The power and utility of mass spectrometry (MS) in solving problems in natural product chemistry has been demonstrated on numerous occasions over the past 25 years. Although only electron-impact (EI) ionization was available in the early days of natural-product MS, notable successes were achieved in correlating spectra with structure, particularly with natural steroids, terpenes and alkaloids.


Double Bond Position Fast Atom Bombardment Mass Spectrometry Desorption Mass Spectrometry Field Desorption Laser Desorption Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waller, G. R., and O. C. Dermer, eds.: Biochemical Applications of Mass Spectrometry, First Supplementary Volume. New York: Wiley-Interscience. 1980.Google Scholar
  2. 2.
    Howe, I., D. H. Williams, and R. D. Bowen: Mass Spectrometry: Principles and Applications. McGraw-Hill. 1981.Google Scholar
  3. 3.
    Rose, M. E., and R. A. W. Johnstone: Mass Spectrometry for Chemists and Biochemists. Cambridge University Press. 1982.Google Scholar
  4. 4.
    Morris, H. R., ed.: Soft Ionization Biological Mass Spectrometry. London: Heyden. 1981.Google Scholar
  5. 5.
    Johnstone, R. A. W., ed.: Specialist Periodical Reports, Mass Spectrometry, vol. 7. The Royal Society of Chemistry. London: 1984.Google Scholar
  6. 6.
    Burlingame, A. L., J. O. Whitney, and D. H. Russell: Mass Spectrometry. Analyt. Chemistry 56, 417R (1984).Google Scholar
  7. 7.
    Hunt, D. F., and F. W. Crow: Electron-Capture Negative Ion Chemical Ionization Mass Spectrometry. Analyt. Chemistry 50, 1781 (1978).Google Scholar
  8. 8.
    Schildcrout, S. M.: Temperature-Dependent Single vs. Double Ionization in the Mass Spectra of Phthalocyanine and its Metal (II) Complexes. J. Amer. Chem. Soc. 105, 3852 (1983).Google Scholar
  9. 9.
    Keough, T., and A. J. Destefano: Factors Affecting Reactivity in Ammonia Chemical Ionization Mass Spectrometry. Org. Mass Spectrom. 16, 527 (1981).Google Scholar
  10. 10.
    Polley, C. W., and B. Munson: Nitrous Oxide as Reagent Gas for Positive Ion Chemical Ionization Mass Spectrometry. Analyt. Chemistry 55, 755 (1983).Google Scholar
  11. 11.
    Dougherty, R. C.: Negative Chemical Ionization Mass Spectrometry. Analyt. Chemistry 53, 625A (1981).Google Scholar
  12. 12.
    Beloeil, J. C., M. Bertranne, D. Stahl, and J. C. Tabet: Stereochemistry of Gaseous Anions: Hydroxide Ion Negative Chemical Ionization of Androstanediols. J. Amer. Chem. Soc. 105, 1355 (1983).Google Scholar
  13. 13.
    Bruins, A. P.: Negative Ion Chemical Ionization Mass Spectrometry in the Determination of Components in Essential Oils. Analyt. Chemistry 51, 967 (1979).Google Scholar
  14. 14.
    Cotter, R. J.: Mass Spectrometry of Nonvolatile Compounds. Desorption from Extended Probes. Analyt. Chemistry 52, 1589A (1980).Google Scholar
  15. 15.
    Busch, K. L., S. E. Unger, A. Vincze, R. G. Cooks, and T. Keough: Desorption Ionization Mass Spectrometry: Sample Preparation for Secondary Ion Mass Spectrometry, Laser Desorption, and Field Desorption. J. Amer. Chem. Soc. 104, 1507 (1982).Google Scholar
  16. 16.
    Beckey, H. D.: Field Desorption Mass Spectrometry: A Technique for the Study of Thermally Unstable Substances of Low Volatility. Int. J. Mass Spectrom. Ion Phys. 2, 500 (1969).Google Scholar
  17. 17.
    Schulten, H.-R., U. Bahr, and P. B. Monkhouse: Biochemical Application of Field Desorption Mass Spectrometry. J. Biochem. Biophys. Methods 8, 239 (1983).Google Scholar
  18. 18.
