. 4, 113 (1983).Google Scholar
  8. 8.
    Bamburg, J. R., and F.M. Strong: 12,13-Epoxytrichothecenes. Microbial Toxins 7, 207 (1971).Google Scholar
  9. 9.
    Bamburg, J. R.: Chemical and biochemical studies of the trichothecene mycotoxins. In: Mycotoxins and other fungal related food problems (Rodricks, J. V., ed.), p. 144. Washington, D.C.: American Chemical Society. 1976.CrossRefGoogle Scholar
  10. 10.
    Bamburg, J. R., and F. M. Strong: Mycotoxins of the trichothecene family produced by Fusarium tricinctum and Trichoderma lignorum. Phytochem. 12, 2405 (1969).CrossRefGoogle Scholar
  11. 11.
    Bamburg, J. R.: Biological and biochemical actions of trichothecene mycotoxins. Proc. Mol. Subcell. Biol. 8, 41 (1983).CrossRefGoogle Scholar
  12. 12.
    Banks, R. E., J. A. Miller, M. J. Nunn, P. Stanley, T. J. R. Weakley, and Z. Ullah: Diels-Alder route to potential trichothecene precursors. J. Chem. Soc., Perkin Trans. I 1981, 1096.CrossRefGoogle Scholar
  13. 13.
    Bartlett, P. A., D. J. Tanzella, and J. F. Barstow: Ester-enolate Claisen rearrangement of lactic acid derivatives. J. Organ. Chem. (USA) 47, 3941 (1982).CrossRefGoogle Scholar
  14. 14.
    Bata, A., A. Vanyl, and R. Lasztity: Study of mycotoxins in foods. V. Parallel detection of some fusariotoxins by capillary gas chromatography. Elelmiszervizsgalati Kozl. 28, 189 (1982).Google Scholar
  15. 15.
    Bennett, G. A., R. E. Peterson, R. D. Plattner, and O. L. Shotwell: Isolation and purification of deoxynivalenol and a new trichothecene by high-pressure liquid chromatography. J. Amer. Oil Chem. Soc. 58, 1002 (1981).CrossRefGoogle Scholar
  16. 16.
    Betina, V., and M. Vankova: Trichothecin — an antibiotic morphogenic factor. Mycotoxin and bitter substance of apples. Biologia (Bratislava) 32, 943 (1977).Google Scholar
  17. 17.
    Blight, M. M., and J. F. Grove: New metabolic products of Fusarium culmorum. Toxic trichothec-9-en-8-ones and 2-acetylquinazolin-4(3H)-one. J. Chem. Soc., Perkin Trans. I 1974, 1691.CrossRefGoogle Scholar
  18. 18.
    Bloem, R. J., T. A. Smitka, R. H. Bunge, J. C. French, and E. P. Mazzola: Roridin L-2, a new trichothecene. Tetrahedron Letters, 24, 249 (1983).CrossRefGoogle Scholar
  19. 19.
    Bohner, B., and Ch. Tamm: Die Konstitution von Roridin A. Helv. Chim. Acta 49, 2527 (1966).CrossRefGoogle Scholar
  20. 20.
    — — Die Konstitution von Roridin D. Helv. Chim. Acta 49, 2547 (1966).CrossRefGoogle Scholar
  21. 21.
    Breitenstein, W., and Ch. Tamm: Carbon-13 NMR spectroscopy of the trichothecane derivatives verrucarol, verrucarins A and B, and roridins A, D, and H. Helv. Chim. Acta 58, 1172 (1975).CrossRefGoogle Scholar
  22. 22.
    Partial synthesis of tetrahydroverrucarin J. Helv. Chem. Acta 61, 1975 (1978).Google Scholar
  23. 23.
    Breitenstein, W., Ch. Tamm, E. V. Arnold, and J. Clardy: The absolute configuration of the fungal metabolite Verrucarin B. Biosynthetic consequences. Helv. Chim. Acta 62, 2699 (1979).CrossRefGoogle Scholar
  24. 24.
    Breitenstein, W., and Ch. Tamm: Verrucarin K, the first natural trichothecane derivative lacking the 12,13-epoxy group. Helv. Chim. Acta 60, 1522 (1977).CrossRefGoogle Scholar
  25. 25.
    Brian, P. W., and J. G. Mcgowan: Biologically active metabolic products of the mould Metarrhizium glutinosum S. Pope. Nature 157, 334 (1946).CrossRefGoogle Scholar
  26. 26.
    Brooks, D. W., P. G. Grothaus, and W. L. Irwin: Chiral cyclopentanoid synthetic intermediates via asymmetric microbial reduction of prochiral 2,2-disubstituted cyclopentanediones. J. Organ. Chem. (USA), 47, 2820 (1982).CrossRefGoogle Scholar
  27. 27.
    Brooks, D. W., P. G. Grothaus, and H. Mazdiyasni: Total synthesis of the trichothecene mycotoxin anguidine. J. Amer. Chem. Soc. 105, 4472 (1983).CrossRefGoogle Scholar
  28. 28.
