Advertisement

Abstract

Since the discovery of penicillin, the vast majority of new natural products possessing the β-lactam ring structure have fallen into that family of compounds known as β-lactam antibiotics. At present the only natural products possessing a β-lactam and not normally associated with this group are the pachystermines (1), the wild-fire toxin (2), and a related antimetabolite (3). The bleomycins and phleomycins (4) were also originally thought to possess a β-lactam unit, but this is now known not to be the case (5).

Keywords

Clavulanic Acid Total Synthesis Penicillium Chrysogenum Lactam Antibiotic Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kikuchi, T., and S. Uyeo: Pachysandra Alkaloids VIII. Structures of Pachystermine-A and-B, Novel Type Alkaloids Having a β-Lactam Ring. Chem. Pharm. Bull. 15, 549 (1967).Google Scholar
  2. 2.
    Stewart, W. W.: Isolation and Proof of Structure of Wildfire Toxin. Nature 229, 174 (1971).Google Scholar
  3. 3.
    Scannell, J. P., D. L. Pruess, J. F. Blount, H. A. Ax, M. Kellett, F. Weiss, T. C. Demny, T. H. Williams, and A. Stempel: Antimetabolites Produced By Microorganisms. XII. (S)-Alanyl-3-[α-(S)-Chloro-3-(S)-hydroxy-2-oxo-3-azetidinylmethyl]-(S)-Alanine, A New β-Lactam Containing Natural Product. J. Antibiotics 28, 1 (1975).Google Scholar
  4. 4.
    Takita, T., Y. Muraoka, T. Yoshioka, A. Fujii, K. Maeda, and Y. Umezawa: The Chemistry of Bleomycin. IX. The Structures of Bleomycin and Phleomycin. J. Antibiotics 25, 755 (1972).Google Scholar
  5. 5.
    Takita, T., Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa, and H. Urrezawa: Chemistry of Bleomycin. XIX. Revised Structures of Bleomycin and Phleomycin. J. Antibiotics 31, 801 (1975).Google Scholar
  6. 6.
    Flynn, E. H., Ed.: Cephalosporins and Penicillins. New York and London: Academic Press. 1972.Google Scholar
  7. 7.
    Aoki, H., H. Sakai, M. Kohsaka, T. Konami, J. Hosoda, Y. Kubochi, E. Iguchi, and H. Imanaka: Nocardicin A, A New Monocyclic β-Lactam Antibiotic. I. Discovery, Isolation and Characterisation. J. Antibiotics 29, 890 (1976).Google Scholar
  8. 8.
    Hashimoto, M., T. Komori, and T. Kamiya: Nocardicin A, A New Monocyclic β-Lactam Antibiotic. II. Structure Determination of Norcardicins A and B. J. Antibiotics 29, 890 (1976).Google Scholar
  9. 9.
    Hashimoto, M., T. Komori, and T. Kamiya: Nocardicin A and B, Novel Monocyclic β-Lactam Antibiotics from a Nocardia species. J. Amer. Chem. Soc. 98, 3023 (1976).Google Scholar
  10. 10.
    Kamori, T., K. Kunigita, K. Nakahara, H. Aoki, and H. Imanaka: Production of 3-Aminonocardicinic Acid from Nocardicin C by Microbial Enzymes. Agric. Biol. Chem. 42, 439 (1978).Google Scholar
  11. 11.
    Kamiya, T.: Studies on the New Monocyclic β-Lactam Antibiotics, Nocardicins. Recent Advances in the Chemistry of β-Lactam Antibiotics (J. Elks, Ed.). Special Publication Number 28, p. 281. The Chemical Society, 1977.Google Scholar
  12. 12.
    Schaffner-Sabba, K., B. W. Muller, R. Scartazzini, and H. Wehrli: Ein einfacher Zugang zu 3-Amino-nocardicinsäure. Helv. Chim. Acta 63, 321 (1980).Google Scholar
  13. 13.
    Foglio, M., G. Franceshi, P. Lombardi, C. Scarafile, and F. Arcamone: From the Penicillin to the Nocardicin Skeleton: An Alternative Route. J. C. S. Chem. Commun. 1978, 1101.Google Scholar
  14. 14.
    Kamiya, T., M. Hashimoto, O. Nakaguchi, and T. Oku: Total Synthesis of Monocyclic β-Lactam Antibiotics, Nocardicin A and D. Tetrahedron 35, 323 (1979).Google Scholar
  15. 15.
    Kamiya, T., T. Oku, O. Nakaguchi, H. Takeno, and M. Hashimoto: A Novel Synthesis of Nocardicins and their Analogues. Tetrahedron Letters 1978, 5119.Google Scholar
  16. 16.
    Curran, W. V., M. L. Sassiver, A. S. Ross, T. L. Fields, and J. H. Boothe: The Total Synthesis of Nocardicin A. J. Antibiotics 35, 329 (1982).Google Scholar
  17. 17.
    Koppel, G. A., L. Mcshane, F. Jose, and R. D. G. Cooper: Total Synthesis of Nocardicin A. Synthesis of 3-ANA and Nocardicin A. J. Amer. Chem. Soc. 100, 3933 (1978).Google Scholar
  18. 18.
    Mattingly, P. G., and M. J. Miller: Synthesis of 2-Azetidinones from Serinehydroxamates: Approaches to the Synthesis of 3-Aminonocardicinic Acid. J. Org. Chem. 46, 1557 (1981).Google Scholar
  19. 19.
    Wassermann, H. H., D. J. Hlasta, A. W. Tremper, and J. S. Wu: Applications of New β-Lactam Syntheses to the Preparation of (±)-3-Aminonocardicinic Acid. J. Org. Chem. 46, 2999 (1981).Google Scholar
  20. 20.
    Wassermann, H. H., and D. J. Hlasta: A Synthesis of (±)-3-Aminonocardicinic Acid (3-ANA). J. Amer. Chem. Soc. 100, 6780 (1978).Google Scholar
  21. 21.
    Wassermann, H. H., A. W. Tremper, and J. S. Wu: β-Lactams from Azetidine Carboxylates: Tetrahedron Letters 1979, 1089.Google Scholar
  22. 22.
    Chiba, K., M. Mori, and Y. Ban: A Novel Synthesis of (α)-3-Aminonocardicinic Acid. J. C. S. Chem. Commun. 1980, 770.Google Scholar
  23. 23.
    Imada, A., K. Kitano, K. Kintaka, M. Muroi, and M. Asai: Sulfazecin and Isosulfazecin, Novel β-Lactam Antibiotics of Bacterial Origin. Nature 289, 590 (1981).Google Scholar
  24. 24.
    Asai, I., K. Haibara, M. Muroi, K. Kintaka, and T. Kishi: Sulfazecin, A Novel β-Lactam Antibiotic of Bacterial Origin. Isolation and Chemical Characterisation. J. Antibiotics 34, 621 (1981).Google Scholar
  25. 25.
    Kintaka, K., K. Haibara, M. Asai, and A. Imada: Isosulfazecin, A New β-Lactam Antibiotic Produced by An Acidophilic Pseudomonad. J. Antibiotics 34, 1081 (1981).Google Scholar
  26. 26.
    Sykes, R. B., C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Georgopapadakou, W. H. Koster, W. Liu, W. L. Parker, P. A. Principe, M. L. Rathnum, W. A. Slusarchyk, W. H. Trejo, and J. S. Wells: Monocyclic β-Lactam Antibiotics Produced by Bacteria. Nature 291, 489 (1981).Google Scholar
  27. 27.
    Parker, W. L., W. H. Koster, C. M. Cimarusti, D. M. Floyd, W. Liu, and M. L. Rathnum: SQ26, 180, A Novel Monobactam. II. Isolation, Structure Determination and Synthesis. J. Antibiotics 35, 189 (1982).Google Scholar
  28. 28.
    Parker, W. L., and M. L. Rathnum: EM 5400, A Family of Monobactam Antibiotics Produced by Agrobacterium Radiobacter; II. Isolation and Structure Determination. J. Antibiotics 35, 300 (1982).Google Scholar
  29. 29.
    Cimarusti, C. M., H. E. Applegate, H. W. Chang, D. M. Floyd, W. M. Koster, W. A. Slusarchyk, and M. G. Young: Monobactams. The Conversion of 6-APA to (S)-3-Amino-2-oxoazetidine-1-sulfonic Acid and Its 3-(RS)-Methoxy Derivative. J. Org. Chem. 47, 179 (1982).Google Scholar
  30. 30.
    Floyd, D. M., A. W. Fritz, and C. M. Cimarusti: Monobactams. Stereospecific Synthesis of (S)-3-Amino-2-oxoazetidine-1-sulfonic Acid. J. Org. Chem. 47, 176 (1982).Google Scholar
  31. 31.
    Breuer, H., C. M. Cimarusti, Th. Denzel, W. H. Koster, W. A. Slusarchyk, and H. D. Treuner: Monobactams-Structure-Activity Relationships Leading to SQ26, 776: J. Antimicrobial Chemotherapy 8, 21–28 Supp. E (1981).Google Scholar
  32. 32.
    Clarke, H. T., J. R. Johnson, and Sir R. Robinson (Eds.): The Chemistry of Penicillin. Princeton University Press. 1949.Google Scholar
  33. 33.
    Doyle, F. P., and J. H. C. Nayler: Penicillins and Related Structures. Advances in Drug Research, Vol.1 (Harper, N. J., and A. B. Simmonds, Eds.), p. 1–69. New York: Academic Press. 1964.Google Scholar
  34. 34.
    Nayler, J. H. C.: Advances in Penicillin Research. Advances in Drug Research 7, 1–105 (1973).Google Scholar
  35. 35.
    Kaczka, E., and K. Folkers: Desthiobenzylpenicillin and Other Hydrogenolysis Products of Benzylpenicillin, reference 32, p. 243-268.Google Scholar
  36. 36.
    Crowfoot, D., C. W. Bunn, B. W. Rogers-Low, and A. Turner-Jones: The X-Ray Crystallographic Investigation of the Structure of Penicillin, reference 32, p. 310-366.Google Scholar
  37. 37.
    Batchelor, F. R., F. P. Doyle, J. H. C. Nayler, G. N. Rolinson: Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations: Nature 183, 257 (1959).Google Scholar
  38. 38.
    Rolinson, G. N., F. R. Batchelor, D. Butterworth, J. Cameron-Wood, M. Cole, G. C. Eustace, M. V. Hart, M. Richards, and E. B. Chain: Formation of 6 Aminopenicillanic Acid from Penicillin by Enzymatic Hydrolysis: Nature 187, 236 (1960).Google Scholar
  39. 39.
    Weissenburger, H. W. O., and M. G. Van Der Hoeven: An Efficient Nonenzymatic Conversion of Benzylpenicillin to 6-Aminopenicillanic Acid: Rec. Trav. Chim. Pays-Bas Belg. 89, 1081 (1970).Google Scholar
  40. 40.
    Du Vigneaud, V., J. L. Wood, and M. E. Wright: The Condensation of Oxazolones and D-Penicillamine and the Resultant Antibiotic Activity, reference 32, p. 892-920.Google Scholar
  41. 41.