    Röllgen, F. W., and H.-R. Schulten: A New Method for Surface Ionization of Organic Molecules by Attachment of Alkali Ions in Moderate Electric Fields. Z. Naturforsch. 30a, 1685 (1975).Google Scholar
  19. 19.
    Liu, L. K., K. L. Busch, and R. G. Cooks: Matrix-Assisted Secondary Ion Mass Spectra of Biological Compounds. Analyt. Chemistry 53, 109 (1981).Google Scholar
  20. 20.
    Rinehart, K. L.: Fast Atom Bombardment Mass Spectrometry. Science 218, 254 (1982).Google Scholar
  21. 21.
    Barber, M., R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler: Fast Atom Bombardment of Solids (F. A. B.): a New Ion Source for Mass Spectrometry. J. Chem. Soc. (London), Chem. Commun. 1981, 325.Google Scholar
  22. 22.
    Dell, A., H. R. Morris, M. D. Levin, and S. M. Hecht: Field Desorption and Fast Atom Bombardment Mass Spectrometry of Bleomycins and their Derivatives. Biochem. Biophys. Res. Comm. 102, 730 (1981).Google Scholar
  23. 23.
    Torgerson, D. F., R. P. Skowronski, and R. D. Macfarlane: New Approach to the Mass Spectrometry of Non-Volatile Compounds. Biochem. Biophys. Res. Comm. 60, 616 (1974).Google Scholar
  24. 24.
    Mcneal, C. J., and R. D. Macfarlane: Observation of a Fully Protected Oligonucleotide Dimer at m/z 12 637 by 252Cf-Plasma Desorption Mass Spectrometry. J. Amer. Chem. Soc. 103, 1609 (1981).Google Scholar
  25. 25.
    Posthumus, M. A., P. G. Kistemaker, H. L. C. Meuzelar, and M. C. Tennoever De Brauw: Laser Desorption-Mass Spectrometry of Polar Nonvolatile Bio-Organic Molecules. Analyt. Chemistry 50, 985 (1978).Google Scholar
  26. 26.
    Mccrery, D. A., E. B. Ledford, Jr., and M. L. Gross: Laser Desorption Fourier Transform Mass Spectrometry. Analyt. Chemistry 54, 1435 (1982).Google Scholar
  27. 27.
    Hardin, E. D., T. P. Fan, C. R. Blakley, and M. L. Vestal: Laser Desorption Mass Spectrometry with Thermospray Sample Deposition for Determination of Nonvolatile Biomolecules. Analyt. Chemistry 56, 2 (1984).Google Scholar
  28. 28.
    Ott, K. H., F. W. Roellgen, J. J. Zwinselman, R. H. Fokkens, and N. M. M. Nibbering: Field Desorption Mass Spectrometry of Negative Ions (NFD-MS) of Salts. Angew. Chem. 93, 96 (1981).Google Scholar
  29. 29.
    Blakley, C. R., J. J. Carmody, and M. L. Vestal: A New Soft Ionization Technique for Mass Spectrometry of Complex Molecules. J. Amer. Chem. Soc. 102, 5931 (1980).Google Scholar
  30. 30.
    Horning, E. C., M. G. Horning, D. I. Carroll, I. Dzidic, and R. N. Stillwell: New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Analyt. Chemistry 45, 936 (1973).Google Scholar
  31. 31.
    Kambara, H.: Sample Introduction System for Atmospheric Pressure Ionization Mass Spectrometry of Nonvolatile Compounds. Analyt. Chemistry 54, 143 (1982).Google Scholar
  32. 32.
    Tsuchiya, M., and H. Kuwabara: Liquid Ionization Mass Spectrometry of Nonvolatile Organic Compounds. Analyt. Chemistry 56, 14 (1984).Google Scholar
  33. 33.
    Mclafferty, F. W., P. J. Todd, D. C. Mcgilvery, and M. A. Baldwin: High Resolution Tandem Mass Spectrometer (MS/MS) of Increased Sensitivity and Mass Range. J. Amer. Chem. Soc. 102, 3360 (1980).Google Scholar
  34. 34.
    Morris, H. R.: Biomolecular Mass Spectrometry. Int. J. Mass Spectrom. Ion Physics 45, 331 (1982).Google Scholar
  35. 35.