    Brooks, D. W., P. G. Grothaus, and J. T. Palmer: Synthetic studies of trichothecenes. An enantioselective synthesis of a C-ring precursor of anguidine. Tetrahedron Letters 23, 4187 (1982).CrossRefGoogle Scholar
  29. 29.
    Buening, G. M., D. D. Mann, B. Hook, and G. D. Osweiler: The effect of T-2 toxin on the bovine immune system: Cellular factors. Vet. Immunol. Immunopathol. 3, 411 (1982).CrossRefGoogle Scholar
  30. 30.
    Burke, S. D., W. F. Fobare, and G. J. Pacofsky: Chelation control of enolate geometry. Acyclic diastereoselection via the enolate Claisen rearrangement. J. Organ. Chem. (USA) 48, 5221 (1983).CrossRefGoogle Scholar
  31. 31.
    Busam, L., and G. G. Habermehl: Accumulation of mycotoxins by Baccharis coridifolia: A reason for livestock poisoning. Naturwissenschaften 69, 392 (1982).CrossRefGoogle Scholar
  32. 32.
    Cole, R. J., J. W. Dorner, R. H. Cox, B. M. Cunfer, H. G. Cutler, and B. J. Stuart: The isolation and identification of several trichothecene mycotoxins from Fusarium heterosporum. J. Nat. Prod. 44, 324 (1981).CrossRefGoogle Scholar
  33. 33.
    Colvin, E. W., S. Malchenko, R. A. Raphael, and J. S. Roberts: Total synthesis of (±)-trichodermin. J. Chem. Soc. Perkins Trans. I 1973, 1989.Google Scholar
  34. 34.
    Synthetic studies on the sesquiterpene antibiotic verrucarol. J. Chem. Soc. Perkin Trans. I, 1978, 658.Google Scholar
  35. 55.
    Cordell, G. A.: Biosynthesis of sesquiterpenes. Chem. Rev. 76, 426 (1976).CrossRefGoogle Scholar
  36. 36.
    Cundliffe, E., and J. E. Davies: Inhibition of initiation, elongation and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob. Agents Chemother. 11, 491 (1977).Google Scholar
  37. 37.
    Dawkins, A. W., J. F. Grove, and B. K. Tidd: Diacetoxyscirpenol and some related compounds. Chem. Commun. 1965, 27.Google Scholar
  38. 38.
    Dawkins, A. W.: Phytotoxic compounds produced by Fusarium equiseti II. The chemistry of diacetoxyscirpenol. J. Chem. Soc. (C) 1966, 116.Google Scholar
  39. 39.
    Doyle, T. W., and W. T. Bradner: Trichothecenes. In: Anticancer agents based on natural product models (Cassidy, J. M., and J. D. Douros, eds.), p. 43. New York: Academic Press. 1980.Google Scholar
  40. 40.
    Eppley, R. M., E. P. Mazzola, M. E. Stack, and P. A. Dreifuss: Structure of satratoxin F and satratoxin G, metabolites of Stachybotrys atra: Application of proton and carbon-13 nuclear magnetic resonance spectroscopy. J. Organ. Chem. (USA) 45, 2522 (1980).CrossRefGoogle Scholar
  41. 41.
    Eppley, R. M., E. P. Mazzola, R. J. Highet, and W. J. Bailey: Structure of satratoxin H, a metabolite of Stachybotrys atra. Application of proton and carbon-13 nuclear magnetic resonance. J. Organ. Chem. (USA) 42, 240 (1977).CrossRefGoogle Scholar
  42. 42.
    Esmond, R., B. Fraser-Reid, and B. B. Jarvis: Synthesis of trichoverrin B and its conversion to verrucarin J. J. Organ. Chem. (USA) 47, 3358 (1982).CrossRefGoogle Scholar
  43. 43.
    Evans, R., J. R. Hanson, and T. Marten: Terpenoid biosynthesis XI. Stereochemistry of some stages in trichothecane biosynthesis. J. Chem. Soc. Perkins I. 1974, 857.CrossRefGoogle Scholar
  44. 44.
    Fetz, E., B. Bohner, and Ch. Tamm: Die Konstitution von Verrucarin J. Helv. Chim. Acta 48, 1669 (1965).CrossRefGoogle Scholar
  45. 45.
    Fishman, J., E. R. H. Jones, G. Lowe, and M. C. Whiting: The chemistry and stereochemistry of trichothecin. J. Chem. Soc. 1960, 3948.Google Scholar
  46. 46.
    Flury, E., R. Mauli, and H. P. Sigg: Constitution of diacetoxyscirpenol. Chem. Commun. 1965, 26.Google Scholar
  47. 47.
    Fraser-Reid, B.: Synthetic approach to trichothecenes from glucose. Kagaku. Zokan (Kyoto) 1983, 29.Google Scholar
  48. 48.
    Fraser-Reid, B., and R. Tsang: Personal Communication.Google Scholar
  49. 49.
    Freeman, G. G., J. E. Gill, and W. S. Waring: The structure of trichothecin and its hydrolysis products. J. Chem. Soc. 1959, 1105.Google Scholar
  50. 50.
    Freeman, G. G., and R. I. Morrison: The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum Link. Biochemistry 44, 1 (1949).Google Scholar
  51. 51.