    Sheehan, J. C., K. R. Henery-Logan, and D. A. Johnson: The Synthesis of Substituted Penicillins and Simpler Structural Analogs. VII. The Cyclisation of a Penicilloate Derivative to Methyl Phthalimidopenicillante. J. Amer. Chem. Soc. 75, 3292 (1953).Google Scholar
  42. 42.
    Sheehan, J. C., and K. R. Henery-Logan: The Total Synthesis of Penicillin V. J. Amer. Chem. Soc. 79, 1262 (1957); 81, 3089 (1959).Google Scholar
  43. 43.
    — — A General Synthesis of Penicillins. J. Amer. Chem. Soc. 81, 5836 (1959); 84, 2983 (1962).Google Scholar
  44. 44.
    Bose, A. K., G. Spiegelman, and M. S. Manhas: Studies on Lactams. X. Total Synthesis of 5,6-trans-Penicillin V Methyl Ester. J. Amer. Chem. Soc. 90, 4506 (1968).Google Scholar
  45. 45.
    Firestone, R. A., N. S. Maciejewicz, R. W. Ratcliffe, and B. G. Christensen: Total Synthesis of β-Lactam Antibiotics. IV. Epimerization of 6(7)-Aminopenicillins and-cephalosporins from α to β. J. Org. Chem. 39, 437 (1974).Google Scholar
  46. 46.
    Sammes, P. G. (Ed.): Topics in Antibiotic Chemistry Vol. 4. The Chemistry and Antimicrobial Activity of New Synthetic β-Lactam Antibiotics. Chichester: Ellis Horwood Ltd. 1980.Google Scholar
  47. 47.
    Baldwin, J. E., M. A. Christie, S. B. Haber, and L. I. Kruse: Stereospecific Synthesis of Penicillins. Conversion from a Peptide Precursor. J. Amer. Chem. Soc. 98, 3045 (1976).Google Scholar
  48. 48.
    Baldwin, J. E., and M. A. Christie: Stereospecific Synthesis of Penicillins. Stereoelectronic Control in the Conversion of a Peptide into a Penicillin. J. Amer. Chem. Soc. 100, 4597 (1978).Google Scholar
  49. 49.
    Brown, A. G., D. Butterworth, M. Cole, G. Hanscombe, J. D. Hood, C. Reading, and G. N. Rolinson: Naturally-Occurring β-Lactamase Inhibitors with Antibacterial Activity. J. Antibiotics 29, 668 (1976).Google Scholar
  50. 50.
    Howarth, T. T., A. G. Brown, and T. J. King: Clavulanic Acid, a Novel β-Lactam isolated from Streptomyces clavuligerus; X-Ray Crystal Structure Analysis. J. C. S. Chem. Commun. 1976, 267.Google Scholar
  51. 51.
    Brown, A. G., J. Goodacre, J. B. Harbridge, T. T. Howarth, R. J. Ponsford, I. Stirling, and T. J. King: Clavulanic Acid; a Novel Fused β-Lactam isolated from Streptomyces clavuligerus. Recent Advances in the Chemistry of β-Lactam Antibiotics (J. Elks, Ed.), pp. 295-298, Special Publication No. 28. London: The Chemical Society. 1977; J. Chem. Soc. Perkin I, 1984, 635.Google Scholar
  52. 52.
    Davies, J. S., and T. T. Howarth: Clavulanic Acid. Rearrangement to 3,4-Disubstituted Pyrroles. Tetrahedron Letters 23, 3109 (1982).Google Scholar
  53. 53.
    Cooper, R. D. G.: Clavulanic Acid and Derivatives. Topics in Antibiotic Chemistry, Vol. 3 (P. Sammes, Ed.), pp. 57–73. Chichester: Ellis Horwood. 1980.Google Scholar
  54. 54.
    Cherry, P. C., and C. E. Newall: Clavulanic Acid. Chemistry and Biology of β-Lactam Antibiotics, Vol. 2 (R. Morin and M. Gorman, Eds.), pp. 361–402. New York: Academic Press. 1982.Google Scholar
  55. 55.
    Brown, A. G.: New Naturally Occurring β-Lactam Antibiotics and Related Compounds. J. Antimicrobial Chemotherapy 7, 15–48 (1981).Google Scholar
  56. 56.
    Brown, A. G., T. T. Howarth, I. Stirling, and T. J. King: The Formation and Crystal Structure Analysis of Isoclavulanic Acid. Tetrahedron Letters 1976, 4203.Google Scholar
  57. 57.
    Stirling, I., and S. W. Elson: Studies on the Biosynthesis of Clavulanic Acid II. Chemical Degradation of 14C-Labelled Clavulanic Acid. J. Antibiotics 32, 1125 (1979).Google Scholar
  58. 58.
    Corbett, D. F., T. T. Howarth, and I. Stirling: Oxidation of Clavulanic Acid and a Ready Synthesis of the 7-Oxo-4-oxa-1-azabicyclo-[3.2.0]-hept-2-ene Ring System. J. C. S. Chem. Commun. 1977, 808.Google Scholar
  59. 59.
    Cherry, P. C., G. I. Gregory, C. E. Newall, P. Ward, and N. S. Watson: Reaction of Sulphur Nucleophiles with Activated Derivatives of Clavulanic Acid. J. C. S. Chem. Commun. 1978, 467.Google Scholar
  60. 60.
    Hunt, E.: Decarboxylation of Clavulanic Acid and its 9-Methyl Ether. J. Chem. Research (S) 1981, 64.Google Scholar
  61. 61.
    Cherry, P. C., C. E. Newall, and N. S. Watson: Synthesis of Antibacterial Pen-2-em-3 carboxylic Acids from Clavulanic Acid. J. C. S. Chem. Commun. 1979, 663.Google Scholar
  62. 62.
    Gilpin, M. L., J. B. Harbridge, T. T. Howarth, and T. J. King: Wittig Reactions with β-Lactam Carbonyls: A Convenient Means of Protection. X-Ray Crystal Structure of p-Nitrobenzyl-(2R,5R)-Z-7-Methoxycarbonylmethylene-Z-3-(β-phthaliinido-ethylidene)-4-oxa-1-azabicyclo-[3.2.0]-heptane-2-carboxylate. J. C. S. Chem. Commun. 1981, 929.Google Scholar
  63. 63.
    Reading, C.: U. K. Patent 1, 547, 222 (1979).Google Scholar
  64. 64.
    Brown, D., J. R. Evans, and R. A. Fletton: Structures of Three Novel β-Lactams from Streptomyces Clavuligerus. J. C. S. Chem. Commun. 1979, 282.Google Scholar
  65. 65.
    Müller, J. C., V. Toome, D. L. Pruess, J. F. Blount, and M. Weigele: RO 22-5417, A New Clavam Antibiotic From Streptomyces Clavuligerus III. Absolute Stereochemistry. J. Antibiotics 36, 217 (1983).Google Scholar
  66. 66.
    Wanning, M., H. Zähner, B. Krone, and A. Zeech: Ein neues antifungisches β-Lactam-Antibiotikum der Clavam-Reihe. Tetrahedron Letters 22, 27 (1981).Google Scholar
  67. 67.
    Bentley, P. H., P. D. Berry, G. Brooks, M. L. Gilpin, E. Hunt, and I. Zomaya: Total Synthesis of (β)-Clavulanic Acid. J. C. S. Chem. Commun. 1977, 748.Google Scholar
  68. 68.
    Bentley, P. H., G. Brooks, M. L. Gilpin, and E. Hunt: A New Total Synthesis of (±)-Clavulanic Acid. Tetrahedron Letters 1979, 1889.Google Scholar
  69. 69.
    Brown, A. G., D. F. Corbett, A. J. Eglington, and T. T. Howarth: Structures of Olivanic Acid Derivatives MM 4550 and MM 13902; Two New, Fused β-Lactams isolated from Streptomyces olivaceus. J. C. S. Chem. Commun. 1977, 523.Google Scholar
  70. 70.
    Corbett, D. F., A. J. Eglington, and T. T. Howarth: Structure Elucidation of MM 17880, a New Fused β-Lactam Antibiotic isolated from Streptomyces olivaceus; a Mild β-Lactam Degradation Reaction. J. C. S. Chem. Commun. 1977, 953.Google Scholar
  71. 71.
    Butterworth, D., M. Cole, G. Hanscomb, and G. N. Rolinson: Olivanic Acids, A Family of β-Lactam Antibiotics with β-Lactamase Inhibitory Properties Produced by Streptomyces species. I. Detection, Properties and Fermentation Studies. J. Antibiotics 32, 287 (1979).Google Scholar
  72. 72.
    Hood, J. D., S. J. Box, and M. S. Verrall: ibid. II. Isolation and Characterisation of the Olivanic Acids MM 4550, MM 13902 and MM 17880 from Streptomyces olivaceus. J. Antibiotics 32, 295 (1979).Google Scholar
  73. 73.
    Box, S. J., J. D. Hood, and S. R. Spear: Four Further Antibiotics Related to Olivanic Acid Produced by Streptomyces olivaceus: Fermentation, Isolation, Characterisation and Biosynthetic Studies. J. Antibiotics 32, 1239 (1979).Google Scholar
  74. 74.
    Brown, A. G., D. F. Corbett, A. J. Eglington, and T. T. Howarth: Structures of Olivanic Acid Derivatives MM 22380, MM 22381, MM 22382 and MM 22383; Four New Antibiotics Isolated from Streptomyces olivaceus. J. Antibiotics 32, 961 (1979).Google Scholar
  75. 75.
    — — — — Some Aspects of the Chemistry of the Olivanic Acids. Recent Advances in the Chemistry of β-Lactam Antibiotics, No. 38 (G. I. Gregory, Ed.), pp. 255-268, Special Publication. London: The Chemical Society. 1980; Tetrahedron 39, 2551 (1983).Google Scholar
  76. 76.
    Maeda, K., S. Takahashi, M. Sezaki, I. Iinuma, H. Naganawa, S. Kondo, M. Ohno, and H. Umezawa: Isolation and Structure of a β-Lactamase Inhibitor from Streptomyces. J. Antibiotics 30, 770 (1977).Google Scholar
  77. 77.
    Cassidy, P. J., G. Albers-Schönberg, T. T. Goegelman, T. Miller, B. H. Arison, E. O. Stapley, and J. Birnbaum: Epithienamycins II. Isolation and Structure Assignment. J. Antibiotics 34, 637 (1981).Google Scholar
  78. 78.
    Box, S. J., D. F. Corbett, K. G. Robins, S. R. Spear, and M. J. Verrall: A New Olivanic Acid Derivative Produced by Streptomyces olivaceus: Isolation and Structural Studies. J. Antibiotics 35, 1394 (1982).Google Scholar
  79. 79.
    Kyowa Hakko Kogyo, K. K.: Antibiotic 8U-207 Production by Cultivating Streptomyces Organism. J5 7, 002, 693 (1980).Google Scholar
  80. 80.