    Morris, H. R., A. Dell, and R. A. Mcdowell: Extended Performance Using a High Field Magnet Mass Spectrometer. Biomed. Mass Spectrom. 8, 463 (1981).Google Scholar
  36. 36.
    Buko, A. M., L. R. Phillips, and B. A. Fraser: Peptide Studies Using a Fast Atom Bombardment High Field Mass Spectrometer and Data System: 1-Sample Introduction, Data Acquisition and Mass Calibration. Biomed. Mass Spectrom. 10, 324 (1983).Google Scholar
  37. 37.
    Mclafferty, F. W., ed.: Tandem Mass Spectrometry. New York: Wiley. 1983.Google Scholar
  38. 38.
    Cheng, M. T., M. P. Barbalas, R. F. Pegues, and F. W. Mclafferty: Tandem Mass Spectrometry: Structural and Stereochemical Information from Steroids. J. Amer. Chem. Soc. 105, 1510 (1983).Google Scholar
  39. 39.
    Larka, E. A., I. Howe, J. H. Beynon, and Z. V. I. Zaretskii: Translational Energy Released in Decompositions of Metastable Ions: A Simple Criterion for Distinction Between Steroid Epimers by Mass Spectrometry. Org. Mass Spectrom. 16, 465 (1981).Google Scholar
  40. 40.
    J. H. Beynon, and Z. V. I. Zaretskii — — — — The Determination of Ring Junction Stereochemistry in Steroids using Mass-Analyzed Ion Kinetic Energy Spectrometry. Tetrahedron 37, 2625 (1981).Google Scholar
  41. 41.
    Gaskell, S. J., A. W. Pike, and D. S. Millington: The Fragmentation of Stereoisomeric Androstanediol t-Butyldimethylsilyl Ethers. A study of Linked-Field Scanning. Biomed. Mass Spectrom. 6, 78 (1979).Google Scholar
  42. 42.
    Desiderio, D. M., and I. Katakuse: Fast Atom Bombardment-Collision Activated Dissociation-Linked Field Scanning Mass Spectrometry of the Neuropeptide Substance P. Analyt. Biochem. 129, 425 (1983).Google Scholar
  43. 43.
    Amster, I. J., M. A. Baldwin, M. T. Cheng, C. J. Proctor, and F. W. Mclafferty: Tandem Mass Spectrometry of Higher Molecular Weight Compounds. J. Amer. Chem. Soc. 105, 1654 (1983).Google Scholar
  44. 44.
    Liberato, D. J., C. C. Fenselau, M. L. Vestal, and A. L. Yergey: Characterization of Glucuronides with a Liquid Chromatography/Mass Spectrometry Interface. Analyt. Chemistry 55, 1741 (1983).Google Scholar
  45. 45.
    Apffel, J. A., U. A. T. Brinkman, R. W. Frei, and E. A. I. M. Evers: Gas-Nebulized Direct Liquid Introduction Interface for Liquid Chromatography/Mass Spectrometry. Analyt. Chemistry 55, 2280 (1983).Google Scholar
  46. 46.
    Chang, T. T., J. O. Lay, and J. F. Rudolph: Direct Analysis of Thin-Layer Chromatography Spots by Fast Atom Bombardment Mass Spectrometry. Analyt. Chemistry 56, 109 (1984).Google Scholar
  47. 47.
    Hargrove, W. F., D. Rosenthal, and P. C. Cooley: Improvement of Algorithm for Peak Detection in Automatic Gas Chromatography-Mass Spectrometer Data Processing. Analyt. Chemistry 53, 538 (1981).Google Scholar
  48. 48.
    Hunt, D. F., A. B. Giordani, G. Rhodes, and D. A. Herold: Metabolic Profiling of Urinary Carboxylic Acids. Clin. Chem. (Winston-Salem, N. C.) 28, 2387 (1982).Google Scholar
  49. 49.
    Tondeur, Y., J. R. Hass, D. J. Harvan, and P. W. Albro: Computer-Assisted Determination of Masses in High-Resolution Mass Spectrometry with Selected Ion Monitoring. Analyt. Chemistry 56, 373 (1984).Google Scholar
  50. 50.
    Falkner, F. C.: Comments on Some Common Aspects of Quantitative Mass Spectrometry. Biomed. Mass Spectrom. 8, 43 (1981).Google Scholar
  51. 57.