    Fujimoto, Y., S. Yokura, T. Nakamura, T. Morikawa, and T. Tatsuno: Total synthesis of (±)-12,13-epoxytrichothec-9-ene. Tetrahedron Letters 1974, 2523.Google Scholar
  52. 52.
    Gardner, D., A. T. Glen, and W. B. Turner: Calonectrin and 15-deacetylcalonectrin, new trichothecanes from Calonectria nivalis. J. Chem. Soc. Perkin Trans. I 1972, 2576.CrossRefGoogle Scholar
  53. 53.
    Ghosal, S., D. K. Chakrabarti, A. K. Srivastava, and R. S. Srivastava: Toxic 12,13-epoxytrichothecenes from anise fruits infected with Trichothecium roseum. J. Agric. Food Chem. 30, 106 (1982).CrossRefGoogle Scholar
  54. 54.
    Godtfredsen, W. O., J. F. Grove, and Ch. Tamm: Zur Nomenklatur einer neuen Klasse von Sesquiterpenen. Helv. Chim. Acta 50, 1666 (1967).CrossRefGoogle Scholar
  55. 55.
    Godtfredsen, W. O., and S. Vangedal: Trichodermin, a new antibiotic related to trichothecin. Proc. Chem. Soc. (London) 1964, 188.Google Scholar
  56. 56.
    — Trichodermin, anew sesquiterpene antibitiotic. Acta Chem. Scand. 19, 1088 (1965).CrossRefGoogle Scholar
  57. 57.
    Goldsmith, D. J., A. J. Lewis, and W. C. Still, Jr.: Bicyclic intermediates for trichothecane synthesis. Exploitation of an enolate as a protecting group. Tetrahedron Letters 4807 (1973).Google Scholar
  58. 58.
    Goldsmith, D. J., T. K. John, C. D. Kwong, and G. R. Painter, III: Preparation and rearrangement of trichothecane-like compounds. Synthesis of aplysin and filiformin. J. Organ. Chem. (USA) 45, 3989 (1980).CrossRefGoogle Scholar
  59. 59.
    Gutzwiller, J., and Ch. Tamm: Über die Struktur von Verrucarin A. Helv. Chim. Acta 48, 157 (1965).CrossRefGoogle Scholar
  60. 60.
    —— Über die Struktur von Verrucarin B. Helv. Chim. Acta 48, 177 (1965).CrossRefGoogle Scholar
  61. 61.
    Grove, J. F.: Phytotoxic compounds produced by Fusarium equiseti. VI. 4β,8α, 15-triacetoxy-12,13-epoxytrichothec-9-ene-3α,7α-diol. J. Chem. Soc. (C) 1970, 378.Google Scholar
  62. 62.
    — Phytotoxic compounds produced by Fusarium equiseti. V. Transformation products of 4β,15-diacetoxy-3α,7α-dihydroxy-12,13-epoxytrichothec-9-en-8-one and the structures of nivalenol and fusarenone. J. Chem. Soc. (C) 1970, 375.Google Scholar
  63. 63.
    — The Constituents of Glutinosin. J. Chem. Soc. 1968, 810.Google Scholar
  64. 64.
    Harrach, B., G. Danko, G. Cseh, and M. Benko: Isolation of macrocyclic trichothecenes from straw associated with death of calves (Stachybotryotoxicosis). Magy, Allatorv. Lapja 37, 808 (1982).Google Scholar
  65. 65.
    Harri, E., W. Loeffler, H. P. Sigg, H. Stahelin, Ch. Stoll, Ch. Tamm, and D. Wiesinger: Über die Verrucarine and Roridine, eine Gruppe von cytostatisch hochwirksamen Antibiotica aus Myrothecium-Arten. Helv. Chim. Acta 45, 839 (1962).CrossRefGoogle Scholar
  66. 66.
    Hayakawa, S., E. Kondo, Y. Wakisaka, H. Minato, and K. Katagiri: Vertisporin, a new antibiotic from Verticimonosporium diffractum. J. Antibiot. 28, 550 (1975).Google Scholar
  67. 67.
    Herold, P., P. Mohr, and Ch. Tamm: Syntheses of optically active verrucarinic acid. Helv. Chim. Acta 66, 744 (1983).CrossRefGoogle Scholar
  68. 68.
    Ilus, T., P. J. Ward, M. Nummi, H. Adlercreutz, and J. Gripenberg: A new mycotoxin from Fusarium. Phytochemistry 16, 1839 (1977).CrossRefGoogle Scholar
  69. 69.
    Ishii, K., and Y. Ueno: Isolation and characterization of two new trichothecenes from Fusarium sporotrichioides strain M-1-1. Appl. Environ. Microbiol. 42, 541 (1981).Google Scholar
  70. 70.
    Ishii, K.: Chemistry and bioproduction of nonmacrocyclic trichothecenes. Dev. Food Sci. 4, 7 (1983).Google Scholar
  71. 71.
    — Two new trichothecenes produced by Fusarium species. Phytochemistry 14, 2469 (1975).CrossRefGoogle Scholar
  72. 72.