    Albers-Hönerg, G., B. H. Arison, O. T. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, R. W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen: Structure and Absolute Configuration of Thienamycin. J. Amer. Chem. Soc. 100, 6491 (1978).Google Scholar
  81. 81.
    Kahan, J. S., F. M. Kahan, R. T. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, T. W. Miller, A. K. Miller, D. Hendlin, S. Mochales, S. Hernandez, H. B. Woodruff, and J. Birnbaum: Thienamycin, A New β-Lactam Antibiotic. I. Discovery, Taxonomy, Isolation and Physical Properties. J. Antibiotics 32, 1 (1979).Google Scholar
  82. 82.
    Kahan, J. S., F. M. Kahan, R. T. Goegelman, E. O. Stapley, and S. Hernandez: N-Acetyl Thienamycin. U.S. Pat. 4, 165, 379 (1979).Google Scholar
  83. 83.
    Kahan, J. S.: Antibiotic N-Acetyl-Dehydro-Thienamycin. U.S. Pat. 4, 162, 323 (1979).Google Scholar
  84. 84.
    Kempf, A. J., and K. E. Wilson: Fermentation Process for 6-Hydroxymethyl-2-(2 Aminoethylthio)-1-Carbadethiapen-2-em-3-carboxylic acid. U.S. Pat. 4, 247, 640 (1981).Google Scholar
  85. 85.
    Okamura, K., S. Hirata, Y. Okumura, Y. Fukagawa, Y. Shimauchi, K. Kouno, T. Ishikura, and J. Lein: PS-5, A New β-Lactam Antibiotic from Streptomyces. J. Antibiotics 31, 480 (1978).Google Scholar
  86. 86.
    Yamamoto, K., T. Yoshioka, Y. Kato, N. Shibamoto, K. Okamura, Y. Shimauchi, and T. Ishikura: Structure and Stereochemistry of Antibiotic PS-5. J. Antibiotics 32, 796 (1980).Google Scholar
  87. 87.
    Shibamoto, N., A. Koki, M. Nishino, K. Nakamura, K. Kiyoshima, K. Okamura, M. Okabe, R. Okamoto, Y. Fukagawa, Y. Shimauchi, and T. Ishikura: PS-6 and PS-7, New β-Lactam Antibiotics Isolation, Physicochemical Properties and Structures. J. Antibiotics 32, 1128 (1980).Google Scholar
  88. 88.
    Shibamoto, N., M. Nishino, K. Okamura, Y. Fukagawa, and T. Ishikura: PS-8, A Minor Carbapenem Antibiotic. J. Antibiotics 35, 763 (1982).Google Scholar
  89. 89.
    Rosi, D., M. L. Drozd, M. F. Kuhrt, L. Terminiello, P. E. Came, and S. J. Daum: Mutants of Streptomyces cattleya Producing N-Acetyl and Deshydroxy Carbapenems Related to Thienamycin. J. Antibiotics 34, 341 (1981).Google Scholar
  90. 90.
    Nakayama, M., S. Kimura, S. Tanabe, T. Mizoguchi, I. Watanabe, T. Mori, K. Miyahara, and T. Kawasaki: Structures and Absolute Configurations of Carpetimycins A and B. J. Antibiotics 34, 818 (1981).Google Scholar
  91. 91.
    Harada, S., S. Shinagaua, Y. Nazaki, M. Asai, and T. Kishi: C-19393 S2 and H2, New Carbapenem Antibiotics. II-Isolation and Structures. J. Antibiotics 33, 1425 (1980).Google Scholar
  92. 92.
    Tsuji, N., K. Nagashima, M. Kobayashi, J. Shoji, T. Kato, Y. Terui, H. Nakai, and M. Shiro: Asparenomycins A, B and C, New Carbapenem Antibiotics. III — Structures. J. Antibiotics 35, 24 (1982).Google Scholar
  93. 93.
    Ito, T., N. Ezaki, K. Ohba, S. Amano, Y. Kondo, S. Miyadoh, T. Shomura, M. Sezaki, T. Niwa, M. Kojima, S. Inouye, Y. Yamada, and T. Niida: A Novel β-Lactamase Inhibitor, SF-2103A Produced by a Streptomyces. J. Antibiotics 35, 533 (1982).Google Scholar
  94. 94.
    Tsuji, N., K. Nagashima, M. Kobayashi, Y. Terui, K. Matsumoto, and E. Kondo: The Structures of Pluracidomycins, New Carbapenem Antibiotics. J. Antibiotics 35, 536 (1982).Google Scholar
  95. 95.
    Okabe, M. S., I. Azuma, I. Kojima, K. Kouno, R. Okamoto, Y. Fukagawa, and T. Ishikura: Studies on the OA-6129 Group of Antibiotics, New Carbapenem Compounds. I. Taxonomy, Isolation and Physical Properties. J. Antibiotics 35, 1255 (1982).Google Scholar
  96. 96.
    Yoshioka, T., I. Kojima, K. Isshiki, A. Watanabe, Y. Shimauchi, M. Okabe, Y. Fukagawa, and T. Ishikura: Structures of OA-6129 A, B1, B2 and C, New Carbapenem Antibiotics. Tetrahedron Letters 23, 5177 (1982).Google Scholar
  97. 97.
    Parker, W. L., M. L. Rathnum, J. S. Wells, W. H. Trejo, P. A. Principe, and R. B. Sykes: SQ 27, 860, A Simple Carbapenem Produced by Species of Serratia and Erwinia. J. Antibiotics 35, 653 (1982).Google Scholar
  98. 98.
    Wilson, K., and J. Kempf: US Patent 4, 335, 212.Google Scholar
  99. 99.
    Harada, S., N. Yukimasa, S. Shinagawa, and K. Kitano: C-19393 E5, A New Carbapenem Antibiotic. Fermentation, Isolation and Structure. J. Antibiotics 35, 957 (1982).Google Scholar
  100. 100.
    Shionogi, Co.: Japanese Patent Application Publication No. J5 7,102,890.Google Scholar
  101. 101.
    Kowa Company Ltd.: Novel Antibiotics (KA-6643 series): E.P. Publication No. 0,050,961.Google Scholar
  102. 102.
    Tanabe, S., M. Okuchi, M. Nakayama, S. Kimura, A. Iwasaki, T. Mizoguchi, A. Murakami, H. Itoh, and T. Mori: A New Carbapenem-Antibiotic, 6643-X. J. Antibiotics 35, 1237 (1982).Google Scholar
  103. 103.
    Ratcliffe, R. W., and G. Albers-Schönberg: The Chemistry of Thienamycin and Other Carbapenem Antibiotics. Chemistry and Biology of β-Lactam Antibiotics, Volume 2 (R. B. Morin and M. Gorman, eds.), pp. 227-313. Academic Press, 1982.Google Scholar
  104. 104.
    Johnston, D. B. R., S. M. Schmitt, F. A. Boufford, and B. G. Christensen: Total Synthesis of (±) Thienamycin. J. Amer. Chem. Soc. 100, 313 (1978).Google Scholar
  105. 105.
    Schmitt, S. M., D. B. R. Johnston, and B. G. Christensen: Thienamycin Total Synthesis 3. Total Synthesis of (±) Thienamycin and (±)-8-Epithienamycin. J. Org. Chem. 45, 1142 (1980).Google Scholar
  106. 106.
    Cama, L. D., B. G. Christensen: Total Synthesis of Thienamycin Analogues 1. Synthesis of the Thienamycin Nucleus and dl-Descysteaminylthienamycin. J. Amer. Chem. Soc. 100, 8006 (1978).Google Scholar
  107. 107.
    Baxter, A. J. G., K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate: Synthesis of 7-Oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylates: the Olivanic Acid Ring System. J. Chem. Soc. Chem. Commun. 1979, 236.Google Scholar
  108. 108.
    Bateson, J. H., A. J. C. Baxter, K. H. Dickinson, R. I. Hickling, R. J. Ponsford, P. M. Roberts, T. C. Smale, and R. Southgate: Total Synthesis of Olivanic Acid Analogues and Related β-Lactam Antibiotics: Recent Advances in the Chemistry of β-Lactam Antibiotics (G. I. Gregory, ed.). RSC Special Publication No. 38, 1981.Google Scholar
  109. 109.
    Pfaendler, H. R., J. Gosteli, R. B. Woodward, and G. Rihs: Structure, Reactivity, and Biological Activity of Strained Bicyclic β-Lactams. J. Amer. Chem. Soc. 103, 4526 (1981).Google Scholar
  110. 110.
    Bateson, J. H., A. J. G. Baxter, P. M. Roberts, T. C. Smale, and R. Southgate: Olivanic Acid Analogues. Part 1. Total Synthesis of the 7-Oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate System and Some Related β-Lactams. J. Chem. Soc. Perkin 1 1981, 3242.Google Scholar
  111. 111.
    Ponsford, R. J., and R. Southgate: Total Synthesis of Olivanic Acids and Related Compounds: Preparation of (±)-MM 22383 and (±) N-Acetyldehydrothienamycin. J. Chem. Soc. Chem. Commun. 1980, 1085.Google Scholar
  112. 112.
    Salzmann, T. N., R. W. Ratcliffe, B. G. Christensen, and F. A. Boufford: A Stereocontrolled Synthesis of (+)-Thienamycin. J. Amer. Chem. Soc. 102, 6161 (1980).Google Scholar
  113. 113.
    Melillo, D. G., I. Shinkai, T. Liu, K. Ryan, and M. Sletzinger: A Practical Synthesis of (±)-Thienamycin. Tetrahedron Letters 1980, 2783.Google Scholar
  114. 114.
    Corbett, D. F., S. Coulton, and R. Southgate: Inversion of Configuration at C-8 in the Olivanic Acids: Conversion to the Thienamycins and Other Novel Derivatives. J. Chem. Soc. Perk. Trans. 1, 1982, 3011.Google Scholar
  115. 115.
    Karady, S., J. S. Amato, R. A. Reamer, and L. M. Weinstock: Stereospecific Conversion of Penicillin to Thienamycin. J. Amer. Chem. Soc. 103, 6765 (1981).Google Scholar
  116. 116.
    Reider, P. J., and E. J. J. Grabowski: Total Synthesis of Thienamycin: A New Approach From Aspartic Acid. Tetrahedron Letters 23, 2293 (1982).Google Scholar
  117. 117.
    Shinkai, I., R. A. Reamer, F. W. Hartner, T. Liu, and M. Sletzinger: A Direct Transformation of Bicyclic Keto Esters to N-Formimidoyl Thienamycin. Tetrahedron Letters 23, 4903 (1982).Google Scholar
  118. 118.
    Tufariello, J. J., G. E. Lee, P. A. Senaratue, and M. A. Nuri: Thienamycin, A Solution of the Stereochemical Problem. Tetrahedron Letters 1979, 4359.Google Scholar
  119. 119.
    Kametani, T., S. P. Huang, S. Yokohama, Y. Suzuki, and M. Ihara: Studies on the Syntheses of Heterocyclic Compounds. 800. A Formal Total Synthesis of (±)-Thienamycin and a (±)-Decysteaminylthienamycin Derivative. J. Amer. Chem. Soc. 102, 2060 (1980).Google Scholar
  120. 120.