    Beckner, C. F., and R. M. Caprioli: Quantitative Aspects of Fast Atom Bombardment Mass Spectrometry. Biomed. Mass Spectrom. 11, 60 (1984).Google Scholar
  52. 52.
    Desiderio, D. M., and M. Kai: Preparation of Stable Isotope-Incorporated Peptide Internal Standards for Field Desorption Mass Spectrometry Quantification of Peptides in Biologic Tissue. Biomed. Mass Spectrom. 10, 471 (1983).Google Scholar
  53. 53.
    Bradley, C. V., D. H. Williams, and M. R. Hanley: Peptide Sequencing Using the Combination of Edman Degradation, Carboxypeptidase Digestion and Fast Atom Bombardment Mass Spectrometry. Biochem. Biophys. Res. Comm. 104, 1223 (1982).Google Scholar
  54. 54.
    Williams, D. H., S. Santikarn, P. B. Oelrichs, F. DE Angelis, J. K. Macleod, and R. J. Smith: The Structure of a Toxic Octapeptide, Containing 4 D-amino acids, from the Larvae of a Sawfly. Lophyrotoma Interrupta. J. Chem. Soc. (London), Chem. Commun. 1982, 1394.Google Scholar
  55. 55.
    Wasylyk, J. M., J. E. Biskupiak, C. E. Costello, and C. M. Ireland: Cyclic peptide structures from the Tunicate Lissoclinum Patella by FAB mass spectrometry. J. Organ. Chem. (USA) 48, 4445 (1983).Google Scholar
  56. 56.
    Meyer, W. L.: On the Mass Spectrometric Structure Determination of the Cyclic Tetrapeptide Tentoxin. Tetrahedron Letters 24, 2163 (1983).Google Scholar
  57. 57.
    Beckner, C. F., and R. M. Caprioli: Protein N-Terminal Analysis Using Fast Atom Bombardment Mass Spectrometry. Analyt. Biochemistry 130, 328 (1983).Google Scholar
  58. 58.
    Barber, M., R. S. Bordoli, G. J. Elliott, R. D. Sedgwick, A. N. Tyler, and B. N. Green: Fast Atom Bombardment Mass Spectrometry of Bovine Insulin and Other Large Peptides. J. Chem. Soc. (London), Chem. Commun. 1982, 936.Google Scholar
  59. 59.
    Dell, A., and H. R. Morris: Fast Atom Bombardment-High Field Magnet Mass Spectrometry of 6000 Dalton Polypeptides. Biochem. Biophys. Res. Comm. 106, 1456 (1982).Google Scholar
  60. 60.
    Buko, A. M., L. R. Phillips, and B. A. Fraser: Peptide Studies Using a Fast Atom Bombardment-High Field Mass Spectrometer and Data System: 2-Characteristics of Positive Ionization Spectra of Peptides, m/z 858 to m/z 5729. Biomed. Mass Spectrom. 10, 408 (1983).Google Scholar
  61. 61.
    Morris, H. R., M. Panico, and G. W. Taylor: FAB-Mapping of Recombinant-DNA Protein Products. Biochem. Biophys. Res. Comm. 117, 299 (1983).Google Scholar
  62. 62.
    Prome, J. C., J. Roussel, B. Caldas, J. Mery, J. Parello, and D. Patouraux: In: Recent Developments in Mass Spectrometry in Biochemistry and Medicine 6 (A. Frigerio and M. Mccamish, eds.), p. 35. Amsterdam: Elsevier. 1980.Google Scholar
  63. 63.
    Haakansson, P., I. Kamensky, B. Sundqvist, J. Fohlman, P. Peterson, C. J. Mcneal, and R. D. Macfarlane: Iodine-127-plasma Desorption Mass Spectrometry of Insulin. J. Amer. Chem. Soc. 104, 2948 (1982).Google Scholar
  64. 64.
    Chait, B. T., B. F. Gisin, and F. H. Field: Fission Fragment Ionization Mass Spectrometry of Alamethicin I. J. Amer. Chem. Soc. 104, 5157 (1982).Google Scholar
  65. 65.