    Ishii, K., K. Sakai, Y. Ueno, H. Tsunoda, and M. Enomoto: Solaniol, a toxic metabolite of Fusarium solani. Appl. Microbiol. 22, 718 (1971).Google Scholar
  73. 73.
    Ishii, K., S. V. Pathre, and C. J. Mirocha: TWO new trichothecenes produced by Fusarium roseum. J. Agric. Food Chem. 26, 649 (1978).CrossRefGoogle Scholar
  74. 74.
    Jarvis, B. B., J. O. Midiwo, D. Tuthill, and G. A. Bean: Interaction between the antibiotic trichothecenes and the higher plant Baccharis megapotamica. Science 214, 460 (1981).CrossRefGoogle Scholar
  75. 75.
    Jarvis, B. B., R. M. Eppley, and E. P. Mazzola: Chemistry and bioproduction of macrocyclic trichothecenes. Dev. Food Sci. 4, 20 (1983).Google Scholar
  76. 76.
    Jarvis, B. B., J. O. Midiwo, T. Desilva, and E. P. Mazzola: Verrucarin L, a new macrocyclic trichothecene. J. Antibiot. 34, 120 (1981).Google Scholar
  77. 77.
    Jarvis, B. B., J. O. Midiwo, G. P. Stahly, G. Pavanasasivam, and E. P. Mazzola: Trichodermadiene: a new trichothecene. Tetrahedron Letters 787 (1980).Google Scholar
  78. 78.
    Jarvis, B. B., G. Pavanasasivam, C. E. Holmlund, T. Desilva, G. P. Stahly, and E. P. Mazzola: Biosynthetic intermediates to the macrocyclic trichothecenes. J. Amer. Chem. Soc. 103, 472 (1981).CrossRefGoogle Scholar
  79. 79.
    Jarvis, B. B., G. P. Stahly, G. Pavanasasivam, and E. P. Mazzola: Antileukemic compounds derived from the chemical modification of macrocyclic trichothenecenes. 1. Derivatives of verrucarin A. J. Med. Chem. 23, 1054 (1980).CrossRefGoogle Scholar
  80. 80.
    G. Pavanasasivam, and E. P. Mazzola — ——— Structure of roridin J, a new macrocyclic trichothecene from Myrothecium verrucaria. J. Antibiot. 33, 256 (1980).Google Scholar
  81. 81.
    Jarvis, B. B., and E. P. Mazzola: Macrocyclic and other novel trichothecenes: Their structure, synthesis, and biological significance. Accounts Chem. Res. 15, 388 (1982) CrossRefGoogle Scholar
  82. 82.
    Jarvis, B. B., J. O. Midiwo, J. L. Flippen-Anderson, and E. P. Mazzola: Stereochemistry of the roridins. J. Nat. Prod. 45, 440 (1982).CrossRefGoogle Scholar
  83. 83.
    Jarvis, B. B., G. P. Stahly, G. Pavanasasivam, J. O. Midiwo, T. Desilva, C. E. Holmlund, E. P. Mazzola, and R. F. Geoghegan, Jr.: Isolation and characterization of the trichoverroids and new roridins and verrucins: J. Organ. Chem. (USA) 47, 1117 (1CrossRefGoogle Scholar
  84. 84.
    Jarvis, B. B., and V. M. Vrudhula: New trichoverroids from Myrothecium verrucaria: 16-hydroxytrichodermadienediols. J. Antibiot. 36, 459 (1983).Google Scholar
  85. 85.
    Jarvis, B. B., V. M. Vrudhula, J. O. Midiwo, and E. P. Mazzola: New trichoverroids from Myrothecium verrucaria: verrol and 12,13-deoxytrichodermadiene. J. Organ. Chem. (USA) 48, 2576 (1983).CrossRefGoogle Scholar
  86. 86.
    Jarvis, B. B., V. M. Vrudhula, and G. Pavanasasivam: Trichoverritone and 16-hydroxyroridin L-2, new trichothecenes from Myrothecium roridum. Tetrahedron Letters 24, 3539 (1983).CrossRefGoogle Scholar
  87. 87.
    Jarvis, B. B., J. O. Midiwo, and E. P. Mazzola: Antileukemic compounds derived from the chemical modification of macrocyclic trichothecenes. 2. Derivatives of roridins A and H and verrucarins A and J. J. Med. Chem. 27, 239 (1984).CrossRefGoogle Scholar
  88. 88.
    Kaneko, T., H. Schmitz, J. M. Essery, W. Rose, H. G. Howell, F. A. O’Herron, S. Nachfolger, J. Huftalen, W. T. Bradner, R. A. Partyka, T. W. Doyle, J. E. Davies, and E. Cundliffe: Structural modifications of anguidine and antitumor activities of its analogs. J. Med. Chem. 25, 579 (1982).CrossRefGoogle Scholar
  89. 89.
    Koreeda, M., and J. I. Luengo: A novel type of intramolecular Diels-Alder reaction involving dienol ethers: An unusual preference for a boat transition state in the incipient ring formation. J. Organ. Chem. (USA) 49, 2079 (1984).CrossRefGoogle Scholar
  90. 90.