    Kametani, T., S. P. Huang, A. Nakayama, and T. Hondo: Further Studies on the Synthesis of Thienamycin: a Facile and Stereoselective Synthesis of a Bicyclic β-Keto Ester by 1,3-Dipolar Cycloaddition. J. Org. Chem. 47, 2328 (1982).Google Scholar
  121. 121.
    Kametani, T.: Synthesis of Carbapenem Antibiotics. Heterocycles 17, 463 (1982).Google Scholar
  122. 122.
    Shiozaki, M., and T. Hiraoka: A Stereocontrolled Formal Total Synthesis of (±)-Thienamycin. Tetrahedron 38, 3457 (1982).Google Scholar
  123. 123.
    Miyashita, M., N. Chida, and A. Yoshikoshi: Synthesis of the Precursor of (+)-Thienamycin utilising D-Glucosamine. J. Chem. Soc. Chem. Commun. 1982, 1354.Google Scholar
  124. 124.
    Shibasaki, M., A. Nishida, and S. Ikegami: A Simple Preparation of (+)-4 Phenylthioazetidin-2-one and an Asymmetric Synthesis of (+)-Thienamycin. J. Chem. Soc. Chem. Commun. 1982, 1324.Google Scholar
  125. 125.
    Ikota, N., O. Yoshino, and K. Koga: Synthetic Studies on Optically Active β-Lactams. Stereocontrolled Synthesis of Chiral Thienamycin Intermediates from D-Glucose. Chem. Pharm. Bull. 30, 1929 (1982).Google Scholar
  126. 126.
    Hanessian, S., D. Desilets, G. Rancourt, and R. Fortin: The Total, Stereocontrolled Synthesis of a Chemical Precursor to (+)-Thienamycin. A Formal Synthesis of the Antibiotic. Can. J. Chem. 60, 2292 (1982).Google Scholar
  127. 127.
    Shibasaki, M., A. Nishida, and S. Ikegami: A Mild Method for The Conversion Of Propiolic Esters to β-Keto Esters. Application to the Formal Total Synthesis of (+)-Thienamycin. Tetrahedron Letters 23, 2875 (1982).Google Scholar
  128. 128.
    Shiozaki, M., N. Ishida, T. Hiraoka, and H. Yanagisawa: Stereocontrolled Synthesis of Chiral Intermediates of Thienamycin from Threonines. Tetrahedron Letters 22, 5205 (1981).Google Scholar
  129. 129.
    Kametani, T., S. P. Huang, T. Nagahara, S. Yokohama, and M. Ihara: Studies on the Synthesis of Heterocyclic Compounds. Part 877. An Alternative Synthesis of Protected (±)-Thienamycin and a Related Compound. J. Chem. Soc. Perkin 1 1981, 964.Google Scholar
  130. 130.
    Bateson, J. H., R. I. Hickling, P. M. Roberts, T. C. Smale, and R. Southgate: Olivanic Acids and Related Compounds: Total Synthesis of (±)-PS-5 and (±)-6-Epi-PS-5. J. Chem. Soc. Chem. Commun. 1980, 1084.Google Scholar
  131. 131.
    Kametani, T., T. Honda, A. Nakayama, Y. Sasakai, T. Mochizuki, and K. Fukumoto: A Short and Stereoselective Synthesis of the Carbapenem Antibiotic PS-5. J. Chem. Soc. Perkin Trans. 1 1981, 2228.Google Scholar
  132. 132.
    Favara, D., A. Omodei-Salè, P. Consonni, and A. Depaoli: A Facile Synthesis of Trans-(+)-4-Carboxymethyl-3-Ethylazetidin-2-one and Its Conversion into Natural PS-5. Tetrahedron Letters 23, 3105 (1982).Google Scholar
  133. 133.
    Corbett, D. F., and A. J. Eglington: Conversion of the Olivanic Acids into Antibiotics of the PS-5 Type: Use of a New Carboxy Protecting Group. J. Chem. Soc. Chem. Commun. 1980, 1083.Google Scholar
  134. 134.
    Natsugari, H., Y. Matsushita, N. Tamura, K. Yoshioka, and M. Ochiai: Synthesis of 5,6-cis-Carbapenem Related to C-19393H2. J. Chem. Soc. Perkin Trans. 1 1983, 403.Google Scholar
  135. 135.
    Iimori, T., Y. Takahashi, T. Izawa, S. Kobayashi, and M. Ohno: Stereocontrolled Synthesis of a cis-Carbapenem Antibiotic (−)-Carpetimycin A. J. Amer. Chem. Soc. 105, 1659 (1983).Google Scholar
  136. 136.
    Newton, G. G. F., and E. P. Abraham: Cephalosporin C, a New Antibiotic containing Sulphur and D-α-Aminoadipic Acid. Nature 175, 548 (1955).Google Scholar
  137. 137.
    Abraham, E. P., and G. G. F. Newton: The Structure of Cephalosporin C. Biochem. J. 79, 377 (1961).Google Scholar
  138. 138.
    Hodgkin, D. C., and E. N. Maslen: The X-ray Analysis of the Structure of Cephalosporin C. Biochem. J. 79, 393 (1961).Google Scholar
  139. 139.
    Hale, W. C., G. G. F. Newton, and E. P. Abraham: Derivatives of Cephalosporin C formed with certain Heterocyclic Tertiary Bases. Biochem. J. 79, 403 (1961).Google Scholar
  140. 140.
    Jeffery, D. J., E. P. Abraham, and G. G. F. Newton: Deacetylcephalosporin C. Biochem. J. 81, 591 (1961).Google Scholar
  141. 141.
    Huber, F. M., R. H. Baltz, and P. G. Caltrider: Formation of Desacetylcephalosporin C in Cephalosporin C Fermentation. Applied Microbiology 16, 1011 (1968).Google Scholar
  142. 142.
    Fujisawa, Y., H. Shirafuji, M. Kida, K. Nara, M. Yoneda, and T. Kanzaki: New Findings on Cephalosporin C Biosynthesis. Nature New Biology 246, 154 (1973).Google Scholar
  143. 143.
    Higgins, C. E., R. L. Hamill, T. H. Sands, M. M. Hoehn, N. E. Davis, R. Nagarajan, and L. D. Boeck: The Occurrence of Deacetoxy-Cephalosporin C in Fungi and Streptomyces. J. Antibiotics 27, 298 (1974).Google Scholar
  144. 144.
    Nagarajan, R., L. D. Boeck, R. L. Hamill, C. E. Higgens, and K. S. Yang: Deacetoxycephalosporin C from Streptomyces and Fungi. J. C. S. Chem. Commun. 1974, 321.Google Scholar
  145. 145.
    Kanzaki, T., T. Fukita, H. Shirafuji, and Y. Fujisana: Occurrence of a 3-Methylthiomethylcephem Derivative in a Culture Broth of Cephalosporium Mutant. J. Antibiotics 27, 361 (1974).Google Scholar
  146. 146.
    Kanzaki, T., T. Fukita, K. Kitano, K. Katamoto, K. Nara, and Y. Nakao: Occurrence of a Novel Cephalosporin Compound in the Culture Broth of a Cephalosporium acremonium Mutant. J. Ferment. Technol. 54, 720 (1976).Google Scholar
  147. 147.
    Kitano, K., Y. Fujisawa, K. Katamoto, K. Nara, and Y. Nakao: Occurrence of 7β-(4-Carboxybutanamido)-cephalosporin Compounds in the Culture Broth of Some Strains of the Genus Cephalosporium. J. Ferment. Technol. 54, 712 (1976).Google Scholar
  148. 148.
    Traxler, P., H. J. Treichler, and J. Nüesch: Synthesis of N-Acetyldeacetoxy Cephalosporin C by a Mutant of Cephalosporium acremonium. J. Antibiotics 38, 605 (1975).Google Scholar
  149. 149.
    Nagarajan, R., L. D. Boeck, M. Gorman, R. L. Hamill, C. E. Higgens, M. M. Hoehn, W. M. Stark, and J. G. Whitney: β-Lactam Antibiotics from Streptomyces. J. Amer. Chem. Soc. 93, 2308 (1971).Google Scholar
  150. 150.
    Shoji, J., R. Sakazaki, K. Matsumoto, T. Tanimoto, Y. Terui, S. Kozuki, and E. Kondo: Isolation of 7β-(5-Hydroxy-5-carboxyvaleramido)-3-hydroxymethyl-3-cephem-4-carboxylic acid from Streptomyces sp. J. Antibiotics 36, 167 (1983).Google Scholar
  151. 151.
    Loder, B., G. G. F. Newton, and E. P. Abraham: The Cephalosporin C Nucleus (7-Aminocephalosporanic Acid) and some of its Derivatives. Biochem. J. 79, 408 (1961).Google Scholar
  152. 152.
    Morin, R. B., B. G. Jackson, E. H. Flynn, R. W. Roeske, and S. L. Andrews: Chemistry of Cephalosporin Antibiotics XIV. The Reaction of Cephalosporin C with Nitrosyl Chloride. J. Amer. Chem. Soc. 91, 1396 (1969).Google Scholar
  153. 153.
    Fechtig, B., H. Peter, H. Bickel, and E. Vischer: Über die Darstellung von 7-Aminocephalosporansäure. Helv. Chim. Acta 51, 1108 (1968).Google Scholar
  154. 154.
    Hatfield, L. D., W. H. W. Lunn B. G. JacksonL. R. PetersL. C. BlaszczakJ. W.FisherJ. P. GardnerJ. M. Dunigan: Application of Phosphorus-HalogenCompounds in Cleavage of the 7-Amide Group of Cephalosporins. Recent Advances in the Chemistry of ~-Lactam Antibiotics (G. 1. Gregory, Ed.), Special Publication No. 38, pp. 109–124. London: The Chemical Society. 1980.Google Scholar
  155. 155.
    Heusler, K.: Total Synthesis of Penicillins and Cephalosporins; in reference 6 pp. 255-279.Google Scholar
  156. 156.
    Holden, K. G.: Total Synthesis of Penicillins, Cephalosporins, and their Nuclear Analogs: Chemistry and Biology of β-Lactam Antibiotics, Vol. 2 (R. B. Morin and M. Gorman, Eds.), pp. 100–164. New York: Academic Press. 19Google Scholar
  157. 157.
    Heymes, R., G. Amiard, and G. Nominé: Accès par synthèse totale aux analogues de la céphalosporine C. II. Lactone de la désacétylcéphalothine. Bull. Soc. Chim. Fr. 1974, 563.Google Scholar
  158. 158.
    Dolfini, J. E., J. Schwartz, and F. Weisenborn: Synthesis of Dihydrothiazines Related to Deacetylcephalosporin Lactones. An Alternative Total Synthesis of Deacetylcephalosporin Lactone. J. Org. Chem. 34, 1582 (1969).Google Scholar
  159. 159.