    Herlihy W. C., N. J. Royal, K. Biemann, S. D. Putney, and P. R. Schimmel: Mass Spectra of Partial Protein Hydrolysates as a Multiple Phase Check for Long Polypeptides Deduced from DNA Sequences: NH2-Terminal Segment of Alanine tRNA Synthetase. Proc. Nat. Acad. Sci. (USA) 77, 6531 (1980).Google Scholar
  66. 66.
    Rose, K., M. G. Simona, and R. E. Offord: Amino Acid Determination by GLC-Mass Spectrometry of Permethylated Peptides. Optimisation of the Formation of Chemical Derivatives at the 2―10 nmol Level. Biochem. J. 215, 261 (1983).Google Scholar
  67. 67.
    Herlihy, W. C., D. KID Well, B. Meeusen, and K. Biemann: Mass Spectrometric Differentiation of Leucine and Isoleucine in Proteins Derived from Bacteria or Cell Culture. Biochem. Biophys. Res. Comm. 102, 335 (1981).Google Scholar
  68. 68.
    Rose, K., M. G. Simona, R. E. Offord, C. P. Prior, B. Otto, and D. R. Thatcher: A New Mass Spectrometric C-terminal Sequencing Technique Finds a Similarity Between δ-Interferon and α2-Interferon and Identifies a Proteolytically Clipped δ-Interferon That Retains Full Antiviral Activity. Biochem. J. 215, 273 (1983).Google Scholar
  69. 69.
    Breimer, M. E., G. C. Hansson, K.-A. Karlsson, G. Larson, H. Leffler, W. Pimlott, B. E. Samuelsson, N. Strömberg, S. Teneberg, and J. Thurin: Sequencing of Large Oligosaccharides by Direct Inlet Mass Spectrometry. Application to Cell Surface Glycolipids. Int. J. Mass Spectrom. Ion Physics. 48, 113 (1983).Google Scholar
  70. 70.
    Linscheid, M., J. D’ Angona, A. L. Burlingame, A. Dell, and C. E. Ballou: Field Desorption Mass Spectrometry of Oligosaccharides. Proc. Nat. Acad. Sci. (USA) 78, 1471 (1981).Google Scholar
  71. 71.
    Komori, T., M. Kawamura, K. Miyahara, T. Kawasaki, O. Tanaka, S. Yahara, and H.-R. Schulten: Field Desorption Mass Spectrometry of Physiologically Active Steroid-and Dammarane-Saponins. Z. Naturforsch. 34c, 1094 (1979).Google Scholar
  72. 72.
    Komori, T., I. Maetani, N. Okamura, T. Kawasaki, T. Nohara, and H.-R. Schulten: Zur Analogie der Zuckerabspaltung aus oligoglykosidischen Naturstoffen bei der Säurehydrolyse und der Felddesorptions-Massenspektrometrie. Liebigs Ann. Chem. 1981, 683.Google Scholar
  73. 73.
    Schulten, H.-R., T. Komori, T. Kawasaki, T. Okuyama, and S. Shibata: Confirmation of New, High-mass Saponins from Gleditsia Japonica by Field Desorption Mass Spectrometry. Planta Medica 46, 67 (1982).Google Scholar
  74. 74.
    Forsberg, L. S., A. Dell, D. J. Walton, and C. E. Ballou: Revised Structure for the 6 O-Methylglucose Polysaccharide ofMycobacterium Smegmatis. J. Biol. Chem. 257, 3555 (1982).Google Scholar
  75. 75.
    Dell, A., and C. E. Ballou: Fast Atom Bombardment Mass Spectrometry of a 6-O-Methylglucose Polysaccharide. Biomed. Mass Spectrom. 10, 50 (1983).Google Scholar
  76. 76.
    Shimamura, M., T. Endo, Y. Inoue, and S. Inoue: A Novel Neutral Oligosaccharide Chain Found in Polysialoglycoproteins Isolated from Pacific Salmon Eggs. Structural Studies by Secondary Ion Mass Spectrometry, Proton Nuclear Magnetic Resonance Spectroscopy, and Chemical Methods. Biochemistry 22, 959 (1983).Google Scholar
  77. 77.
    Harada, K.-L., M. Suzuki, and H. Kambara: Structural Characterization of Viridopentaoses and Their Related Saccharides by Matrix-Assisted Molecular SIMS. Tetrahedron Letters 23, 2481 (1982).Google Scholar
  78. 78.