    Kotsonis, F. N., R. A. Ellison, and E. B. Smalley: Isolation of acetyl T-2 toxin from Fusarium poae. Appl. Microbiol. 30, 493 (1975).Google Scholar
  91. 91.
    Kraus, G. A., and K. Frazier: Synthetic studies toward verrucarol. 1. Synthesis of the AB ring system. J. Organ. Chem. (USA) 45, 4820 (1980).CrossRefGoogle Scholar
  92. 92.
    Kraus, G. A., B. Roth, K. Frazier, and M. Shimagaki: Stereoselective synthesis of calonectrin. J. Amer. Chem. Soc. 104, 1114 (1982).CrossRefGoogle Scholar
  93. 93.
    Kupchan, S. M., B. B. Jarvis, R. G. Dailey, Jr., W. Bright, R. F. Bryan, and Y. Shizuri: Baccharin, a novel potent antileukemic trichothecene triepoxide from Baccharis megapotamica. J. Amer. Chem. Soc. 98, 7092 (1976).CrossRefGoogle Scholar
  94. 94.
    Kupchan, S. M., D. R. Steelman, B. B. Jarvis, R. G. Dailey, Jr., and A. T. Sneden: Isolation of potent new antileukemic trichothecenes from Baccharis megapotamica. J. Organ. Chem. (USA) 42, 4221 (1977).CrossRefGoogle Scholar
  95. 95.
    Kupchan, S. M., B. B. Jarvis, M. S. Kupchan, and R. G. Dailey: Antileukemic trichothecin epoxides. Germany Offen. DE 2846210 (1979).Google Scholar
  96. 96.
    Lansden, J. A., R. J. Cole, J. W. Dorner, R. H. Cox, H. G. Cutler, and J. D. Clark: A new trichothecene mycotoxin isolated from Fusarium tricinctum. J. Agric. Food Chem. 26, 246 (1978).CrossRefGoogle Scholar
  97. 97.
    Machida, Y., and S. Nozoe: Biosynthesis of trichothecin and related compounds. Tetrahedron 28, 5113 (1972).CrossRefGoogle Scholar
  98. 98.
    Masuoka, N., and T. Kamikawa: A synthesis of 12,13-epoxytrichothec-9-ene. Tetrahedron Letters 1976, 1691.Google Scholar
  99. 99.
    Masuoka, N., T. Kamikawa, and T. Kubota: Synthesis of 13-nortrichothec-9(10)ene. Model reaction toward the total synthesis of trichodermin. Chem. Letters 1974, 751.Google Scholar
  100. 100.
    Matsumoto, M.: Structures of isororidin E, epoxyisororidin E, epoxyroridin H, and diepoxyroridin H, new metabolites isolated from species of Cyclindrocarpon. J. Sci. Hiroshima Univ. 43, 107 (1979).Google Scholar
  101. 101.
    Matsumoto, M., H. Minati, N. Uotani, K. Matsumoto, and E. Kondo: New antibiotics from Cylindrocarpon sp. J. Antibiot. 30, 618 (1977).Google Scholar
  102. 102.
    Matsumoto, M., H. Minato, K. Tori, and M. Ueyama: Structures of isororidin E, epoxyisororidin E, and epoxy-and diepoxyroridin H, new metabolites isolated from Cylindrocarpon species determined by carbon-13 and hydrogen-1 NMR spectroscopy. Revision of C-2′ C-3′ double bond configuration of the roridin group. Tetrahedron Letters 1977, 4093.Google Scholar
  103. 103.
    Mcphail, A. T., and G. A. Sim: The structure of Verrucarin A; X-ray analysis of Verrucarin A p-iodobenzene sulfonate. J. Chem. Soc. 1966, 1394.Google Scholar
  104. 104.
    Minato, H., T. Katayama, and K. Tori: Vertisporin, a new antibiotic from Verticimonosporium diffractum. Tetrahedron Letters 1975, 2579.Google Scholar
  105. 105.
    Mirocha, C. J., and S. Pathre: Identification of the toxic principle in a sample of poaefusarin. Appl. Microbiol. 26, 719 (1973).Google Scholar
  106. 105a.
    Mohr, P., Ch. Tamm, W. Zürcher, and M. Zehnder: Sambucinol and Sambucoin, two new metabolites of Fusarium sambucinum possessing modified trichothecane structures. Helv. Chim. Acta 67, 406 (1984).CrossRefGoogle Scholar
  107. 106.
    Mohr, P., M. Tori, P. Grossen, P. Herold, and Ch. Tamm: Synthesis of verrucarin A and 3α-hydroxyverrucarin A from verrucarol and diacetoxyscripenol (anguidine). Helv. Chim. Acta 65, 1412 (1982).CrossRefGoogle Scholar
  108. 107.
    Nakahara, Y., and T. Tatsuno: Toxicological research on substances from Fusarium nivale; an alternative synthesis of 12,13-epoxy-trichothec-9-ene. Chem. Pharm. Bull. 28, 1981 (1980).CrossRefGoogle Scholar
  109. 108.