    Neidleman, S. L., S. C. Pan, L. A. Last, and J. E. Dolfini: Chemical Conversion of Desacetylcephalothin Lactone into Desacetylcephalothin. The Final Link in a Total Synthesis of Cephalosporanic Acid Derivatives. J. Med. Chem. 13, 386 (1970).Google Scholar
  160. 160.
    Edwards, J. A., A. Guzman, R. Johnson, P. J. Beeby, and J. H. Fried: A New Total Synthesis of (±)-Desacetylcephalothin Lactone. A Synthesis of Novel Furo-[3,4-C]-cephams. Tetrahedron Letters 1974, 2031.Google Scholar
  161. 161.
    Morin, R. B., B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews: Chemistry of Cephalosporin Antibiotics. XV. Transformations of Penicillin Sulphoxides. A Synthesis of Cephalosporin Compounds. J. Amer. Chem. Soc. 91, 1401 (1969).Google Scholar
  162. 162.
    Cooper, R. D. G., and D. O. Spry: Rearrangements of Cephalosporins and Penicillins, in reference 6, pp. 184-254.Google Scholar
  163. 163.
    Cooper, R. D. G., and G. A. Koppel: The Chemistry of Penicillin Sulphoxide: Chemistry and Biology of β-Lactam Antibiotics, Vol. 1 (R. B. Morin and M. Gorman, Eds.), pp. 1–92. New York: Academic Press. 1982.Google Scholar
  164. 164.
    Woodward, R. B.: Recent Advances in the Chemistry of Natural Products. Science 153, 487 (1966).Google Scholar
  165. 165.
    Woodward, R. B., K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen: The Total Synthesis of Cephalosporin C. J. Amer. Chem. Soc. 88, 852 (1966).Google Scholar
  166. 166.
    Stapley, E. O., M. Jackson, S. Hernandez, S. B. Zimmerman, S. A. Currie, S. Mochales, J. M. Mata, H. B. Woodruff, and D. Hendlin: Cephamycins, a New Family of β-Lactam Antibiotics. I. Production by Actinomycetes. Antimicrob. Ag. Chemother. 2, 122 (1972).Google Scholar
  167. 167.
    Miller, T. W., R. T. Goegelman, R. G. Weston, I. Putter, and F. J. Wolf: Cephamycins, a New Family of β-Lactam Antibiotics. II. Isolation and Chemical Characterization. Antimicrob. Ag. Chemother. 2, 132 (1972).Google Scholar
  168. 168.
    Albers-Schönberg, G., B. H. Arison, and J. L. Smith: New β-Lactam Antibiotics: Structure Determination of Cephamycins A and B. Tetrahedron Letters 1972, 2911.Google Scholar
  169. 169.
    Fukase, H., T. Hasegawa, K. Hatano, H. Iwasaki, and M. Yoneda: C-2801X, A New Cephamycin-Type Antibiotic. II Isolation and Characterization. J. Antibiotics 29, 113 (1976).Google Scholar
  170. 170.
    Supplement to Index of Antibiotics from Actinomycetes. J. Antibiotics 29, 43 (1976).Google Scholar
  171. 171.
    Supplement to Index of Antibiotics from Actinomycetes. J. Antibiotics 30, 88 (1977).Google Scholar
  172. 172.
    Gushima, H., S. Watanabe, T. Saito, T. Sasaki, H. Eiki, Y. Oka, and T. Osono: Oganomycin A, A New Cephamycin-Type Antibiotic Produced by Streptomyces oganensis and its Derivatives, Oganomycins B, GA and GB. J. Antibiotics 34, 1507 (1981).Google Scholar
  173. 173.
    Inouye, S., M. Kojima, T. Shomura, K. Iwamatsu, T. Niwa, Y. Kondo, T. Niida, Y. Ogawa, and K. Kusama: Discovery, Isolation and Structure of Novel Cephamycins of Streptomyces chartreusis. J. Antibiotics 36, 115 (1983).Google Scholar
  174. 174.
    Gordon, E. M., and R. B. Sykes: Cephamycin Antibiotics. Chemistry and Biology of β-Lactam Antibiotics, Vol. 1 (R. B. Morin and M. Gorman, Eds.), pp. 199–370. New York: Academic Press. 1982.Google Scholar
  175. 175.
    Slocombe, B., M. J. Basker, P. H. Bentley, J. P. Clayton, M. Cole, K. R. Comber, R. A. Dixon, R. A. Edmondson, D. Jackson, D. J. Merrikin, and R. Sutherland: BRL 17421, a Novel β-Lactam Antibiotic, Highly Resistant to β-Lactamases, Giving High and Prolonged Serum Levels in Humans. Antimicrob. Ag. Chemother. 20, 38 (1981).Google Scholar
  176. 176.
    Karady, S., S. H. Pines, L. M. Weinstock, F. E. Roberts, G. S. Brenner, A. M. Hoinowski, T. Y. Cheng, and M. Sletzinger: Semisynthetic Cephalosporins via a Novel Acyl Exchange Reaction. J. Amer. Chem. Soc. 94, 1410 (1972).Google Scholar
  177. 177.
    Weinstock, L. M., S. Karady, F. E. Roberts, A. M. Hoinowski, G. S. Brenner, T. B. K. Lee, W. C. Luma, and M. Sletzinger: The Chemistry of Cephamycins. IV. Acylation of Amides in the Presence of Neutral Acid Scavengers. Tetrahedron Letters 1975, 3979.Google Scholar
  178. 178.
    Cama, L. D., and B. G. Christensen: Substituted Penicillins and Cephalosporins. VII. A Stereospecific Introduction of the C-6(7)-α-Methoxy Group. Tetrahedron Letters 1973, 3505.Google Scholar
  179. 179.
    Lunn, W. H. W., R. W. Burchfield, T. K. Elzey, and E. V. Mason: Cleavage of 7-Methoxycephalosporin C Derivatives with Phosphorus Pentachloride. Tetrahedron Letters 1974, 1307.Google Scholar
  180. 180.
    Karady, S., J. S. Amato, L. M. Weinstock, and M. Sletzinger: The Chemistry of Cephamycins. VI. Cleavage of the 7-Amido Group. Tetrahedron Letters 1978, 407.Google Scholar
  181. 181.
    Applegate, H. E., C. M. Cimarusti, and W. A. Slusarchyk: Deacylation of Amides: Removal of the Acyl Side-chain from Cephamycin Derivatives. J. C. S. Chem. Commun. 1980, 293.Google Scholar
  182. 182.
    Shiozaki, M., N. Ishida, K. Iino, and T. Hiraoka: Cleavage and Some Modifications of the 7-Amide Group of the Cephamycins. Tetrahedron 36, 2735 (1980).Google Scholar
  183. 183.
    Cama, L. D., W. J. Leanza, T. R. Beattie, and B. G. Christensen: Substituted Penicillin and Cephalosporin Derivatives. Stereospecific Introduction of the C-6(7)-Methoxy Group. J. Amer. Chem. Soc. 94, 1408 (1972).Google Scholar
  184. 184.
    Baldwin, J. E., F. J. Urban, R. D. G. Cooper, and F. L. Jose: Direct 6-Methoxylation of Penicillin Derivatives. A Convenient Pathway to Substituted β-Lactam Antibiotics. J. Amer. Chem. Soc. 95, 2401, 1973.Google Scholar
  185. 185.
    Koppel, G. A., and R. E. Koehler: Functionalization of C-6(7) of Penicillins and Cephalosporins. A One-Step Stereoselective Synthesis of 7-α-Methoxycephalosporin C. J. Amer. Chem. Soc. 95, 2403 (1973).Google Scholar
  186. 186.
    Gordon, E. M., H. W. Chang, and C. M. Cimarusti: Sulfenyl Transfer Rearrangement of Thiooximes. A Novel Conversion of Cephalosporins to 7α-Methoxycephalosporins. J. Amer. Chem. Soc. 99, 5504 (1977).Google Scholar
  187. 187.
    Kobayashi, T., K. Iino, and T. Hiraska: A Novel Route to 7α-Methoxycephalosporins. J. Amer. Chem. Soc. 99, 5505 (1977).Google Scholar
  188. 188.
    Gordon, E. W., H. W. Chang, C. M. Cimarusti, B. Toeplitz, and J. Z. Gougoutas: Sulfenyl Transfer Rearrangements of Sulfenimines (Thiooximes). A Novel Synthesis of 7α-Methoxycephalosporins and 6α-Methoxypenicillins. J. Amer. Chem. Soc. 102, 1690 (1980).Google Scholar
  189. 189.
    Sugimura, Y., K. Iino, Y. Iwano, T. Saito, and T. Hiraoka: A Novel Synthesis of 7-Methoxycephalosporins and 6-Methoxypenicillins. Tetrahedron Letters 1976, 1310.Google Scholar
  190. 190.
    Saito, T., Y. Sugimura, Y. Iwano, K. Iino, and T. Hiraoka: A New Synthetic Route to 7α-Methoxycephalosporins. J. C. S. Chem. Commun. 1976, 516.Google Scholar
  191. 191.
    Taylor, A. W., and G. Burton: Formation and 6α-Substitution of 6β-(2-Carboxy) Ketenimino Penicillins. Tetrahedron Letters 1977, 3831.Google Scholar
  192. 192.
    Yanagisawa, H., M. Fukushima, A. Ando, and H. Nakao: A Novel General Method for Synthesising 7α-Methoxycephalosporins. Tetrahedron Letters 1975, 2705.Google Scholar
  193. 193.
    Slusarchyk, W. A., H. E. Applegate, P. Funke, W. H. Koster, M. S. Puar, M. Young, and J. E. Dolfini: Synthesis of 6-Methylthiopenicillins and 7-Heteroatom-Substituted Cephalosporins. J. Org. Chem. 38, 943 (1973).Google Scholar
  194. 194.
    Applegate, H. E., J. E. Dolfini, M. S. Puar, W. A. Slusarchyk, and B. Toeplitz: Synthesis of 7α-Methoxycephalosporins. J. Org. Chem. 39, 2794 (1974).Google Scholar
  195. 195.
    Applegate, H. E., C. M. Cimarusti, J. E. Dolfini, P. T. Funke, W. H. Koster, M. S. Puar, W. A. Slusarchyk, and M. G. Young: Synthesis of 2-, 4-, and 7-Methylthio Substituted Cephalosporins. J. Org. Chem. 44, 811 (1979).Google Scholar
  196. 196.
    Jen, T., T. Frazee, and J. R. E. Hoover: A Stereospecific Synthesis of C-6(7)-Methoxypenicillin and-cephalosporin Derivatives. J. Org. Chem. 38, 2857 (1973).Google Scholar
  197. 197.
    Spitzer, W. A., and T. Goodson: The Synthesis of S-Methyl and O-Methyl β-Lactam Antibiotics. Tetrahedron Letters 1973, 273.Google Scholar
  198. 198.
    Cama, L. D., and B. G. Christensen: Substituted Penicillins and Cephalosporins. VII. A Stereospecific Introduction of the C-6(7)-α-Methoxy Group. Tetrahedron Letters 1973, 3505.Google Scholar
  199. 199.