    Dolhun, J. J., and J. L. Wiebers: Mass Spectrometry of Trimethylsilyl Derivatives of Nucleoside and Dinucleotide Phenylboronates. Application to Oligonucleotide Sequence Analysis. J. Amer. Chem. Soc. 91, 7755 (1969).Google Scholar
  79. 79.
    Schulten, H.-R., and H. M. Schiebel: Sequence Specific Fragments in the Field Desorption Mass Spectra of Dinucleoside Phosphates. Nucleic Acids Res. 3, 2027 (1976).Google Scholar
  80. 80.
    Sindona, G., N. Uccella, and K. Weclawek: Structure Determination of Isomeric Oligodeoxynucleotide Salts by Fast-Atom Bombardment Mass Spectrometry. J. Chem. Res. (S) 1982, 184.Google Scholar
  81. 81.
    Panico, M., G. Sindona, and N. Uccella: Bioorganic Applications of Mass Spectrometry. 3. Fast-Atom-Bombardment-Induced Zwitterionic Oligonucleotide Quasimolecular Ions Sequenced by MS/MS. J. Amer. Chem. Soc. 105, 5607 (1983).Google Scholar
  82. 82.
    Grotjahn, L., R. Frank, and H. Blöcker: Ultrafast Sequencing of Oligodeoxyribonucleotides by FAB-Mass Spectrometry. Nucleic Acids Res. 10, 4671 (1982).Google Scholar
  83. 83.
    Summons, R. E., L. M. Palni, and D. S. Letham: Determination of Intact Zeatin Nucleotide by Direct Chemical Ionization Mass Spectrometry. FEBS Lett. 151, 122 (1983).Google Scholar
  84. 84.
    Unger, S. E., A. E. Schoen, R. G. Cooks, D. J. Ashworth, J. D. Gomes, and C.-J. Chang: Identification of Modified Nucleosides by Secondary-Ion Mass Spectrometry. J. Organ. Chem. (USA) 46, 4765 (1981).Google Scholar
  85. 85.
    Schoen, A. E., R. G. Cooks, and J. L. Wiebers: Modified Bases Characterized in Intact DNA by Mass-Analyzed Ion Kinetic Energy Spectrometry. Science 203, 1249 (1979).Google Scholar
  86. 86.
    Schulten, H.-R., and H. M. Schiebel: Principle and Technique of Field-Desorption Mass Spectrometry. Analysis of Corrins and Vitamin B12. Naturwiss. 65, 223 (1978).Google Scholar
  87. 87.
    Schiebel, H. M., and H.-R. Schulten: Depletion of 13Carbon in the Biosynthesis of Vitamin B12. Naturwiss. 67, 256 (1980).Google Scholar
  88. 88.
    Barber, M., R. S. Bordoli, D. Sedgwick, and A. N. Tyler: Fast Atom Bombardment Mass Spectrometry of Cobalamines. Biomed. Mass Spectrom. 8, 492 (1981).Google Scholar
  89. 89.
    Grotjahn, L., V. B. Koppenhagen, and L. Ernst: Fast Atom Bombardment Mass Spectrometry of the Vitamin B12 Analogues Hydrogenocobalamin and Cupribalamin. Z. Naturforsch. 39b, 248 (1984).Google Scholar
  90. 90.
    Dougherty, R. C., P. A. Dreifuss, J. Sphon, and J. J. Katz: Hydration Behaviour of Chlorophyll a: A Field Desorption Mass Spectral Study. J. Amer. Chem. Soc. 102, 417 (1980).Google Scholar
  91. 91.
    Hunt, J. E., R. D. Macfarlane, J. J. Katz, and R. C. Dougherty: Self Assembled Chlorophyll a Systems as Studied by Californium-252 Plasma Desorption Mass Spectroscopy. Proc. Nat. Acad. Sci. (USA) 77, 1745 (1980).Google Scholar
  92. 92.
    Constantin, E., Y. Nakatani, G. Teller, R. Hueber, and G. Ourisson: Electron Impact and Chemical Ionization Mass Spectrometry of Chlorophylls, Phaeophytins and Phaeophorbides by Fast Desorption on a Gold Support. Bull. soc. chim. France II 1981, 303.Google Scholar
  93. 93.
    Tomer, K. B., F. W. Crow, and M. L. Gross: Location of Double Bond Position in Unsaturated Fatty Acids by Negative Ion MS/MS. J. Amer. Chem. Soc. 105, 5487 (1983).Google Scholar
  94. 94.
    Cervilla, M., and G. Puzo: Determination of Double Bond Position in Monosaturated Fatty Acids by Mass Analyzed Ion Kinetic Energy Spectrometry/Collision Induced Dissociation After Chemical Ionization of Their Amino Alcohol Derivatives. Analyt. Chemistry 55, 2100 (1983).Google Scholar
  95. 95.
    Leonhardt, B. A., E. F. Devilbiss, and J. A. Klun: Gas Chromatographic Mass Spectrometric Indication of Double Bond Position in Monosaturated Primary Acetates and Alcohols without Derivatization. Org. Mass Spectrom. 18, 9 (1983).Google Scholar
  96. 96.
    Dallinga, J. W., N. M. M. Nibbering, J. Van Der Greef, and M. C. Ten Noever De Brauw: A Fast Atom Bombardment and Field Ionization/Field Desorption Study of Some Isomeric Unsaturated Dicarboxylic Acids. Org. Mass Spectrom. 19, 10 (1984).Google Scholar
  97. 97.
    Ho, B. C., C. Fenselau, G. Hansen, J. Larsen, and A. Daniel: Dipalmitoylphosphatidylcholine in Amniotic Fluid Quantified by Fast-Atom-Bombardment Mass Spectrometry. Clin. Chem. (Winston-Salem, N. C), 29, 1349 (1983).Google Scholar
  98. 98.
    Tomer, K. B., F. W. Crow, H. W. Knoche, and M. L. Gross: Fast Atom Bombardment and Mass Spectrometry/Mass Spectrometry for Analysis of Ornithine-Containing Lipids from Thiobacillus Thiooxidans. Analyt. Chemistry 55, 1033 (1983).Google Scholar
  99. 99.
    Daffe, M., M. A. Laneelle, and G. Puzo: Structural Elucidation by Field Desorption and Electron-Impact Mass Spectrometry of the C-Mycosides Isolated from Mycobacterium Smegmatis. Biochim. Biophys. Acta 751, 439 (1983).Google Scholar
  100. 100.
    Lehmann, W. D., and M. Kessler: Characterization and Quantification of Human Plasma Lipids from Crude Lipid Extracts by Field Desorption Mass Spectrometry. Biomed. Mass Spectrom. 10, 220 (1983).Google Scholar
  101. 101.
    Fenwick, G. R., J. Eagles, and R. Self: Fast Atom Bombardment Mass Spectrometry of Intact Phospholipids and Related Compounds. Biomed. Mass Spectrom. 10, 382 (1983).Google Scholar
  102. 102.
    Arita, M., M. Iwamori, T. Higuchi, and Y. Nagai: 1,1,3,3-Tetramethylurea and Triethanolamine as a New Useful Matrix for Fast Atom Bombardment Mass Spectrometry of Gangliosides and Neutral Glycosphingolipids. J. Biochemistry (Tokyo) 93, 319 (1983).Google Scholar
  103. 103.
    Blair, I. A.: Measurement of Eicosanoids by Gas Chromatography and Mass Spectrometry. Brit. Med. Bulletin 39, 223 (1983).Google Scholar
  104. 104.
    Murphy, R. C., W. R. Mathews, J. Rokach, and C. Fenselau: Comparison of Biological-Derived and Synthetic Leukotriene C4 by Fast Atom Bombardment Mass Spectrometry. Prostaglandins 23, 201 (1982).Google Scholar
  105. 105.
    Fenselau, C., and L. P. Johnson: Analysis of Intact Glucuronides by Mass Spectrometry and Gas Chromatography-Mass Spectrometry. Drug Metab. Dispos. 8, 274 (1980).Google Scholar
  106. 106.
    Shackleton, C. H. L., and K. M. Sträub: Direct Analysis of Steroid Conjugates: the Use of Secondary Ion Mass Spectrometry. Steroids 40, 35 (1982).Google Scholar
  107. 107.
    Shackleton, C. H. L.: Inborn Errors of Steroid Biosynthesis: Detection by a New Mass Spectrometric Method. Clin. Chem. (Winston-Salem, N.C.) 29, 246 (1983).Google Scholar
  108. 108.
    Gaskell, S. J., B. G. Brownsey, P. W. Brooks, and B. N. Green: Fast Atom Bombardment Mass Spectrometry of Steroid Sulphates: Qualitative and Quantitative Analyses. Biomed. Mass Spectrometry 10, 215 (1983).Google Scholar
  109. 109.
    Stillwell, R. N., D. I. Carroll, J. G. Nowlin, and E. C. Horning: Formation of Trimethylsilyl Molecular Adduct Ions in Desorption Chemical Ionization Mass Spectrometry of Non-volatile Organic Compounds. Analyt. Chemistry 55, 1313 (1983).Google Scholar
  110. 110.
    Isaac, R. E., M. E. Rose, H. H. Rees, and T. W. Goodwin: Identification of Ecdysone 22-phosphate and 2-Deoxyecdysone-22-phosphate in Eggs of the Desert Locust, Schistocerca Gregaria, by Fast Atom Bombardment Mass Spectrometry and N.M.R. Spectroscopy. J. Chem. Soc. (London), Chem. Commun. 1982, 249.Google Scholar
  111. 111.
    Williams, D. H., V. Rajananda, and J. R. Kalman: On the Structure and Mode of Action of the Antibiotic Ristocetin A. J. Chem. Soc. (London), Perkin Trans. 1, 1979, 787.Google Scholar
  112. 112.
    Kambara, H., S. Hishida, and H. Naganawa: Comparative Study of Field Desorption and Secondary Ion Mass Spectra for Antibiotics. J. Antibiot. 35, 67 (1982).Google Scholar
  113. 113.
    Morimoto, K., N. Shimada, H. Naganawa, T. Takita, H. Umezawa, and H. Kambara: Minor Congeners of Antrimycin: Application of Secondary Ion Mass Spectrometry (SIMS) to Structure Determination. J. Antibiot. 35, 378 (1982).Google Scholar
  114. 114.
    Ohashi, M., R. P. Barron, and W. R. Benson: In-Beam Electron Ionization Mass Spectra of Penicillins. J. Pharm. Sci. 72, 508 (1983).Google Scholar
  115. 115.
    Barber, M., R. S. Bordoli, R. D. Sedgwick, A. N. Tyler, B. N. Green, V. C. Parr, and J. L. Gower: Fast Atom Bombardment Mass Spectrometry of Some Penicillins. Biomed. Mass Spectrom. 9, 11 (1982).Google Scholar
  116. 116.
    Sphon, J. A., P. A. Dreifuss, and H.-R. Schulten: Field Desorption Mass Spectrometry of Mycotoxins and Mycotoxin Mixtures, and its Application as a Screening Technique for Foodstuffs. J. Assoc. Off. Anal. Chem. 60, 73 (1977).Google Scholar
  117. 117.
    Lehmann, W. D., H.-R. Schulten, and N. Schröder: Determination of Choline and Acetyl Choline in Distinct Rat Brain Regions by Stable Isotope Dilution and Field Desorption Mass Spectrometry. Biomed. Mass Spectrom. 5, 591 (1978).Google Scholar
  118. 118.
    Davis, D. V., R. G. Cooks, B. N. Meyer, and J. L. Mclaughlin: Identification of Naturally Occurring Quaternary Compounds by Combined Laser Desorption and Tandem Mass Spectrometry. Analyt. Chemistry 55, 1302 (1983).Google Scholar
  119. 119.
    Saito, N., C. F. Timberlake, O. G. Tucknott, and I. A. S. Lewis: Fast Atom Bombardment Mass Spectrometry of the Anthocyanins Violanin and Platyconin. Phytochemistry 22, 1007 (1983).Google Scholar
  120. 120.
    Grosse-Damhues, J., K.-W. Glombitza, and H.-R. Schulten: An Eight-Ring Phlorotannin from the Brown Alga Himanthalia Elongata. Phytochemistry 22, 2043 (1983).Google Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • I. Howe
    • 1
  • M. Jarman
    • 1
  1. 1.Drug Metabolism Team, Section of Drug Development, Cancer Research Campaign LaboratoryInstitute of Cancer ResearchSutton, SurreyUK

Personalised recommendations