    Naoi, Y.: Clean-up procedures and GLC analysis (of trichothecene mycotoxins). Dev. Food Sci. 4, 121 (1983).Google Scholar
  110. 109.
    Notegen, E. A., M. Tori, and Ch. Tamm: Partial synthesis of 3′-hydroxy-2′-deoxy 2″,3″,4″,5″-tetrahydroverrucarin A. Helv. Chim. Acta 64, 316 (1981).CrossRefGoogle Scholar
  111. 110.
    Ohtsubo, K.: Chronic toxicity of trichothecenes. Dev. Food Sci. 4, 171 (1983).Google Scholar
  112. 111.
    Okuchi, M., M. Itoh, Y. Kaneko, and S. Dio: A new antifungal substance produced by Myrothecium. Agr. Biol. Chem. (Tokyo) 32, 394 (1968).CrossRefGoogle Scholar
  113. 112.
    Ong, C. W.: Trichothecanes. — A review. Heterocycles 19, 1685 (1982).CrossRefGoogle Scholar
  114. 113.
    Pathre, S. V., C. J. Mirocha, C. M. Christensen, and J. Behrens: Monoacetoxyscirpenol. New mycotoxin produced by Fusarium roseum Gibbosum. J. Agric. Food Chem. 24, 97 (1976).CrossRefGoogle Scholar
  115. 114.
    Pearson, A. J., and C. W. Ong: Trichothecene analogs. Total synthesis of 12,13-epoxy14-methoxytrichothecene via organoiron complexes. J. Amer. Chem. Soc. 103, 6686 (1981).CrossRefGoogle Scholar
  116. 115.
    Roush, W. R., and T. A. Blizzard: Synthesis of verrucarin B. J. Organ. Chem. (USA). To be published.Google Scholar
  117. 116.
    Roush, W. R., and T. E. D’ambra: Synthesis of a bicyclic precursor to verrucarol: Application of a trimethylsily-controlled Diels-Alder reaction and Wagner-Meerwein rearrangement sequence. J. Organ. Chem. (USA) 46, 5045 (1981).CrossRefGoogle Scholar
  118. 117.
    — — Total synthesis of (±)-verrucarol. J. Amer. Chem. Soc. 105, 1058 (1983).CrossRefGoogle Scholar
  119. 118.
    Roush, W. R., and A. P. Spada: Enantio-and stereoselective syntheses of the dihydroxyoctadienoic acid fragments of the roridins and trichoverrins. Tetrahedron Letters 23, 3773 (1982).CrossRefGoogle Scholar
  120. 119.
    — — Synthesis of trichoverrol B. Tetrahedron Letters 24, 3693 (1983).CrossRefGoogle Scholar
  121. 120.
    Roush, W. R., and T. E. D’Ambra: Total synthesis of verrucarol: A stereoselective synthesis of 13,14-dinor-15-hydroxytrichothec-9-ene. J. Organ. Chem. (USA) 45, 3927 (1980).CrossRefGoogle Scholar
  122. 121.
    Roush, W. R., and T. A. Blizzard: Synthesis of verrucarin J. J. Organ. Chem. (USA) 48, 758 (1983).CrossRefGoogle Scholar
  123. 122.
    Roush, W. R., T. A. Blizzard, and F. Z. Basha: Methodology for the synthesis of the acyclic portions of verrucarins A and J. Tetrahedron Letters 23, 2331 (1982).CrossRefGoogle Scholar
  124. 123.
    Sato, T., K. Tajima, and T. Fujisawa: Diastereoselective synthesis of erythro-and threo-2-hydroxy-3-methyl-4-pentenoic acids by the ester enolate Claisen rearrangement of 2-butenyl 2-hydroxyacetate. Tetrahedron Letters 24, 729 (1983).CrossRefGoogle Scholar
  125. 124.
    Schlessinger, R. H.: Personal communication.Google Scholar
  126. 125.
    Schlessinger, R. H., and R. A. Nugent: Total synthesis of racemic verrucarol. J. Amer. Chem. Soc. 104, 1116 (1982).CrossRefGoogle Scholar
  127. 126.
    Scott, P. M.: Assessment of quantitative methods for determination of trichothecenes in grains and grain products. J. Assoc. Off. Anal. Chem. 65, 876 (1982).Google Scholar
  128. 127.
    Siegfried, R., and H. K. Frank: Contribution to the analysis of Fusarium toxins (Trichothecene toxins). S. Lebensm.-Unters. Forsch. 166, 363 (1978).CrossRefGoogle Scholar
  129. 128.
    Sigg, H. P., R. Mauli, E. Flury, and D. Hauser: Die Konstitution von Diacetoxyscirpenol: Helv. Chim. Acta 48, 962 (1965).CrossRefGoogle Scholar
  130. 129.
    Snider, B. B., and J. W. Van Straten: Stereochemistry of ene reactions of glyoxylate esters. J. Organ. Chem. (USA) 44, 3567 (1979).CrossRefGoogle Scholar
  131. 130.
    Snider, B. B., and S. G. Amin: A synthetic precursor of verrucarin A. Syn. Commun. 8, 117 (1978).CrossRefGoogle Scholar
  132. 131.