    Ratcliffe, R. W., and B. G. Christensen: Total Synthesis of β-Lactam Antibiotics II. (±)-Cephalothin. Tetrahedron Letters 1973, 4649.Google Scholar
  200. 200.
    Total Synthesis of β-Lactam Antibiotics III. (±)-Cefoxitin. Tetrahedron Letters 1973, 4653.Google Scholar
  201. 201.
    Nakatsuka, S., H. Tanino, and Y. Kishi: Biogenetic-Type Synthesis of Penicillin Cephalosporin Antibiotics. I. A Stereocontrolled Synthesis of the Penam-and Cephem Ring Systems from an Acyclic Tripeptide Equivalent. J. Amer. Chem. Soc. 97, 5008 (1975).Google Scholar
  202. 202.
    Kishi, Y.: Synthetic Studies in the Field of Natural Products. Pure and Appl. Chem. 43, 423 (1975).Google Scholar
  203. 203.
    Cooper, R. D. G.: Structural Studies on Penicillin Derivatives. VIII. A Possible Model Biosynthetic Route to Penams and Cephems. J. Amer. Chem. Soc. 94, 1018 (1972).Google Scholar
  204. 204.
    Otsuka, H., W. Nagata, M. Toshioka, M. Narisada, T. Yoshida, Y. Harada, and H. Yamada: Discovery and Development of Moxalactam (6059-5): The Chemistry and Biology of 1-Oxacephems. Medicinal Research Reviews 1, 217–248 (1981). John Wiley & Sons Inc.Google Scholar
  205. 205.
    Nakayama, M., S. Kimura, T. Mizoguchi, S. Tanabe, A. Iwasaki, A. Murakami, M. Okuchi, H. Itoh, and T. Mori: New β-Lactam Antibiotics, Carpetimycins C and D. J. Antibiotics 36, 943 (1983).Google Scholar
  206. 206.
    Hosoda, J., N. Tani, T. Konomi, S. Ohsawa, H. Oaki, and H. Imanaka: Incorporation of 14C-Amino Acids into Nocardicin A by Growing Cells. Agric. Biol. Chem. 41, (10), 2007–2012 (1977).Google Scholar
  207. 207.
    Townsend, C. A., and A. M. Brown: Nocardicin A: Biosynthetic Experiments with Amino Acid Precursors. J. Amer. Chem. Soc. 105, 913–918 (1983).Google Scholar
  208. 208.
    Townsend, C. A., A. M. Brown, and L. T. Nguyen: Nocardicin A: Stereochemical and Biomimetic Studies of Monocyclic β-Lactam Formation. J. Amer. Chem. Soc. 105, 919–927 (1983).Google Scholar
  209. 209.
    O’Sullivan, J., A. M. Gillum, C. A. Aklouis, M. L. Souser, and R. B. Sykes: Biosynthesis of Monobactam Compounds: Origin of the Carbon Atoms in the β-Lactam Ring. Antimicrob. Ag. Chemoth. 21, 558 (1982).Google Scholar
  210. 210.
    Arnstein, H. R. V., and P. T. Grant: The Biosynthesis of Penicillin. 1. The Incorporation of Some Amino Acids into Penicillin. Biochem. J. 57, 353 (1954).Google Scholar
  211. 211.
    — — The Biosynthesis of Penicillin. 2. The Incorporation of Cystine into Penicillin. Biochem. J. 57, 360 (1954).Google Scholar
  212. 212.
    Stevens, C. M., P. Vohra, E. Inamine, and O. A. Roholt: Utilisation of Sulphur Compounds for the Biosynthesis of Penicillins. J. Biol. Chem. 204, 1001 (1953).Google Scholar
  213. 213.
    Arnstein, H. R. V., and J. C. Crawhill: The Biosynthesis of Penicillin. 6. A Study of the Mechanism of the Formation of the Thiazolidine-β-Lactam Rings Using Tritium Labelled Cystine. Biochem. J. 67, 180 (1957).Google Scholar
  214. 214.
    Bycroft, B. W., C. M. Wels, K. Corbett, and D. A. Lowe: Incorporation of [α-2H]-and [α-3H]-L-Cystine into Penicillin G and the Location of the Label Using Isotope Exchange and 2H-Nuclear Magnetic Resonance. J. C. S. Chem. Commun. 1975, 123.Google Scholar
  215. 215.
    Morecombe, D. J., and D. W. Young: Synthesis of Chirally Labelled Cysteines and the Steric Origin of C(5) in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1975, 198.Google Scholar
  216. 216.
    Adriens, P., H. Vanderhaeghe, B. Meesschaert, and H. Eyssen: Incorporation of Double Labelled L-Cystine and DL-Valine in Penicillin: Antimicrob. Ag. Chemoth. 8, 15 (1975).Google Scholar
  217. 217.
    Young, D. W., D. J. Morecombe, and P. K. Sen: The Stereochemistry of β-Lactam Formation in Penicillin Biosynthesis. Eur. J. Biochem. 75, 133 (1977).Google Scholar
  218. 218.
    Aberhart, D. J., L. J. Lin, and J. Y.-R. Chu: Studies on the Biosynthesis of β-Lactam Antibiotics. II. Synthesis and Incorporation into Penicillin G of (2RS,2′RS,3R,3′R)-[3,3′-3H2]-Cystine and (2RS,2′RS,3S,3′S)-[3,3′-3H2]-Cystint. J. C. S. Perkin 1 1975, 2517.Google Scholar
  219. 219.
    Baldwin, J. E., P. D. Bailey, G. Gallacher, K. A. Singleton, and (in part) P. H. Wallace: Stereospecific Synthesis of Tabtoxin. J. Chem. Soc. Chem. Commun. 1983, 1049.Google Scholar
  220. 220.
    Stevens, C. M., P. Vohra, and C. W. De Long: Utilisation of Valine in the Biosynthesis of Penicillins. J. Biol. Chem. 211, 297 (1954).Google Scholar
  221. 221.
    Stevens, C. M., E. Inamine, and C. W. DE Long: The Rates of Incorporation of L Cystine and D-and L-Valine in Penicillin Biosynthesis. J. Biol. Chem. 219, 405 (1956).Google Scholar
  222. 222.
    Arnstein, H. R. V., and M. E. Clubb: The Biosynthesis of Penicillin. 5. Comparison of Valine and Hydroxyvaline as Penicillin Precursors. Biochem. J. 65, 618 (1957).Google Scholar
  223. 223.
    Stevens, C. M., and C. W. DE Long: Valine Metabolism and Penicillin Biosynthesis. J. Biol. Chem. 230, 991 (1958).Google Scholar
  224. 224.
    Arnstein, H. R. V., and H. Margreiter: The Biosynthesis of Penicillin. 7. Further Experiments on the Utilisation of L-and D-Valine and the Effect of Cysteine and Valine Analogues on Penicillin Biosynthesis. Biochem. J. 68, 339 (1958).Google Scholar
  225. 225.
    Warren, S. C., G. G. F. Newton, and E. P. Abraham: The Role of Valine in the Biosynthesis of Penicillin N and Cephalosporin C by a Cephalosporium sp. Biochem. J. 103, 902 (1967).Google Scholar
  226. 226.
    Bycroft, B. W., C. M. Wels, K. Corbett, A. P. Maloney, and D. A. Lowe: Biosynthesis of Penicillin G from D-and L-[14C]-and (α-3H]-Valine. J. C. S. Chem. Commun. 1975, 923.Google Scholar
  227. 227.
    Booth, H., B. W. Bycroft, C. M. Wels, K. Corbett, and A. P. Maloney: Application of 15N Pulsed Fourier Transform Nuclear Magnetic Resonance Spectroscopy to Biosynthesis Studies; incorporation of L-[15N]-Valine in Penicillin G. J. C. S. Chem. Commun. 1976, 110.Google Scholar
  228. 228.
    Aberhart, D. J., J. Y.-R. Chu, N. Neuss, C. H. Nash, J. L. Occolowitz, L. L. Huckstep, and N. De La Higuera: Retention of Valine Methyl Hydrogens in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1974, 564.Google Scholar
  229. 229.
    Kluender, H., F.-C. Huang, A. Fritzberg, H. K. Schnoes, C. J. Sih, P. A. Fawcett, and E. P. Abraham: Studies on the Incorporation of (2S,3R)-[4,4,4-2H3]-Valine and (2,S,3S)-[4,4,4-2H3]-Valine into β-Lactam Antibiotics. J. Am. Chem. Soc. 96, 4054 (1974).Google Scholar
  230. 230.
    Baldwin, J. E., J. Löliger, W. Rastetter, N. Neuss, L. L. Huckstep, and N. De La Higuera: Use of Chiral Isopropyl Groups in Biosynthesis. Synthesis of (2RS,3R)-[4-13C]-Valine. J. Am. Chem. Soc. 95, 3796 (1973), see also p. 6511 (correction).Google Scholar
  231. 231.
    Neuss, N., C. H. Nash, J. E. Baldwin, P. A. Lemke, and J. B. Grutzner: Incorporation of (2RS,3R)-[4-13C]-Valine into Cephalosporin C. J. Am. Chem. Soc. 95, 3797 (1973); see also p. 6511 (correction).Google Scholar
  232. 232.
    Kluender, H., C. H. Bradley, C. J. Sih, P. A. Fawcett, and E. P. Abraham: Synthesis and Incorporation of (2S,3S)-[4-13C]-Valine into β-Lactam Antibiotics. J. Am. Chem. Soc. 95, 6149 (1973).Google Scholar
  233. 233.
    Aberhart, D. J., and L. J. Lin: Studies on the Biosynthesis of β-Lactam Antibiotics. Part1. Stereospecific synthesis of (2RS,3S)-[4,4,4-2H3]-, (2RS,3S)-[4-3H]-, (2RS,3R)-[4-3H] and (2RS,3S)-[4-13C]-Valine. Incorporation of (2RS,3S)-[4-13C]-Valine into Penicillin V. J. C. S. Perkin I 1974, 2320.Google Scholar
  234. 234.
    Arnstein, H. R. V., and D. Morris: The Utilisation of L-Cystinyl-L-Valine for Penicillin Biosynthesis. Biochem. J. 76, 323 (1960).Google Scholar
  235. 235.
    Arnstein, H. R. V., M. Artman, D. Morris, and E. J. Toms: Sulphur Containing Amino Acids and Peptides in the Mycelium of Penicillium chrysogenum. Biochem. J. 76, 353 (1960).Google Scholar
  236. 236.
    Arnstein, H. R. V., and D. Morris: The Structure of a Peptide Containing α-Aminoadipic Acid, Cystine and Valine, Present in the Mycelium of Penicillium chrysogenum. Biochem. J. 76, 357 (1960).Google Scholar
  237. 237.
    Abraham, E. P., G. G. F. Newton, and C. W. Hale: Purification and Some Properties of Cephalosporin N, a New Penicillin. Biochem. J. 58, 94 (1954).Google Scholar
  238. 238.
    Flynn, E. H., M. H. Mccormick, M. C. Stamper, H. De Valera, and C. W. Godzeski: A New Natural Penicillin from Penicillium chrysogenum. Nature 84, 4594 (1962).Google Scholar
  239. 239.
    Cole, M., and F. R. Batchelor: Aminoadipylpenicillin in Penicillin Fermentations. Nature 198, 383 (1963).Google Scholar
  240. 240.
    Warren, S. C., G. G. F. Newton, and E. P. Abraham: Use of a-Aminoadipic Acid for the Biosynthesis of Penicillin N and Cephalosporin C by a Cephalosporium sp. Biochem. J. 103, 891 (1967).Google Scholar
  241. 241.
    Loder, P. B., and E. P. Abraham: Isolation and Nature of Intracellular Peptide from a Cephalosporin C-Producing Cephalosporium sp. Biochem. J. 123, 471 (1971).Google Scholar
  242. 242.
    Chan, J. A., F.-C. Huang, and C. J. Sih: The Absolute Configuration of the Amino Acids in δ-(α-Aminoadipyl)cysteinyl valine from Penicillium chrysogenum. Biochemistry 15, 177 (1976).Google Scholar
  243. 243.
    Adriens, P., B. Meesschaert, W. Wuyts, H. Vanderhaeghe, and H. Eyssen: Presence of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine in Fermentations of Penicillium chrysogenum. Antimicrob. Ag. Chemoth. 8, 638 (1975).Google Scholar
  244. 244.
    Fawcett, P. A., J. J. Usher, J. A. Huddleston, R. C. Bleaney, J. J. Nisbet, and E. P. Abraham: Synthesis of δ-(α-Aminoadipyl)cysteinylvaline and its Role in Penicillin Biosynthesis. Biochem. J. 157, 651 (1976).Google Scholar
  245. 245.
    Bauer, K.: Zur Biosynthese der Penicilline: Bildung von δ-(α-Aminoadipyl)cysteinylvalin in Extracten von Penicillium chrysogenum. Z. Naturforsch. B, 25, 1125 (1970).Google Scholar
  246. 246.
    Loder, P. B., and E. P. Abraham: Biosynthesis of Peptides Containing α-Aminoadipic Acid and Cysteine in Extracts of a Cephalosporium sp. Biochem. J. 123, 477 (1971).Google Scholar
  247. 247.
    Fawcett, P. A., and E. P. Abraham: 8-(α-Aminoadipyl)cysteinylvaline Synthetase. In: Methods in Enzymology, Vol. 43 (J. H. Hash, ed.), p. 471. New York: Academic Press. 1971.Google Scholar
  248. 248.
    Huang, F.-C., J. A. Chan, C. J. Sih, P. A. Fawcett, and E. P. Abraham: The Nonparticipation of α,β-Dehydrovalinyl Intermediates in the Formation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine. J. Am. Chem. Soc. 97, 3858 (1975).Google Scholar
  249. 249.
    Adriens, P., B. Meesschaert, H. Vanderhaeghe, and H. Eyssen: Incorporation of Double-Labelled Valine into δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine by P. chrysogenum. Arch. Int. Physiol. Biochim. 84, 767 (1976).Google Scholar
  250. 250.
    Fawcett, P. A., P. B. Loder, M. J. Duncan, T. J. Beesley, and E. P. Abraham: Formation and Properties of Protoplasts from Antibiotic-Producing Strains of Penicillium chrysogenum and Cephalosporium acremonium. J. Gen. Microbiol. 79, 293 (1973).Google Scholar
  251. 251.
    O’sullivan, J., R. C. Bleaney, J. A. Huddleston, and E. P. Abraham: Incorporation of 3H from δ-(L-α-Amino[4,5-3H]adipyl)-L-cysteinyl-D-[4,4-3H]-valine into Isopenicillin N. Biochem. J. 184, 421 (1979).Google Scholar
  252. 252.
    Konomi, T., S. Herchen, J. E. Baldwin, M. Yoshida, N. A. Hunt, and A. L. Demain: Cell-Free Conversion of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine into an Antibiotic with the Properties of Isopenicillin N in Cephalosporium acremonium. Biochem. J. 184, 427 (1979).Google Scholar
  253. 253.
    Baldwin, J. E., B. L. Johnson, J. J. Usher, E. P. Abraham, J. A. Huddleston, and R. L. White: Direct N.M.R. Observation of Cell-Free Conversion of (L-α-Amino-δ-adipyl) L-cysteinyl-D-valine into Isopenicillin N. J. C. S. Chem. Commun. 1980, 1271.Google Scholar
  254. 254.
    Neuss, N., D. M. Berry, J. Kupka, A. L. Demain, S. W. Queener, D. C. Duckworth, and L. L. Huckstep: High Performance Liquid Chromatography (HPLC) of Natural Products V: The Use of HPLC in the Cell-Free Biosynthetic Conversion of α-Aminoadipyl-cysteinyl-valine (LLD) into Isopenicillin N. J. Antibiotics 35, 580 (1982).Google Scholar
  255. 255.
    Sawada, Y., J. E. Baldwin, P. D. Singh, N. A. Solomon, and A. L. Demain: Cell-Free Cyclisation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Isopenicillin N. Antimicrob. Ag. Chemoth. 18, 465 (1980).Google Scholar
  256. 256.
    White, R. L., E.-M. M. John, J. E. Baldwin, and E. P. Abraham: Stoichiometry of Oxygen Consumption in the Biosynthesis of Isopenicillin N from a Tripeptide. Biochem. J. 203, 791 (1982).Google Scholar
  257. 257.
    Kupka, J., Y.-Q. Shen, S. Wolfe, and A. L. Demain: Studies on the Ring-Cyclisation and Ring Expanding Enzymes of β-Lactam Biosynthesis in C. acremonium. Can. J. Microbiol. 29, 488 (1983).Google Scholar
  258. 258.
    Bahadur, G. A., J. E. Baldwin, J. J. Usher, E. P. Abraham, G. S. Jayatilake, and R. L. White: Cell-Free Biosynthesis of Penicillins. Conversion of Peptides into New β-Lactam Antibiotics. J. Am. Chem. Soc. 103, 7650 (1981).Google Scholar
  259. 259.
    Bahadur, G., J. E. Baldwin, L. D. Field, E.-M. M. Lehtonan, J. J. Usher, C. A. Vallejo, E. P. Abraham, and R. L. White: Direct 1H-N.M.R. Observation of the Cell Free Conversion of δ-(α-Aminoadipyl)-L-cysteinyl-D-valine and δ-(L-α-Aminoadipyl)L-cysteinyl-D-(−)-isoleucine into Penicillins. J. C. S. Chem. Commun. 1981, 917.Google Scholar
  260. 260.
    Baldwin, J. E., B. Chakravarti, L. D. Field, J. A. Murphy, K. R. Whitten, E. P. Abraham, and G. Jayatilake: The Synthesis of L-α-Aminoadipyl-L-cysteinyl-D-3,4 didehydrovaline, a Potent Inhibitor of Isopenicillin N Synthetase. Tetrahedron 38, 2773 (1982).Google Scholar
  261. 261.
    Neuss, N., R. D. Miller, C. A. Affolder, W. Nakatsukasa, J. A. Mabe, L. L. Huckstep, N. De La Higuera, A. H. Hunt, J. L. Occolowitz, and J. H. Gilliam: High Performance Liquid Chromatography (HPLC) of Natural Products. III. Isolation of New Tripeptides from the Fermentation Broth of P. chrysogenum. Helv. Chim. Acta 63, 1119 (1980).Google Scholar
  262. 262.
    Abraham, E. P., J. A. Huddleston, G. S. Jayatilake, J. O’Sullivan, and R. L. White: Conversion of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Isopenicillin N in Cell-Free Extracts of Cephalosporium acremonium. In: Recent Advances in the Chemistry of β-Lactam Antibiotics (G. I. Gregory, ed.), p. 125. London: Royal Society of Chemistry. 1980.Google Scholar
  263. 263.
    Meesschaert, B., P. Adriens, and H. Eyssen: Studies on the Biosynthesis of Isopenicillin N with a Cell-Free Preparation of Penicillium chrysogenum. J. Antibiotics 33, 722 (1980).Google Scholar
  264. 264.
    Abraham, E. P., R. M. Adlington, J. E. Baldwin, M. J. Crimmin, L. D. Field, G. S. Jayatilake, and R. L. White: Monocyclic β-Lactam Tripeptide, 1-(D-Carboxy-2-methylpropyl)-3-L-(δ-L-2-aminoadipamido)-4-L-mercaptoazetidin-2-one, a Putative Intermediate in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1982, 1130.Google Scholar
  265. 265.
    Jensen, S. E., D. W. S. Westlake, and S. Wolfe: Cyclisation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Penicillins by Cell-Free Extracts of Streptomyces clavuligerus. J. Antibiotics 35, 483 (1982).Google Scholar
  266. 266.
    —— High Performance Liquid Chromatographie Assay of Cyclisation Activity in Cell-Free Systems from Streptomyces clavuligerus. J. Antibiotics 35, 1026 (1982).Google Scholar
  267. 267.
    Bahadur, G. A., J. E. Baldwin, T. Wan, M. Jung, E. P. Abraham, J. A. Huddleston, and R. L. White: On the Proposed Intermediacy of β-Hydroxyvaline-and Thiaze-pinone-Containing Peptides in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1981, 1146.Google Scholar
  268. 268.
    Adlington, R. M., R. T. Aplin, J. E. Baldwin, L. D. Field, E.-M. M. John, E. P. Abraham, and R. L. White: Conversion of 17O/18O-Labelled δ-(α-Aminoadipyl)-L-cysteinyl-D-valine into 17O/18O-Labelled Isopenicillin N in a Cell-Free Extract of C. acremonium. J. C. S. Chem. Commun. 1982, 137.Google Scholar
  269. 269.
    Jayatilake, G. S., J. A. Huddleston, and E. P. Abraham: Conversion of Isopenicillin N into Penicillin N in Cell-Free Extracts of Cephalosporium acremonium. Biochem. J. 194, 645 (1981).Google Scholar
  270. 270.
    Behrens, O. K., J. Corse, R. G. Jones, E. C. Kleiderer, Q. F. Soper, F. R. Van Abeele, L. M. Larson, J. C. Sylvester, W. J. Haines, and H. E. Carter: Biosynthesis of Penicillins. II. Utilisation of Deuterophenylacetyl-15N-DL-valine in Penicillin Biosynthesis. J. Biol. Chem. 175, 765 (1948).Google Scholar
  271. 271.
    Behrens, O. K., J. Corse, D. E. Huff, R. G. Jones, Q. F. Soper, and C. W. Whitehead: Biosynthesis of Penicillins. III. Preparation and Evaluation of Precursors for New Penicillins. J. Biol. Chem. 175, 771 (1948).Google Scholar
  272. 272.
    Fawcett, P. A., J. J. Usher, and E. P. Abraham: Behaviour of Tritium Labelled Isopenicillin N and 6-Aminopenicillanic Acid as Potential Penicillin Precursors in an Extract of Penicillium chrysogenum. Biochem. J. 151, 741 (1975).Google Scholar
  273. 273.
    Batchelor, F. R., E. B. Chain, and G. N. Rolinson: 6-Aminopenicillanic Acid. I. 6-Aminopenicillanic Acid in Penicillin Fermentations. Proc. Roy. Soc. B, 154, 478 (1961).Google Scholar
  274. 274.
    Pruess, D. L., and M. J. Johnson: Penicillin Acyltransferase in Penicillium chrysogenum. J. Bact. 94, 1502 (1967).Google Scholar
  275. 275.
    Cole, M.: Formation of 6-Aminopenicillanic Acid, Penicillins and Penicillin Acylase by Various Fungi. Applied Microbiol. 14, 98 (1966).Google Scholar
  276. 276.
    Vanderhaeghe, H., M. Claesen, A. Vlietuick, and G. Parmentier: Specificity of Penicillin Acylase of Fusarium and of Penicillium chrysogenum. Applied Microbiol. 16, 1557 (1968).Google Scholar
  277. 277.
    Spencer, B., and C. Maung: Multiple Activities of Penicillin Acyltransferase of Penicillium chrysogenum. Biochem. J. 118, 29P (1970).Google Scholar
  278. 278.
    Neuss, N., and S. W. Queener: β-Lactam Antibiotics: Chemistry and Biology, Vol. II (R. B. Morin and M. Gorman, eds.). New York: Academic Press. 1982.Google Scholar
  279. 279.
    Elson, S. W., and R. S. Oliver: Studies on the Biosynthesis of Clavulanic Acid. I. Incorporation of 13C-Labelled Precursors. J. Antibiotics 31, 586 (1978).Google Scholar
  280. 280.
    Elson, S. W., R. S. Oliver, B. W. Bycroft, and E. A. Faruk: Studies on the Biosynthesis of Clavulanic Acid. III. Incorporation of DL-[3,4-13C2] Glutamic Acid. J. Antibiotics 35, 81 (1982).Google Scholar
  281. 281.
    Albers-Schönberg, G., B. H. Arison, E. Kaczka, F. M. Kahan, J. S. Kahan, B. Lago, W. M. Maiese, R. E. Rhodes, and J. L. Smith: Abstracts of the Sixteenth Interscience Conference on Antimicrobial Agents and Chemotherapy (1976).Google Scholar
  282. 282.
    Fukagawa, Y., K. Kubo, K. Okamura, and T. Ishikawa: Biosynthesis of Carbapenem Antibiotics. In: Trends in Antibiotic Research (H. Umezawa, A. Demain, T. Hata, and C. Hutchinson, eds.). Japanese Antibiotics Research Association, Tokyo. 1982.Google Scholar
  283. 283.
    Singh, P. D., J. H. Johnson, P. C. Ward, J. Scott Wells, W. H. Trejo, and R. B. Sykes: A New Monobactam Produced by a Flexibacter sp. J. Antibiotics 36, 1245 (1983).Google Scholar
  284. 284.
    Cooper, R., K. Bush, P. A. Principe, W. H. Trejo, J. Scott Wells, and R. B. Sykes: Two New Monobactam Antibiotics Produced by a Flexibacter sp. J. Antibiotics 36, 1252 (1983).Google Scholar
  285. 285.
    Trown, P. W., B. Smith, and E. P. Abraham: Biosynthesis of Cephalosporin C from Amino Acids. Biochem. J. 86, 284 (1963).Google Scholar
  286. 286.
    Trown, P. W., E. P. Abraham, G. G. F. Newton, C. W. Hale, and G. A. Miller: Incorporation of Acetate into Cephalosporin C. Biochem. J. 84, 157 (1962).Google Scholar
  287. 287.
    Huddleston, J. A., E. P. Abraham, D. W. Young, D. J. Morecombe, and P. K. Sen: The Stereochemistry of β-Lactam Formation in Cephalosporin Biosynthesis. Biochem. J. 169, 705 (1978).Google Scholar
  288. 288.
    Whitney, J. G., D. R. Brannon, J. A. Mabe, and K. J. Wicker: Incorporation of Labelled Precursors into A 16886 B, a Novel β-Lactam Antibiotic Produced by Streptomyces clavuligerus. Antimicrob. Ag. Chemother. 1, 247 (1972).Google Scholar
  289. 289.
    Kohsaka, M., and A. L. Demain: Conversion of Penicillin N to Cephalosporin(s) by Cell-Free Extracts of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 70, 465 (1976).Google Scholar
  290. 290.
    Yoshida, M., T. Konomi, M. Kohsaka, J. E. Baldwin, S. Herchen, P. D. Singh, N. A. Hunt, and A. L. Demain: Cell-Free Ring Expansion of Penicillin N to Deacetoxy cephalosporin C by Cephalosporium acremonium CW-19 and its Mutants. Proc. Natl. Acad. Sci. USA 75, 6253 (1978).Google Scholar
  291. 291.
    Baldwin, J. E., S. R. Herchen, and P. D. Singh: Syntheses of Penicillin N, [6α-3H] Penicillin N and [10-14C, 6α-3H] Penicillin N. Biochem. J. 186, 881 (1980).Google Scholar
  292. 292.
    Baldwin, J. E., P. D. Singh, M. Yoshida, Y. Sawada, and A. L. Demain: Incorporation of 3H and 14C from [6α-3H] Penicillin N and [10-14C, 6α-3H] Penicillin N into Deacetoxycephalosporin C. Biochem. J. 186, 889 (1980).Google Scholar
  293. 293.
    Hook, D. J., L. T. Chang, R. P. Elander, and R. B. Morin: Stimulation of the Conversion of Penicillin N to Cephalosporin by Ascorbic Acid, α-Ketoglutarate and Ferrous Ions in Cell-Free Extracts of Strain of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87, 258 (1979).Google Scholar
  294. 294.
    Sawada, Y., N. A. Hunt, and A. L. Demain: Further Studies on Microbiological Ring Expansion of Penicillin N. J. Antibiotics 32, 1303 (1979).Google Scholar
  295. 295.
    Sawada, Y., N. A. Solomon, and A. L. Demain: Stimulation of Cell-Free Ring Expansion of Penicillin N by Sonication and Triton X-100. Biotech. Lett. 2, 43 (1980).Google Scholar
  296. 296.
    Felix, H. R., H. H. Peter, and H. J. Treichler: Microbiological Ring Expansion of Penicillin N. J. Antibiotics 34, 567 (1981).Google Scholar
  297. 297.
    Kupka, J., Y.-Q. Shen, S. Wolfe, and A. L. Demain: Partial Purification and Properties of the α-Ketoglutarate-Linked Ring — Expansion Enzyme of β-Lactam Biosynthesis of Cephalosporium acremonium. FEMS Microbiol. Lett. 16, 1 (1982).Google Scholar
  298. 298.
    Miller, R. D., L. L. Huckstep, J. P. Mcdermott, S. W. Queener, S. Kukolja, D. O. Spry, T. K. Elzey, S. M. Lawrence, and N. Neuss: High Performance Liquid Chromatography (HPLC) of Natural Products. IV. The Use of HPLC in Biosynthetic Studies of Cephalosporin C in the Cell-Free System. J. Antibiotics 34, 984 (1981).Google Scholar
  299. 299.
    Jensen, S. E., D. W. S. Westlake, R. J. Bowers, and S. Wolfe: Cephalosporin Formation by Cell-Free Extracts from Streptomyces clavuligerus. J. Antibiotics 35, 1351 (1982).Google Scholar
  300. 300.
    Jensen, S. E., D. W. S. Westlake, and S. Wolfe: Analysis of Penicillin N Ring Expansion Activity from Streptomyces clavuligerus by Ion-Pair High-Pressure Liquid Chromatography. Antimicrob. Ag. Chemoth. 24, 307 (1983).Google Scholar
  301. 301.
    Liersch, M., J. Nüesch, and H. J. Treichler: Final Steps in the Biosynthesis of Cephalosporin C. In: Second International Symposium on the Genetics of Industrial Micro-organisms (K. D. Macdonald, ed.), p. 179. London: Academic Press. 1976.Google Scholar
  302. 302.
    Stevens, C. M., E. P. Abraham, F.-C. Huang, and C. J. Sih: Incorporation of Molecular Oxygen at C-17 of Cephalosporin C During its Biosynthesis. Fed. Proc. 34, 625 (1975).Google Scholar
  303. 303.
    O’Sullivan, J., R. T. Aplin, C. M. Stevens, and E. P. Abraham. Biosynthesis of a 7-α-Methoxycephalosporin. Incorporation of Molecular Oxygen. Biochem. J. 179, 47 (19Google Scholar
  304. 304.
    Fujisawa, Y., M. Kikuchi, and T. Kanzaki: Deacetylcephalosporin C Synthesis by Cell Free Extracts of Cephalosporium acremonium. J. Antibiotics 30, 775 (1977).Google Scholar
  305. 305.
    Turner, M. K., J. E. Farthing, and S. J. Brewer: The Oxygenation of [3-Methyl-3H] desacetoxycephalosporin C [7β-(5-D-Aminoadipamido)-3-methylceph-3-em-4-carboxylic acid] to [3-Hydroxymethyl-3H] deacetylcephalosporin C by 2-Oxoglutarate-Linked Dioxygenases from Acremonium chrysogenum and Streptomyces clavuligerus. Biochem. J. 173, 839 (1978).Google Scholar
  306. 306.
    Fujisawa, Y., and T. Kanzaki: Role of Acetyl-CoA: Deacetylcephalosporin C Acetyltransferase in Cephalosporin C Biosynthesis by Cephalosporium acremonium. Agr. Biol. Chem. 39, 2043 (1975).Google Scholar
  307. 307.
    Brewer, S. J., T. T. Boyle, and M. K. Turner: The Carbamoylation of the 3 Hydroxymethyl Group of 7α-Methoxy-7β-(5-D-aminoadipamido)-3-hydroxymethylceph-3-em-4-carboxylic acid (Desacetyl-7α-methoxycephalosporin C) by Homogenates of Streptomyces clavuligerus. Biochem. Soc. Trans. 5, 1026 (1977).Google Scholar
  308. 308.
    Brewer, S. J., P. M. Taylor, and M. K. Turner: An Adenosine Triphosphate Dependant Carbamoyl-phosphate-3-hydroxymethylcephem O-carbamoyl-transferase from Streptomyces clavuligerus. Biochem. J. 185, 555 (1980).Google Scholar
  309. 309.
    O’Sullivan, J., and E. P. Abraham: The Conversion of Cephalosporins to 7α Methoxycephalosporins by Cell-Free Extracts of Streptomyces clavuligerus. Biochem. J. 186, 613 (1980).Google Scholar
  310. 310.
    Hood, J. D., A. L. Elson, M. L. Gilpin, and A. G. Brown: Identification of 7α-Hydroxycephalosporin C as an Intermediate in the Methoxylation of Cephalosporin C by a Cell-Free Extract of Streptomyces clavuligerus. J. C. S. Chem. Commun. 1983, 1187.Google Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • R. Southgate
    • 1
  • S. Elson
    • 1
  1. 1.Research DivisionBeecham PharmaceuticalsBetchworth, SurreyUK

Personalised recommendations