    Stekolnikov, L. I.: New antibiotic roridin E. Priroda (Moscow) 1971, 104.Google Scholar
  133. 132.
    Steyn, P. S., R. Vleggaar, C. J. Rabie, N. P. Kriek, and J. S. Harington: Trichothecene mycotoxins from Fusarium sulphureum. Phytochemistry 17, 949 (1978).CrossRefGoogle Scholar
  134. 133.
    Still, W. C., and H. Ohmizü: Synthesis of verrucarin A. J. Organ. Chem. (USA) 46, 5242 (1981).CrossRefGoogle Scholar
  135. 134.
    Still, W. C., and M.-Y. Tsai: Total synthesis of (±)-trichodermol. J. Amer. Chem. Soc. 102, 3654 (1980).CrossRefGoogle Scholar
  136. 135.
    Still, W. C., C. Gennari, J. A. Noguez, and D. A. Pearson: Synthesis of macrocyclic trichothecanoids: Baccharin B5 and Roridin E. J. Amer. Chem. Soc. 106, 260 (1984).CrossRefGoogle Scholar
  137. 136.
    Tamm, Ch.: The antibiotic complex of the verrucarins and roridins. Fortschr. Chem. Org. Naturst. 3, 63 (1974).CrossRefGoogle Scholar
  138. 137.
    Tamm, Ch., and W. Breitenstein: The biosynthesis of trichothecene mycotoxins. In: Biosynthesis of Mycotoxins (Steyn, P. S., ed.), p. 69. New York: Academic Press. 1980.Google Scholar
  139. 138.
    Tatsuno, T.: Chemical synthesis of trichothecenes. Dev. Food Sci. 4, 47 (1983).Google Scholar
  140. 139.
    Tatsuno, T., Y. Fujimoto, and Y. Morita: Toxicological research on substances from Fusarium nivale. III. Structure of nivalenol and its monoacetate. Tetrahedron Letters 1969, 2823.Google Scholar
  141. 140.
    Tomioka, K., F. Sato, and K. Koga: Synthetic approaches toward verrucarin A. Chiral synthesis of (—)-verrucarinolactone. Heterocycles 17, 311 (1982).CrossRefGoogle Scholar
  142. 141.
    Tori, M.: Syntheses of trichothecane-type sesquiterpenes and verrucarins. Yuki Gosei Kagaku Kyokaishi 39, 642 (1981).CrossRefGoogle Scholar
  143. 142.
    Traxler, P., W. Zürcher, and Ch. Tamm: Die Struktur des Antibioticums Roridin E. Helv. Chim. Acta 53, 2071 (1970).CrossRefGoogle Scholar
  144. 143.
    Trost, B. M., and J. H. Rigby: Synthetic strategy toward verrucarins. An approach toward verrucarol. J. Organ. Chem. (USA) 43, 2938 (1978).CrossRefGoogle Scholar
  145. 144.
    Trost, B. M., and P. G. Mcdougal: Synthesis of optically active verrucarinic acid derivatives. Tetrahedron Letters 23, 5497 (1982).CrossRefGoogle Scholar
  146. 145.
    —— Total synthesis of verrucarol. J. Amer. Chem. Soc. 104, 6110 (1982).CrossRefGoogle Scholar
  147. 146.
    Trost, B. M., P. G. Mcdougal, and K. J. Haller: A tandem cycloaddition-ene strategy for the synthesis of (±)-verrucarol and (±)-4,ll-diepi-12,13-deoxyverrucarol. J. Amer. Chem. Soc. 106, 383 (1984).CrossRefGoogle Scholar
  148. 147.
    Trost, B. M., P. G. Mcdougal, and J. H. Rigby: Studies directed towards verrucarins: A synthesis of verrucarol. An approach to verrucarin A. In: Current Trends in Organic Synthesis (Nozaki, H., ed.), p. 45. Oxford: Pergamon Press. 1983.Google Scholar
  149. 148.
    Trost, B. M., and P. G. M Dougal: Rotational selectivity in cyclobutene ring openings. Model studies directed toward a synthesis of verrucarin A. J. Organ. Chem. (USA) 49, 458 (1984).CrossRefGoogle Scholar
  150. 149.
    Tulshian, D. B., and B. Fraser-Reid: A synthetic route to the C-4 octadienic esters of trichothecenes from D-glucose. J. Amer. Chem. Soc. 103, 474 (1981).CrossRefGoogle Scholar
  151. 150.
    — — The ready conversion of anguidine into verrucarol and trichodermol. Tetrahedron Letters 21, 4549 (1980).CrossRefGoogle Scholar
  152. 151.
    Ueno, Y. (ed.): Developments in Food Science 4. Trichothecenes — Chemical, Biological and Toxicological Aspects. Amsterdam-Oxford-London: Elsevier. 1983.Google Scholar
  153. 152.
    Ueno, Y., I. Ueno, T. Tatsuno, K. Ohokubo, and H. Tsunoda: Fusarenon-X, a toxic principles of Fusarium nivale culture filtrate. Experientia 25, 1062 (1969).CrossRefGoogle Scholar
  154. 153.
    Ueno, Y.: Biological detection of trichothecenes. Dev. Food Sci. 4, 125 (1983).Google Scholar
  155. 154.
    — General toxicology of trichothecene mycotoxins. Dev. Food Sci. 4, 135 (1983).Google Scholar
  156. 155.
    — Mode of action of trichothecenes. Pure Appl. Chem. 49, 1737 (1977).CrossRefGoogle Scholar
  157. 156.
    — Toxicological properties of trichothecenes. Maikotokishin (Tokyo) 13, 11 (1981).Google Scholar
  158. 157.
    Ueno, Y., K. Ishii, K. Sakai, S. Kanaeda, H. Tsunoda, T. Toshitsugu, and M. Enomoto: Microbial survey on bean hulls poisoning of horses with the isolation of toxic trichothecenes, neosolaniol, and T-2 toxin ofFusarium solani. Jpn. J. Exp. Med. 42, 187 (1972).Google Scholar
  159. 158.
    Ueno, Y., K. Nakayama, K. Ishii, F. Tashiro, Y. Minoda, Y. Omori, and K. Komagata: Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2. Appl. Environ. Microbiol. 46, 120 (1983).Google Scholar
  160. 159.
    Ueno, Y., M. Hosoya, and Y. Ishikawa: Inhibitory effects of mycotoxins on protein synthesis in rabbit reticulocytes. J. Biochem. (Tokyo) 66, 419 (1969).Google Scholar
  161. 160.
    Ueno, Y., K. Ishii, M. Sawan, K. Ohtsubo, Y. Matsuda, T. Tanaki, H. Kurata, and M. Ichinoe: Toxicological approaches to the metabolites of Fusaria. XI. Trichothecenes and zearalenone from Fusarium species isolated from river sediments. Jpn. Exp. Med. 47, 177 (1977).Google Scholar
  162. 161.
    Vesonder, R. F., A. Ciegler, and A. H. Jensen: Isolation of the emetic principle from Fusarium-infected corn. Appl. Microbiol. 26, 1008 (1973).Google Scholar
  163. 162.
    Vesonder, R. F., A. Ciegler, A. H. Jensen, W. K. Rohwedder, and D. Weisleder: Co-identity of the refusal and emetic principle from Fusarium-infected corn. Appl. Environ. Microbiol. 31, 280 (1976).Google Scholar
  164. 163.
    Wei, R.-D., F. M. Strong, E. B. Smalley, and H. K. Schnoes: Chemical interconversion of T-2 and HT-2 toxins and related compounds. Biochem. Biophys. Res. Commun. 45, 396 (1971).CrossRefGoogle Scholar
  165. 164.
    Welch, S. C., and R. V. Wong: Synthetic intermediate for trichothecane phytotoxic sesquiterpenoids. Syn. Commun. 2, 291 (1972).CrossRefGoogle Scholar
  166. 165.
    White, J. D., T. Matsui, and J. A. Thomas: Novel synthesis of the tricyclic nucleus of verrucarol. J. Organ. Chem. (USA) 46, 3376 (1981).CrossRefGoogle Scholar
  167. 166.
    White, J. D., J. P. Carter, and H. S. Kezar, III: Stereoselective synthesis of the macrocycle segment of verrucarin J. J. Organ. Chem. (USA) 47, 929 (1982).CrossRefGoogle Scholar
  168. 167.
    Xu, Y., X. Huang, and Y. Cai: Isolation and structure of CBD2 — a new trichothecene toxin. Weishengwu Xuebao 22, 35 (1982).Google Scholar
  169. 168.
    Yamamato, Y., N. Maeda, and K. Maruyama: Enantio-and diastereo-selective reaction of but-2-enylstannane with glyoxylate esters and its application to a short synthesis of verrucarinolactone. Chem. Commun. 1983, 774.Google Scholar
  170. 169.
    Yates, S. G., H. L. Tookey, J. J. Ellis, and H. J. Burkhardt: Mycotoxins produced by Fusarium nivale isolated from tall fescue: (Festuca arundinacea) Phytochem. 7, 139 (1968).CrossRefGoogle Scholar
  171. 170.
    Yoshizawa, T., and M. Morooka: Trichothecenes from mold-infested cereals in Japan. In: Mycotoxins in Human and Animal Health, Conference Proceedings (Rodricks, J. V., C. W. Hesseltine, M. A. Mehlman, eds.), p. 309. Park Forest South: Pathotox Publ., Inc. 1977.Google Scholar
  172. 171.
    — — Deoxynivalenol and its monoacetate. New mycotoxins from roseum and moldy barley. Agr. Biol. Chem. 37, 2933 (1973).CrossRefGoogle Scholar
  173. 172.
    Zürcher, W., and Ch. Tamm: Isolierung von 2′-Dehydroverrucarin A als Metabolit von Myrothecium roridum Tode ex Fr. Gattungstyp bei Fries. Helv. Chim. Acta 49, 2594 (1966).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • P. G. McDougal
    • 1
  • N. R. Schmuff
    • 2
  1. 1.Department of ChemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Laboratory of Chemistry, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations