Skip to main content

Abstract

Since the discovery of penicillin, the vast majority of new natural products possessing the β-lactam ring structure have fallen into that family of compounds known as β-lactam antibiotics. At present the only natural products possessing a β-lactam and not normally associated with this group are the pachystermines (1), the wild-fire toxin (2), and a related antimetabolite (3). The bleomycins and phleomycins (4) were also originally thought to possess a β-lactam unit, but this is now known not to be the case (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kikuchi, T., and S. Uyeo: Pachysandra Alkaloids VIII. Structures of Pachystermine-A and-B, Novel Type Alkaloids Having a β-Lactam Ring. Chem. Pharm. Bull. 15, 549 (1967).

    CAS  Google Scholar 

  2. Stewart, W. W.: Isolation and Proof of Structure of Wildfire Toxin. Nature 229, 174 (1971).

    CAS  Google Scholar 

  3. Scannell, J. P., D. L. Pruess, J. F. Blount, H. A. Ax, M. Kellett, F. Weiss, T. C. Demny, T. H. Williams, and A. Stempel: Antimetabolites Produced By Microorganisms. XII. (S)-Alanyl-3-[α-(S)-Chloro-3-(S)-hydroxy-2-oxo-3-azetidinylmethyl]-(S)-Alanine, A New β-Lactam Containing Natural Product. J. Antibiotics 28, 1 (1975).

    CAS  Google Scholar 

  4. Takita, T., Y. Muraoka, T. Yoshioka, A. Fujii, K. Maeda, and Y. Umezawa: The Chemistry of Bleomycin. IX. The Structures of Bleomycin and Phleomycin. J. Antibiotics 25, 755 (1972).

    CAS  Google Scholar 

  5. Takita, T., Y. Muraoka, T. Nakatani, A. Fujii, Y. Umezawa, H. Naganawa, and H. Urrezawa: Chemistry of Bleomycin. XIX. Revised Structures of Bleomycin and Phleomycin. J. Antibiotics 31, 801 (1975).

    Google Scholar 

  6. Flynn, E. H., Ed.: Cephalosporins and Penicillins. New York and London: Academic Press. 1972.

    Google Scholar 

  7. Aoki, H., H. Sakai, M. Kohsaka, T. Konami, J. Hosoda, Y. Kubochi, E. Iguchi, and H. Imanaka: Nocardicin A, A New Monocyclic β-Lactam Antibiotic. I. Discovery, Isolation and Characterisation. J. Antibiotics 29, 890 (1976).

    Google Scholar 

  8. Hashimoto, M., T. Komori, and T. Kamiya: Nocardicin A, A New Monocyclic β-Lactam Antibiotic. II. Structure Determination of Norcardicins A and B. J. Antibiotics 29, 890 (1976).

    CAS  Google Scholar 

  9. Hashimoto, M., T. Komori, and T. Kamiya: Nocardicin A and B, Novel Monocyclic β-Lactam Antibiotics from a Nocardia species. J. Amer. Chem. Soc. 98, 3023 (1976).

    CAS  Google Scholar 

  10. Kamori, T., K. Kunigita, K. Nakahara, H. Aoki, and H. Imanaka: Production of 3-Aminonocardicinic Acid from Nocardicin C by Microbial Enzymes. Agric. Biol. Chem. 42, 439 (1978).

    Google Scholar 

  11. Kamiya, T.: Studies on the New Monocyclic β-Lactam Antibiotics, Nocardicins. Recent Advances in the Chemistry of β-Lactam Antibiotics (J. Elks, Ed.). Special Publication Number 28, p. 281. The Chemical Society, 1977.

    Google Scholar 

  12. Schaffner-Sabba, K., B. W. Muller, R. Scartazzini, and H. Wehrli: Ein einfacher Zugang zu 3-Amino-nocardicinsäure. Helv. Chim. Acta 63, 321 (1980).

    CAS  Google Scholar 

  13. Foglio, M., G. Franceshi, P. Lombardi, C. Scarafile, and F. Arcamone: From the Penicillin to the Nocardicin Skeleton: An Alternative Route. J. C. S. Chem. Commun. 1978, 1101.

    Google Scholar 

  14. Kamiya, T., M. Hashimoto, O. Nakaguchi, and T. Oku: Total Synthesis of Monocyclic β-Lactam Antibiotics, Nocardicin A and D. Tetrahedron 35, 323 (1979).

    CAS  Google Scholar 

  15. Kamiya, T., T. Oku, O. Nakaguchi, H. Takeno, and M. Hashimoto: A Novel Synthesis of Nocardicins and their Analogues. Tetrahedron Letters 1978, 5119.

    Google Scholar 

  16. Curran, W. V., M. L. Sassiver, A. S. Ross, T. L. Fields, and J. H. Boothe: The Total Synthesis of Nocardicin A. J. Antibiotics 35, 329 (1982).

    CAS  Google Scholar 

  17. Koppel, G. A., L. Mcshane, F. Jose, and R. D. G. Cooper: Total Synthesis of Nocardicin A. Synthesis of 3-ANA and Nocardicin A. J. Amer. Chem. Soc. 100, 3933 (1978).

    CAS  Google Scholar 

  18. Mattingly, P. G., and M. J. Miller: Synthesis of 2-Azetidinones from Serinehydroxamates: Approaches to the Synthesis of 3-Aminonocardicinic Acid. J. Org. Chem. 46, 1557 (1981).

    CAS  Google Scholar 

  19. Wassermann, H. H., D. J. Hlasta, A. W. Tremper, and J. S. Wu: Applications of New β-Lactam Syntheses to the Preparation of (±)-3-Aminonocardicinic Acid. J. Org. Chem. 46, 2999 (1981).

    Google Scholar 

  20. Wassermann, H. H., and D. J. Hlasta: A Synthesis of (±)-3-Aminonocardicinic Acid (3-ANA). J. Amer. Chem. Soc. 100, 6780 (1978).

    Google Scholar 

  21. Wassermann, H. H., A. W. Tremper, and J. S. Wu: β-Lactams from Azetidine Carboxylates: Tetrahedron Letters 1979, 1089.

    Google Scholar 

  22. Chiba, K., M. Mori, and Y. Ban: A Novel Synthesis of (α)-3-Aminonocardicinic Acid. J. C. S. Chem. Commun. 1980, 770.

    Google Scholar 

  23. Imada, A., K. Kitano, K. Kintaka, M. Muroi, and M. Asai: Sulfazecin and Isosulfazecin, Novel β-Lactam Antibiotics of Bacterial Origin. Nature 289, 590 (1981).

    CAS  Google Scholar 

  24. Asai, I., K. Haibara, M. Muroi, K. Kintaka, and T. Kishi: Sulfazecin, A Novel β-Lactam Antibiotic of Bacterial Origin. Isolation and Chemical Characterisation. J. Antibiotics 34, 621 (1981).

    CAS  Google Scholar 

  25. Kintaka, K., K. Haibara, M. Asai, and A. Imada: Isosulfazecin, A New β-Lactam Antibiotic Produced by An Acidophilic Pseudomonad. J. Antibiotics 34, 1081 (1981).

    CAS  Google Scholar 

  26. Sykes, R. B., C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Georgopapadakou, W. H. Koster, W. Liu, W. L. Parker, P. A. Principe, M. L. Rathnum, W. A. Slusarchyk, W. H. Trejo, and J. S. Wells: Monocyclic β-Lactam Antibiotics Produced by Bacteria. Nature 291, 489 (1981).

    CAS  Google Scholar 

  27. Parker, W. L., W. H. Koster, C. M. Cimarusti, D. M. Floyd, W. Liu, and M. L. Rathnum: SQ26, 180, A Novel Monobactam. II. Isolation, Structure Determination and Synthesis. J. Antibiotics 35, 189 (1982).

    CAS  Google Scholar 

  28. Parker, W. L., and M. L. Rathnum: EM 5400, A Family of Monobactam Antibiotics Produced by Agrobacterium Radiobacter; II. Isolation and Structure Determination. J. Antibiotics 35, 300 (1982).

    CAS  Google Scholar 

  29. Cimarusti, C. M., H. E. Applegate, H. W. Chang, D. M. Floyd, W. M. Koster, W. A. Slusarchyk, and M. G. Young: Monobactams. The Conversion of 6-APA to (S)-3-Amino-2-oxoazetidine-1-sulfonic Acid and Its 3-(RS)-Methoxy Derivative. J. Org. Chem. 47, 179 (1982).

    CAS  Google Scholar 

  30. Floyd, D. M., A. W. Fritz, and C. M. Cimarusti: Monobactams. Stereospecific Synthesis of (S)-3-Amino-2-oxoazetidine-1-sulfonic Acid. J. Org. Chem. 47, 176 (1982).

    CAS  Google Scholar 

  31. Breuer, H., C. M. Cimarusti, Th. Denzel, W. H. Koster, W. A. Slusarchyk, and H. D. Treuner: Monobactams-Structure-Activity Relationships Leading to SQ26, 776: J. Antimicrobial Chemotherapy 8, 21–28 Supp. E (1981).

    CAS  Google Scholar 

  32. Clarke, H. T., J. R. Johnson, and Sir R. Robinson (Eds.): The Chemistry of Penicillin. Princeton University Press. 1949.

    Google Scholar 

  33. Doyle, F. P., and J. H. C. Nayler: Penicillins and Related Structures. Advances in Drug Research, Vol.1 (Harper, N. J., and A. B. Simmonds, Eds.), p. 1–69. New York: Academic Press. 1964.

    Google Scholar 

  34. Nayler, J. H. C.: Advances in Penicillin Research. Advances in Drug Research 7, 1–105 (1973).

    CAS  Google Scholar 

  35. Kaczka, E., and K. Folkers: Desthiobenzylpenicillin and Other Hydrogenolysis Products of Benzylpenicillin, reference 32, p. 243-268.

    Google Scholar 

  36. Crowfoot, D., C. W. Bunn, B. W. Rogers-Low, and A. Turner-Jones: The X-Ray Crystallographic Investigation of the Structure of Penicillin, reference 32, p. 310-366.

    Google Scholar 

  37. Batchelor, F. R., F. P. Doyle, J. H. C. Nayler, G. N. Rolinson: Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations: Nature 183, 257 (1959).

    CAS  Google Scholar 

  38. Rolinson, G. N., F. R. Batchelor, D. Butterworth, J. Cameron-Wood, M. Cole, G. C. Eustace, M. V. Hart, M. Richards, and E. B. Chain: Formation of 6 Aminopenicillanic Acid from Penicillin by Enzymatic Hydrolysis: Nature 187, 236 (1960).

    CAS  Google Scholar 

  39. Weissenburger, H. W. O., and M. G. Van Der Hoeven: An Efficient Nonenzymatic Conversion of Benzylpenicillin to 6-Aminopenicillanic Acid: Rec. Trav. Chim. Pays-Bas Belg. 89, 1081 (1970).

    CAS  Google Scholar 

  40. Du Vigneaud, V., J. L. Wood, and M. E. Wright: The Condensation of Oxazolones and D-Penicillamine and the Resultant Antibiotic Activity, reference 32, p. 892-920.

    Google Scholar 

  41. Sheehan, J. C., K. R. Henery-Logan, and D. A. Johnson: The Synthesis of Substituted Penicillins and Simpler Structural Analogs. VII. The Cyclisation of a Penicilloate Derivative to Methyl Phthalimidopenicillante. J. Amer. Chem. Soc. 75, 3292 (1953).

    CAS  Google Scholar 

  42. Sheehan, J. C., and K. R. Henery-Logan: The Total Synthesis of Penicillin V. J. Amer. Chem. Soc. 79, 1262 (1957); 81, 3089 (1959).

    CAS  Google Scholar 

  43. — — A General Synthesis of Penicillins. J. Amer. Chem. Soc. 81, 5836 (1959); 84, 2983 (1962).

    Google Scholar 

  44. Bose, A. K., G. Spiegelman, and M. S. Manhas: Studies on Lactams. X. Total Synthesis of 5,6-trans-Penicillin V Methyl Ester. J. Amer. Chem. Soc. 90, 4506 (1968).

    CAS  Google Scholar 

  45. Firestone, R. A., N. S. Maciejewicz, R. W. Ratcliffe, and B. G. Christensen: Total Synthesis of β-Lactam Antibiotics. IV. Epimerization of 6(7)-Aminopenicillins and-cephalosporins from α to β. J. Org. Chem. 39, 437 (1974).

    CAS  Google Scholar 

  46. Sammes, P. G. (Ed.): Topics in Antibiotic Chemistry Vol. 4. The Chemistry and Antimicrobial Activity of New Synthetic β-Lactam Antibiotics. Chichester: Ellis Horwood Ltd. 1980.

    Google Scholar 

  47. Baldwin, J. E., M. A. Christie, S. B. Haber, and L. I. Kruse: Stereospecific Synthesis of Penicillins. Conversion from a Peptide Precursor. J. Amer. Chem. Soc. 98, 3045 (1976).

    CAS  Google Scholar 

  48. Baldwin, J. E., and M. A. Christie: Stereospecific Synthesis of Penicillins. Stereoelectronic Control in the Conversion of a Peptide into a Penicillin. J. Amer. Chem. Soc. 100, 4597 (1978).

    CAS  Google Scholar 

  49. Brown, A. G., D. Butterworth, M. Cole, G. Hanscombe, J. D. Hood, C. Reading, and G. N. Rolinson: Naturally-Occurring β-Lactamase Inhibitors with Antibacterial Activity. J. Antibiotics 29, 668 (1976).

    CAS  Google Scholar 

  50. Howarth, T. T., A. G. Brown, and T. J. King: Clavulanic Acid, a Novel β-Lactam isolated from Streptomyces clavuligerus; X-Ray Crystal Structure Analysis. J. C. S. Chem. Commun. 1976, 267.

    Google Scholar 

  51. Brown, A. G., J. Goodacre, J. B. Harbridge, T. T. Howarth, R. J. Ponsford, I. Stirling, and T. J. King: Clavulanic Acid; a Novel Fused β-Lactam isolated from Streptomyces clavuligerus. Recent Advances in the Chemistry of β-Lactam Antibiotics (J. Elks, Ed.), pp. 295-298, Special Publication No. 28. London: The Chemical Society. 1977; J. Chem. Soc. Perkin I, 1984, 635.

    Google Scholar 

  52. Davies, J. S., and T. T. Howarth: Clavulanic Acid. Rearrangement to 3,4-Disubstituted Pyrroles. Tetrahedron Letters 23, 3109 (1982).

    CAS  Google Scholar 

  53. Cooper, R. D. G.: Clavulanic Acid and Derivatives. Topics in Antibiotic Chemistry, Vol. 3 (P. Sammes, Ed.), pp. 57–73. Chichester: Ellis Horwood. 1980.

    Google Scholar 

  54. Cherry, P. C., and C. E. Newall: Clavulanic Acid. Chemistry and Biology of β-Lactam Antibiotics, Vol. 2 (R. Morin and M. Gorman, Eds.), pp. 361–402. New York: Academic Press. 1982.

    Google Scholar 

  55. Brown, A. G.: New Naturally Occurring β-Lactam Antibiotics and Related Compounds. J. Antimicrobial Chemotherapy 7, 15–48 (1981).

    CAS  Google Scholar 

  56. Brown, A. G., T. T. Howarth, I. Stirling, and T. J. King: The Formation and Crystal Structure Analysis of Isoclavulanic Acid. Tetrahedron Letters 1976, 4203.

    Google Scholar 

  57. Stirling, I., and S. W. Elson: Studies on the Biosynthesis of Clavulanic Acid II. Chemical Degradation of 14C-Labelled Clavulanic Acid. J. Antibiotics 32, 1125 (1979).

    CAS  Google Scholar 

  58. Corbett, D. F., T. T. Howarth, and I. Stirling: Oxidation of Clavulanic Acid and a Ready Synthesis of the 7-Oxo-4-oxa-1-azabicyclo-[3.2.0]-hept-2-ene Ring System. J. C. S. Chem. Commun. 1977, 808.

    Google Scholar 

  59. Cherry, P. C., G. I. Gregory, C. E. Newall, P. Ward, and N. S. Watson: Reaction of Sulphur Nucleophiles with Activated Derivatives of Clavulanic Acid. J. C. S. Chem. Commun. 1978, 467.

    Google Scholar 

  60. Hunt, E.: Decarboxylation of Clavulanic Acid and its 9-Methyl Ether. J. Chem. Research (S) 1981, 64.

    Google Scholar 

  61. Cherry, P. C., C. E. Newall, and N. S. Watson: Synthesis of Antibacterial Pen-2-em-3 carboxylic Acids from Clavulanic Acid. J. C. S. Chem. Commun. 1979, 663.

    Google Scholar 

  62. Gilpin, M. L., J. B. Harbridge, T. T. Howarth, and T. J. King: Wittig Reactions with β-Lactam Carbonyls: A Convenient Means of Protection. X-Ray Crystal Structure of p-Nitrobenzyl-(2R,5R)-Z-7-Methoxycarbonylmethylene-Z-3-(β-phthaliinido-ethylidene)-4-oxa-1-azabicyclo-[3.2.0]-heptane-2-carboxylate. J. C. S. Chem. Commun. 1981, 929.

    Google Scholar 

  63. Reading, C.: U. K. Patent 1, 547, 222 (1979).

    Google Scholar 

  64. Brown, D., J. R. Evans, and R. A. Fletton: Structures of Three Novel β-Lactams from Streptomyces Clavuligerus. J. C. S. Chem. Commun. 1979, 282.

    Google Scholar 

  65. Müller, J. C., V. Toome, D. L. Pruess, J. F. Blount, and M. Weigele: RO 22-5417, A New Clavam Antibiotic From Streptomyces Clavuligerus III. Absolute Stereochemistry. J. Antibiotics 36, 217 (1983).

    Google Scholar 

  66. Wanning, M., H. Zähner, B. Krone, and A. Zeech: Ein neues antifungisches β-Lactam-Antibiotikum der Clavam-Reihe. Tetrahedron Letters 22, 27 (1981).

    Google Scholar 

  67. Bentley, P. H., P. D. Berry, G. Brooks, M. L. Gilpin, E. Hunt, and I. Zomaya: Total Synthesis of (β)-Clavulanic Acid. J. C. S. Chem. Commun. 1977, 748.

    Google Scholar 

  68. Bentley, P. H., G. Brooks, M. L. Gilpin, and E. Hunt: A New Total Synthesis of (±)-Clavulanic Acid. Tetrahedron Letters 1979, 1889.

    Google Scholar 

  69. Brown, A. G., D. F. Corbett, A. J. Eglington, and T. T. Howarth: Structures of Olivanic Acid Derivatives MM 4550 and MM 13902; Two New, Fused β-Lactams isolated from Streptomyces olivaceus. J. C. S. Chem. Commun. 1977, 523.

    Google Scholar 

  70. Corbett, D. F., A. J. Eglington, and T. T. Howarth: Structure Elucidation of MM 17880, a New Fused β-Lactam Antibiotic isolated from Streptomyces olivaceus; a Mild β-Lactam Degradation Reaction. J. C. S. Chem. Commun. 1977, 953.

    Google Scholar 

  71. Butterworth, D., M. Cole, G. Hanscomb, and G. N. Rolinson: Olivanic Acids, A Family of β-Lactam Antibiotics with β-Lactamase Inhibitory Properties Produced by Streptomyces species. I. Detection, Properties and Fermentation Studies. J. Antibiotics 32, 287 (1979).

    CAS  Google Scholar 

  72. Hood, J. D., S. J. Box, and M. S. Verrall: ibid. II. Isolation and Characterisation of the Olivanic Acids MM 4550, MM 13902 and MM 17880 from Streptomyces olivaceus. J. Antibiotics 32, 295 (1979).

    CAS  Google Scholar 

  73. Box, S. J., J. D. Hood, and S. R. Spear: Four Further Antibiotics Related to Olivanic Acid Produced by Streptomyces olivaceus: Fermentation, Isolation, Characterisation and Biosynthetic Studies. J. Antibiotics 32, 1239 (1979).

    CAS  Google Scholar 

  74. Brown, A. G., D. F. Corbett, A. J. Eglington, and T. T. Howarth: Structures of Olivanic Acid Derivatives MM 22380, MM 22381, MM 22382 and MM 22383; Four New Antibiotics Isolated from Streptomyces olivaceus. J. Antibiotics 32, 961 (1979).

    CAS  Google Scholar 

  75. — — — — Some Aspects of the Chemistry of the Olivanic Acids. Recent Advances in the Chemistry of β-Lactam Antibiotics, No. 38 (G. I. Gregory, Ed.), pp. 255-268, Special Publication. London: The Chemical Society. 1980; Tetrahedron 39, 2551 (1983).

    Google Scholar 

  76. Maeda, K., S. Takahashi, M. Sezaki, I. Iinuma, H. Naganawa, S. Kondo, M. Ohno, and H. Umezawa: Isolation and Structure of a β-Lactamase Inhibitor from Streptomyces. J. Antibiotics 30, 770 (1977).

    CAS  Google Scholar 

  77. Cassidy, P. J., G. Albers-Schönberg, T. T. Goegelman, T. Miller, B. H. Arison, E. O. Stapley, and J. Birnbaum: Epithienamycins II. Isolation and Structure Assignment. J. Antibiotics 34, 637 (1981).

    CAS  Google Scholar 

  78. Box, S. J., D. F. Corbett, K. G. Robins, S. R. Spear, and M. J. Verrall: A New Olivanic Acid Derivative Produced by Streptomyces olivaceus: Isolation and Structural Studies. J. Antibiotics 35, 1394 (1982).

    CAS  Google Scholar 

  79. Kyowa Hakko Kogyo, K. K.: Antibiotic 8U-207 Production by Cultivating Streptomyces Organism. J5 7, 002, 693 (1980).

    Google Scholar 

  80. Albers-Hönerg, G., B. H. Arison, O. T. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, R. W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen: Structure and Absolute Configuration of Thienamycin. J. Amer. Chem. Soc. 100, 6491 (1978).

    Google Scholar 

  81. Kahan, J. S., F. M. Kahan, R. T. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, T. W. Miller, A. K. Miller, D. Hendlin, S. Mochales, S. Hernandez, H. B. Woodruff, and J. Birnbaum: Thienamycin, A New β-Lactam Antibiotic. I. Discovery, Taxonomy, Isolation and Physical Properties. J. Antibiotics 32, 1 (1979).

    CAS  Google Scholar 

  82. Kahan, J. S., F. M. Kahan, R. T. Goegelman, E. O. Stapley, and S. Hernandez: N-Acetyl Thienamycin. U.S. Pat. 4, 165, 379 (1979).

    Google Scholar 

  83. Kahan, J. S.: Antibiotic N-Acetyl-Dehydro-Thienamycin. U.S. Pat. 4, 162, 323 (1979).

    Google Scholar 

  84. Kempf, A. J., and K. E. Wilson: Fermentation Process for 6-Hydroxymethyl-2-(2 Aminoethylthio)-1-Carbadethiapen-2-em-3-carboxylic acid. U.S. Pat. 4, 247, 640 (1981).

    Google Scholar 

  85. Okamura, K., S. Hirata, Y. Okumura, Y. Fukagawa, Y. Shimauchi, K. Kouno, T. Ishikura, and J. Lein: PS-5, A New β-Lactam Antibiotic from Streptomyces. J. Antibiotics 31, 480 (1978).

    CAS  Google Scholar 

  86. Yamamoto, K., T. Yoshioka, Y. Kato, N. Shibamoto, K. Okamura, Y. Shimauchi, and T. Ishikura: Structure and Stereochemistry of Antibiotic PS-5. J. Antibiotics 32, 796 (1980).

    Google Scholar 

  87. Shibamoto, N., A. Koki, M. Nishino, K. Nakamura, K. Kiyoshima, K. Okamura, M. Okabe, R. Okamoto, Y. Fukagawa, Y. Shimauchi, and T. Ishikura: PS-6 and PS-7, New β-Lactam Antibiotics Isolation, Physicochemical Properties and Structures. J. Antibiotics 32, 1128 (1980).

    Google Scholar 

  88. Shibamoto, N., M. Nishino, K. Okamura, Y. Fukagawa, and T. Ishikura: PS-8, A Minor Carbapenem Antibiotic. J. Antibiotics 35, 763 (1982).

    CAS  Google Scholar 

  89. Rosi, D., M. L. Drozd, M. F. Kuhrt, L. Terminiello, P. E. Came, and S. J. Daum: Mutants of Streptomyces cattleya Producing N-Acetyl and Deshydroxy Carbapenems Related to Thienamycin. J. Antibiotics 34, 341 (1981).

    CAS  Google Scholar 

  90. Nakayama, M., S. Kimura, S. Tanabe, T. Mizoguchi, I. Watanabe, T. Mori, K. Miyahara, and T. Kawasaki: Structures and Absolute Configurations of Carpetimycins A and B. J. Antibiotics 34, 818 (1981).

    CAS  Google Scholar 

  91. Harada, S., S. Shinagaua, Y. Nazaki, M. Asai, and T. Kishi: C-19393 S2 and H2, New Carbapenem Antibiotics. II-Isolation and Structures. J. Antibiotics 33, 1425 (1980).

    CAS  Google Scholar 

  92. Tsuji, N., K. Nagashima, M. Kobayashi, J. Shoji, T. Kato, Y. Terui, H. Nakai, and M. Shiro: Asparenomycins A, B and C, New Carbapenem Antibiotics. III — Structures. J. Antibiotics 35, 24 (1982).

    CAS  Google Scholar 

  93. Ito, T., N. Ezaki, K. Ohba, S. Amano, Y. Kondo, S. Miyadoh, T. Shomura, M. Sezaki, T. Niwa, M. Kojima, S. Inouye, Y. Yamada, and T. Niida: A Novel β-Lactamase Inhibitor, SF-2103A Produced by a Streptomyces. J. Antibiotics 35, 533 (1982).

    CAS  Google Scholar 

  94. Tsuji, N., K. Nagashima, M. Kobayashi, Y. Terui, K. Matsumoto, and E. Kondo: The Structures of Pluracidomycins, New Carbapenem Antibiotics. J. Antibiotics 35, 536 (1982).

    CAS  Google Scholar 

  95. Okabe, M. S., I. Azuma, I. Kojima, K. Kouno, R. Okamoto, Y. Fukagawa, and T. Ishikura: Studies on the OA-6129 Group of Antibiotics, New Carbapenem Compounds. I. Taxonomy, Isolation and Physical Properties. J. Antibiotics 35, 1255 (1982).

    CAS  Google Scholar 

  96. Yoshioka, T., I. Kojima, K. Isshiki, A. Watanabe, Y. Shimauchi, M. Okabe, Y. Fukagawa, and T. Ishikura: Structures of OA-6129 A, B1, B2 and C, New Carbapenem Antibiotics. Tetrahedron Letters 23, 5177 (1982).

    CAS  Google Scholar 

  97. Parker, W. L., M. L. Rathnum, J. S. Wells, W. H. Trejo, P. A. Principe, and R. B. Sykes: SQ 27, 860, A Simple Carbapenem Produced by Species of Serratia and Erwinia. J. Antibiotics 35, 653 (1982).

    CAS  Google Scholar 

  98. Wilson, K., and J. Kempf: US Patent 4, 335, 212.

    Google Scholar 

  99. Harada, S., N. Yukimasa, S. Shinagawa, and K. Kitano: C-19393 E5, A New Carbapenem Antibiotic. Fermentation, Isolation and Structure. J. Antibiotics 35, 957 (1982).

    CAS  Google Scholar 

  100. Shionogi, Co.: Japanese Patent Application Publication No. J5 7,102,890.

    Google Scholar 

  101. Kowa Company Ltd.: Novel Antibiotics (KA-6643 series): E.P. Publication No. 0,050,961.

    Google Scholar 

  102. Tanabe, S., M. Okuchi, M. Nakayama, S. Kimura, A. Iwasaki, T. Mizoguchi, A. Murakami, H. Itoh, and T. Mori: A New Carbapenem-Antibiotic, 6643-X. J. Antibiotics 35, 1237 (1982).

    CAS  Google Scholar 

  103. Ratcliffe, R. W., and G. Albers-Schönberg: The Chemistry of Thienamycin and Other Carbapenem Antibiotics. Chemistry and Biology of β-Lactam Antibiotics, Volume 2 (R. B. Morin and M. Gorman, eds.), pp. 227-313. Academic Press, 1982.

    Google Scholar 

  104. Johnston, D. B. R., S. M. Schmitt, F. A. Boufford, and B. G. Christensen: Total Synthesis of (±) Thienamycin. J. Amer. Chem. Soc. 100, 313 (1978).

    CAS  Google Scholar 

  105. Schmitt, S. M., D. B. R. Johnston, and B. G. Christensen: Thienamycin Total Synthesis 3. Total Synthesis of (±) Thienamycin and (±)-8-Epithienamycin. J. Org. Chem. 45, 1142 (1980).

    CAS  Google Scholar 

  106. Cama, L. D., B. G. Christensen: Total Synthesis of Thienamycin Analogues 1. Synthesis of the Thienamycin Nucleus and dl-Descysteaminylthienamycin. J. Amer. Chem. Soc. 100, 8006 (1978).

    CAS  Google Scholar 

  107. Baxter, A. J. G., K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate: Synthesis of 7-Oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylates: the Olivanic Acid Ring System. J. Chem. Soc. Chem. Commun. 1979, 236.

    Google Scholar 

  108. Bateson, J. H., A. J. C. Baxter, K. H. Dickinson, R. I. Hickling, R. J. Ponsford, P. M. Roberts, T. C. Smale, and R. Southgate: Total Synthesis of Olivanic Acid Analogues and Related β-Lactam Antibiotics: Recent Advances in the Chemistry of β-Lactam Antibiotics (G. I. Gregory, ed.). RSC Special Publication No. 38, 1981.

    Google Scholar 

  109. Pfaendler, H. R., J. Gosteli, R. B. Woodward, and G. Rihs: Structure, Reactivity, and Biological Activity of Strained Bicyclic β-Lactams. J. Amer. Chem. Soc. 103, 4526 (1981).

    CAS  Google Scholar 

  110. Bateson, J. H., A. J. G. Baxter, P. M. Roberts, T. C. Smale, and R. Southgate: Olivanic Acid Analogues. Part 1. Total Synthesis of the 7-Oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate System and Some Related β-Lactams. J. Chem. Soc. Perkin 1 1981, 3242.

    Google Scholar 

  111. Ponsford, R. J., and R. Southgate: Total Synthesis of Olivanic Acids and Related Compounds: Preparation of (±)-MM 22383 and (±) N-Acetyldehydrothienamycin. J. Chem. Soc. Chem. Commun. 1980, 1085.

    Google Scholar 

  112. Salzmann, T. N., R. W. Ratcliffe, B. G. Christensen, and F. A. Boufford: A Stereocontrolled Synthesis of (+)-Thienamycin. J. Amer. Chem. Soc. 102, 6161 (1980).

    CAS  Google Scholar 

  113. Melillo, D. G., I. Shinkai, T. Liu, K. Ryan, and M. Sletzinger: A Practical Synthesis of (±)-Thienamycin. Tetrahedron Letters 1980, 2783.

    Google Scholar 

  114. Corbett, D. F., S. Coulton, and R. Southgate: Inversion of Configuration at C-8 in the Olivanic Acids: Conversion to the Thienamycins and Other Novel Derivatives. J. Chem. Soc. Perk. Trans. 1, 1982, 3011.

    Google Scholar 

  115. Karady, S., J. S. Amato, R. A. Reamer, and L. M. Weinstock: Stereospecific Conversion of Penicillin to Thienamycin. J. Amer. Chem. Soc. 103, 6765 (1981).

    CAS  Google Scholar 

  116. Reider, P. J., and E. J. J. Grabowski: Total Synthesis of Thienamycin: A New Approach From Aspartic Acid. Tetrahedron Letters 23, 2293 (1982).

    CAS  Google Scholar 

  117. Shinkai, I., R. A. Reamer, F. W. Hartner, T. Liu, and M. Sletzinger: A Direct Transformation of Bicyclic Keto Esters to N-Formimidoyl Thienamycin. Tetrahedron Letters 23, 4903 (1982).

    CAS  Google Scholar 

  118. Tufariello, J. J., G. E. Lee, P. A. Senaratue, and M. A. Nuri: Thienamycin, A Solution of the Stereochemical Problem. Tetrahedron Letters 1979, 4359.

    Google Scholar 

  119. Kametani, T., S. P. Huang, S. Yokohama, Y. Suzuki, and M. Ihara: Studies on the Syntheses of Heterocyclic Compounds. 800. A Formal Total Synthesis of (±)-Thienamycin and a (±)-Decysteaminylthienamycin Derivative. J. Amer. Chem. Soc. 102, 2060 (1980).

    CAS  Google Scholar 

  120. Kametani, T., S. P. Huang, A. Nakayama, and T. Hondo: Further Studies on the Synthesis of Thienamycin: a Facile and Stereoselective Synthesis of a Bicyclic β-Keto Ester by 1,3-Dipolar Cycloaddition. J. Org. Chem. 47, 2328 (1982).

    CAS  Google Scholar 

  121. Kametani, T.: Synthesis of Carbapenem Antibiotics. Heterocycles 17, 463 (1982).

    CAS  Google Scholar 

  122. Shiozaki, M., and T. Hiraoka: A Stereocontrolled Formal Total Synthesis of (±)-Thienamycin. Tetrahedron 38, 3457 (1982).

    CAS  Google Scholar 

  123. Miyashita, M., N. Chida, and A. Yoshikoshi: Synthesis of the Precursor of (+)-Thienamycin utilising D-Glucosamine. J. Chem. Soc. Chem. Commun. 1982, 1354.

    Google Scholar 

  124. Shibasaki, M., A. Nishida, and S. Ikegami: A Simple Preparation of (+)-4 Phenylthioazetidin-2-one and an Asymmetric Synthesis of (+)-Thienamycin. J. Chem. Soc. Chem. Commun. 1982, 1324.

    Google Scholar 

  125. Ikota, N., O. Yoshino, and K. Koga: Synthetic Studies on Optically Active β-Lactams. Stereocontrolled Synthesis of Chiral Thienamycin Intermediates from D-Glucose. Chem. Pharm. Bull. 30, 1929 (1982).

    CAS  Google Scholar 

  126. Hanessian, S., D. Desilets, G. Rancourt, and R. Fortin: The Total, Stereocontrolled Synthesis of a Chemical Precursor to (+)-Thienamycin. A Formal Synthesis of the Antibiotic. Can. J. Chem. 60, 2292 (1982).

    CAS  Google Scholar 

  127. Shibasaki, M., A. Nishida, and S. Ikegami: A Mild Method for The Conversion Of Propiolic Esters to β-Keto Esters. Application to the Formal Total Synthesis of (+)-Thienamycin. Tetrahedron Letters 23, 2875 (1982).

    CAS  Google Scholar 

  128. Shiozaki, M., N. Ishida, T. Hiraoka, and H. Yanagisawa: Stereocontrolled Synthesis of Chiral Intermediates of Thienamycin from Threonines. Tetrahedron Letters 22, 5205 (1981).

    CAS  Google Scholar 

  129. Kametani, T., S. P. Huang, T. Nagahara, S. Yokohama, and M. Ihara: Studies on the Synthesis of Heterocyclic Compounds. Part 877. An Alternative Synthesis of Protected (±)-Thienamycin and a Related Compound. J. Chem. Soc. Perkin 1 1981, 964.

    Google Scholar 

  130. Bateson, J. H., R. I. Hickling, P. M. Roberts, T. C. Smale, and R. Southgate: Olivanic Acids and Related Compounds: Total Synthesis of (±)-PS-5 and (±)-6-Epi-PS-5. J. Chem. Soc. Chem. Commun. 1980, 1084.

    Google Scholar 

  131. Kametani, T., T. Honda, A. Nakayama, Y. Sasakai, T. Mochizuki, and K. Fukumoto: A Short and Stereoselective Synthesis of the Carbapenem Antibiotic PS-5. J. Chem. Soc. Perkin Trans. 1 1981, 2228.

    Google Scholar 

  132. Favara, D., A. Omodei-Salè, P. Consonni, and A. Depaoli: A Facile Synthesis of Trans-(+)-4-Carboxymethyl-3-Ethylazetidin-2-one and Its Conversion into Natural PS-5. Tetrahedron Letters 23, 3105 (1982).

    CAS  Google Scholar 

  133. Corbett, D. F., and A. J. Eglington: Conversion of the Olivanic Acids into Antibiotics of the PS-5 Type: Use of a New Carboxy Protecting Group. J. Chem. Soc. Chem. Commun. 1980, 1083.

    Google Scholar 

  134. Natsugari, H., Y. Matsushita, N. Tamura, K. Yoshioka, and M. Ochiai: Synthesis of 5,6-cis-Carbapenem Related to C-19393H2. J. Chem. Soc. Perkin Trans. 1 1983, 403.

    Google Scholar 

  135. Iimori, T., Y. Takahashi, T. Izawa, S. Kobayashi, and M. Ohno: Stereocontrolled Synthesis of a cis-Carbapenem Antibiotic (−)-Carpetimycin A. J. Amer. Chem. Soc. 105, 1659 (1983).

    CAS  Google Scholar 

  136. Newton, G. G. F., and E. P. Abraham: Cephalosporin C, a New Antibiotic containing Sulphur and D-α-Aminoadipic Acid. Nature 175, 548 (1955).

    CAS  Google Scholar 

  137. Abraham, E. P., and G. G. F. Newton: The Structure of Cephalosporin C. Biochem. J. 79, 377 (1961).

    CAS  Google Scholar 

  138. Hodgkin, D. C., and E. N. Maslen: The X-ray Analysis of the Structure of Cephalosporin C. Biochem. J. 79, 393 (1961).

    CAS  Google Scholar 

  139. Hale, W. C., G. G. F. Newton, and E. P. Abraham: Derivatives of Cephalosporin C formed with certain Heterocyclic Tertiary Bases. Biochem. J. 79, 403 (1961).

    CAS  Google Scholar 

  140. Jeffery, D. J., E. P. Abraham, and G. G. F. Newton: Deacetylcephalosporin C. Biochem. J. 81, 591 (1961).

    CAS  Google Scholar 

  141. Huber, F. M., R. H. Baltz, and P. G. Caltrider: Formation of Desacetylcephalosporin C in Cephalosporin C Fermentation. Applied Microbiology 16, 1011 (1968).

    CAS  Google Scholar 

  142. Fujisawa, Y., H. Shirafuji, M. Kida, K. Nara, M. Yoneda, and T. Kanzaki: New Findings on Cephalosporin C Biosynthesis. Nature New Biology 246, 154 (1973).

    CAS  Google Scholar 

  143. Higgins, C. E., R. L. Hamill, T. H. Sands, M. M. Hoehn, N. E. Davis, R. Nagarajan, and L. D. Boeck: The Occurrence of Deacetoxy-Cephalosporin C in Fungi and Streptomyces. J. Antibiotics 27, 298 (1974).

    Google Scholar 

  144. Nagarajan, R., L. D. Boeck, R. L. Hamill, C. E. Higgens, and K. S. Yang: Deacetoxycephalosporin C from Streptomyces and Fungi. J. C. S. Chem. Commun. 1974, 321.

    Google Scholar 

  145. Kanzaki, T., T. Fukita, H. Shirafuji, and Y. Fujisana: Occurrence of a 3-Methylthiomethylcephem Derivative in a Culture Broth of Cephalosporium Mutant. J. Antibiotics 27, 361 (1974).

    CAS  Google Scholar 

  146. Kanzaki, T., T. Fukita, K. Kitano, K. Katamoto, K. Nara, and Y. Nakao: Occurrence of a Novel Cephalosporin Compound in the Culture Broth of a Cephalosporium acremonium Mutant. J. Ferment. Technol. 54, 720 (1976).

    CAS  Google Scholar 

  147. Kitano, K., Y. Fujisawa, K. Katamoto, K. Nara, and Y. Nakao: Occurrence of 7β-(4-Carboxybutanamido)-cephalosporin Compounds in the Culture Broth of Some Strains of the Genus Cephalosporium. J. Ferment. Technol. 54, 712 (1976).

    CAS  Google Scholar 

  148. Traxler, P., H. J. Treichler, and J. Nüesch: Synthesis of N-Acetyldeacetoxy Cephalosporin C by a Mutant of Cephalosporium acremonium. J. Antibiotics 38, 605 (1975).

    Google Scholar 

  149. Nagarajan, R., L. D. Boeck, M. Gorman, R. L. Hamill, C. E. Higgens, M. M. Hoehn, W. M. Stark, and J. G. Whitney: β-Lactam Antibiotics from Streptomyces. J. Amer. Chem. Soc. 93, 2308 (1971).

    CAS  Google Scholar 

  150. Shoji, J., R. Sakazaki, K. Matsumoto, T. Tanimoto, Y. Terui, S. Kozuki, and E. Kondo: Isolation of 7β-(5-Hydroxy-5-carboxyvaleramido)-3-hydroxymethyl-3-cephem-4-carboxylic acid from Streptomyces sp. J. Antibiotics 36, 167 (1983).

    CAS  Google Scholar 

  151. Loder, B., G. G. F. Newton, and E. P. Abraham: The Cephalosporin C Nucleus (7-Aminocephalosporanic Acid) and some of its Derivatives. Biochem. J. 79, 408 (1961).

    CAS  Google Scholar 

  152. Morin, R. B., B. G. Jackson, E. H. Flynn, R. W. Roeske, and S. L. Andrews: Chemistry of Cephalosporin Antibiotics XIV. The Reaction of Cephalosporin C with Nitrosyl Chloride. J. Amer. Chem. Soc. 91, 1396 (1969).

    CAS  Google Scholar 

  153. Fechtig, B., H. Peter, H. Bickel, and E. Vischer: Über die Darstellung von 7-Aminocephalosporansäure. Helv. Chim. Acta 51, 1108 (1968).

    CAS  Google Scholar 

  154. Hatfield, L. D., W. H. W. Lunn B. G. JacksonL. R. PetersL. C. BlaszczakJ. W.FisherJ. P. GardnerJ. M. Dunigan: Application of Phosphorus-HalogenCompounds in Cleavage of the 7-Amide Group of Cephalosporins. Recent Advances in the Chemistry of ~-Lactam Antibiotics (G. 1. Gregory, Ed.), Special Publication No. 38, pp. 109–124. London: The Chemical Society. 1980.

    Google Scholar 

  155. Heusler, K.: Total Synthesis of Penicillins and Cephalosporins; in reference 6 pp. 255-279.

    Google Scholar 

  156. Holden, K. G.: Total Synthesis of Penicillins, Cephalosporins, and their Nuclear Analogs: Chemistry and Biology of β-Lactam Antibiotics, Vol. 2 (R. B. Morin and M. Gorman, Eds.), pp. 100–164. New York: Academic Press. 19

    Google Scholar 

  157. Heymes, R., G. Amiard, and G. Nominé: Accès par synthèse totale aux analogues de la céphalosporine C. II. Lactone de la désacétylcéphalothine. Bull. Soc. Chim. Fr. 1974, 563.

    Google Scholar 

  158. Dolfini, J. E., J. Schwartz, and F. Weisenborn: Synthesis of Dihydrothiazines Related to Deacetylcephalosporin Lactones. An Alternative Total Synthesis of Deacetylcephalosporin Lactone. J. Org. Chem. 34, 1582 (1969).

    CAS  Google Scholar 

  159. Neidleman, S. L., S. C. Pan, L. A. Last, and J. E. Dolfini: Chemical Conversion of Desacetylcephalothin Lactone into Desacetylcephalothin. The Final Link in a Total Synthesis of Cephalosporanic Acid Derivatives. J. Med. Chem. 13, 386 (1970).

    CAS  Google Scholar 

  160. Edwards, J. A., A. Guzman, R. Johnson, P. J. Beeby, and J. H. Fried: A New Total Synthesis of (±)-Desacetylcephalothin Lactone. A Synthesis of Novel Furo-[3,4-C]-cephams. Tetrahedron Letters 1974, 2031.

    Google Scholar 

  161. Morin, R. B., B. G. Jackson, R. A. Mueller, E. R. Lavagnino, W. B. Scanlon, and S. L. Andrews: Chemistry of Cephalosporin Antibiotics. XV. Transformations of Penicillin Sulphoxides. A Synthesis of Cephalosporin Compounds. J. Amer. Chem. Soc. 91, 1401 (1969).

    CAS  Google Scholar 

  162. Cooper, R. D. G., and D. O. Spry: Rearrangements of Cephalosporins and Penicillins, in reference 6, pp. 184-254.

    Google Scholar 

  163. Cooper, R. D. G., and G. A. Koppel: The Chemistry of Penicillin Sulphoxide: Chemistry and Biology of β-Lactam Antibiotics, Vol. 1 (R. B. Morin and M. Gorman, Eds.), pp. 1–92. New York: Academic Press. 1982.

    Google Scholar 

  164. Woodward, R. B.: Recent Advances in the Chemistry of Natural Products. Science 153, 487 (1966).

    CAS  Google Scholar 

  165. Woodward, R. B., K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, and H. Vorbrüggen: The Total Synthesis of Cephalosporin C. J. Amer. Chem. Soc. 88, 852 (1966).

    CAS  Google Scholar 

  166. Stapley, E. O., M. Jackson, S. Hernandez, S. B. Zimmerman, S. A. Currie, S. Mochales, J. M. Mata, H. B. Woodruff, and D. Hendlin: Cephamycins, a New Family of β-Lactam Antibiotics. I. Production by Actinomycetes. Antimicrob. Ag. Chemother. 2, 122 (1972).

    CAS  Google Scholar 

  167. Miller, T. W., R. T. Goegelman, R. G. Weston, I. Putter, and F. J. Wolf: Cephamycins, a New Family of β-Lactam Antibiotics. II. Isolation and Chemical Characterization. Antimicrob. Ag. Chemother. 2, 132 (1972).

    CAS  Google Scholar 

  168. Albers-Schönberg, G., B. H. Arison, and J. L. Smith: New β-Lactam Antibiotics: Structure Determination of Cephamycins A and B. Tetrahedron Letters 1972, 2911.

    Google Scholar 

  169. Fukase, H., T. Hasegawa, K. Hatano, H. Iwasaki, and M. Yoneda: C-2801X, A New Cephamycin-Type Antibiotic. II Isolation and Characterization. J. Antibiotics 29, 113 (1976).

    CAS  Google Scholar 

  170. Supplement to Index of Antibiotics from Actinomycetes. J. Antibiotics 29, 43 (1976).

    Google Scholar 

  171. Supplement to Index of Antibiotics from Actinomycetes. J. Antibiotics 30, 88 (1977).

    Google Scholar 

  172. Gushima, H., S. Watanabe, T. Saito, T. Sasaki, H. Eiki, Y. Oka, and T. Osono: Oganomycin A, A New Cephamycin-Type Antibiotic Produced by Streptomyces oganensis and its Derivatives, Oganomycins B, GA and GB. J. Antibiotics 34, 1507 (1981).

    CAS  Google Scholar 

  173. Inouye, S., M. Kojima, T. Shomura, K. Iwamatsu, T. Niwa, Y. Kondo, T. Niida, Y. Ogawa, and K. Kusama: Discovery, Isolation and Structure of Novel Cephamycins of Streptomyces chartreusis. J. Antibiotics 36, 115 (1983).

    CAS  Google Scholar 

  174. Gordon, E. M., and R. B. Sykes: Cephamycin Antibiotics. Chemistry and Biology of β-Lactam Antibiotics, Vol. 1 (R. B. Morin and M. Gorman, Eds.), pp. 199–370. New York: Academic Press. 1982.

    Google Scholar 

  175. Slocombe, B., M. J. Basker, P. H. Bentley, J. P. Clayton, M. Cole, K. R. Comber, R. A. Dixon, R. A. Edmondson, D. Jackson, D. J. Merrikin, and R. Sutherland: BRL 17421, a Novel β-Lactam Antibiotic, Highly Resistant to β-Lactamases, Giving High and Prolonged Serum Levels in Humans. Antimicrob. Ag. Chemother. 20, 38 (1981).

    CAS  Google Scholar 

  176. Karady, S., S. H. Pines, L. M. Weinstock, F. E. Roberts, G. S. Brenner, A. M. Hoinowski, T. Y. Cheng, and M. Sletzinger: Semisynthetic Cephalosporins via a Novel Acyl Exchange Reaction. J. Amer. Chem. Soc. 94, 1410 (1972).

    CAS  Google Scholar 

  177. Weinstock, L. M., S. Karady, F. E. Roberts, A. M. Hoinowski, G. S. Brenner, T. B. K. Lee, W. C. Luma, and M. Sletzinger: The Chemistry of Cephamycins. IV. Acylation of Amides in the Presence of Neutral Acid Scavengers. Tetrahedron Letters 1975, 3979.

    Google Scholar 

  178. Cama, L. D., and B. G. Christensen: Substituted Penicillins and Cephalosporins. VII. A Stereospecific Introduction of the C-6(7)-α-Methoxy Group. Tetrahedron Letters 1973, 3505.

    Google Scholar 

  179. Lunn, W. H. W., R. W. Burchfield, T. K. Elzey, and E. V. Mason: Cleavage of 7-Methoxycephalosporin C Derivatives with Phosphorus Pentachloride. Tetrahedron Letters 1974, 1307.

    Google Scholar 

  180. Karady, S., J. S. Amato, L. M. Weinstock, and M. Sletzinger: The Chemistry of Cephamycins. VI. Cleavage of the 7-Amido Group. Tetrahedron Letters 1978, 407.

    Google Scholar 

  181. Applegate, H. E., C. M. Cimarusti, and W. A. Slusarchyk: Deacylation of Amides: Removal of the Acyl Side-chain from Cephamycin Derivatives. J. C. S. Chem. Commun. 1980, 293.

    Google Scholar 

  182. Shiozaki, M., N. Ishida, K. Iino, and T. Hiraoka: Cleavage and Some Modifications of the 7-Amide Group of the Cephamycins. Tetrahedron 36, 2735 (1980).

    CAS  Google Scholar 

  183. Cama, L. D., W. J. Leanza, T. R. Beattie, and B. G. Christensen: Substituted Penicillin and Cephalosporin Derivatives. Stereospecific Introduction of the C-6(7)-Methoxy Group. J. Amer. Chem. Soc. 94, 1408 (1972).

    CAS  Google Scholar 

  184. Baldwin, J. E., F. J. Urban, R. D. G. Cooper, and F. L. Jose: Direct 6-Methoxylation of Penicillin Derivatives. A Convenient Pathway to Substituted β-Lactam Antibiotics. J. Amer. Chem. Soc. 95, 2401, 1973.

    CAS  Google Scholar 

  185. Koppel, G. A., and R. E. Koehler: Functionalization of C-6(7) of Penicillins and Cephalosporins. A One-Step Stereoselective Synthesis of 7-α-Methoxycephalosporin C. J. Amer. Chem. Soc. 95, 2403 (1973).

    CAS  Google Scholar 

  186. Gordon, E. M., H. W. Chang, and C. M. Cimarusti: Sulfenyl Transfer Rearrangement of Thiooximes. A Novel Conversion of Cephalosporins to 7α-Methoxycephalosporins. J. Amer. Chem. Soc. 99, 5504 (1977).

    CAS  Google Scholar 

  187. Kobayashi, T., K. Iino, and T. Hiraska: A Novel Route to 7α-Methoxycephalosporins. J. Amer. Chem. Soc. 99, 5505 (1977).

    CAS  Google Scholar 

  188. Gordon, E. W., H. W. Chang, C. M. Cimarusti, B. Toeplitz, and J. Z. Gougoutas: Sulfenyl Transfer Rearrangements of Sulfenimines (Thiooximes). A Novel Synthesis of 7α-Methoxycephalosporins and 6α-Methoxypenicillins. J. Amer. Chem. Soc. 102, 1690 (1980).

    CAS  Google Scholar 

  189. Sugimura, Y., K. Iino, Y. Iwano, T. Saito, and T. Hiraoka: A Novel Synthesis of 7-Methoxycephalosporins and 6-Methoxypenicillins. Tetrahedron Letters 1976, 1310.

    Google Scholar 

  190. Saito, T., Y. Sugimura, Y. Iwano, K. Iino, and T. Hiraoka: A New Synthetic Route to 7α-Methoxycephalosporins. J. C. S. Chem. Commun. 1976, 516.

    Google Scholar 

  191. Taylor, A. W., and G. Burton: Formation and 6α-Substitution of 6β-(2-Carboxy) Ketenimino Penicillins. Tetrahedron Letters 1977, 3831.

    Google Scholar 

  192. Yanagisawa, H., M. Fukushima, A. Ando, and H. Nakao: A Novel General Method for Synthesising 7α-Methoxycephalosporins. Tetrahedron Letters 1975, 2705.

    Google Scholar 

  193. Slusarchyk, W. A., H. E. Applegate, P. Funke, W. H. Koster, M. S. Puar, M. Young, and J. E. Dolfini: Synthesis of 6-Methylthiopenicillins and 7-Heteroatom-Substituted Cephalosporins. J. Org. Chem. 38, 943 (1973).

    CAS  Google Scholar 

  194. Applegate, H. E., J. E. Dolfini, M. S. Puar, W. A. Slusarchyk, and B. Toeplitz: Synthesis of 7α-Methoxycephalosporins. J. Org. Chem. 39, 2794 (1974).

    CAS  Google Scholar 

  195. Applegate, H. E., C. M. Cimarusti, J. E. Dolfini, P. T. Funke, W. H. Koster, M. S. Puar, W. A. Slusarchyk, and M. G. Young: Synthesis of 2-, 4-, and 7-Methylthio Substituted Cephalosporins. J. Org. Chem. 44, 811 (1979).

    CAS  Google Scholar 

  196. Jen, T., T. Frazee, and J. R. E. Hoover: A Stereospecific Synthesis of C-6(7)-Methoxypenicillin and-cephalosporin Derivatives. J. Org. Chem. 38, 2857 (1973).

    CAS  Google Scholar 

  197. Spitzer, W. A., and T. Goodson: The Synthesis of S-Methyl and O-Methyl β-Lactam Antibiotics. Tetrahedron Letters 1973, 273.

    Google Scholar 

  198. Cama, L. D., and B. G. Christensen: Substituted Penicillins and Cephalosporins. VII. A Stereospecific Introduction of the C-6(7)-α-Methoxy Group. Tetrahedron Letters 1973, 3505.

    Google Scholar 

  199. Ratcliffe, R. W., and B. G. Christensen: Total Synthesis of β-Lactam Antibiotics II. (±)-Cephalothin. Tetrahedron Letters 1973, 4649.

    Google Scholar 

  200. Total Synthesis of β-Lactam Antibiotics III. (±)-Cefoxitin. Tetrahedron Letters 1973, 4653.

    Google Scholar 

  201. Nakatsuka, S., H. Tanino, and Y. Kishi: Biogenetic-Type Synthesis of Penicillin Cephalosporin Antibiotics. I. A Stereocontrolled Synthesis of the Penam-and Cephem Ring Systems from an Acyclic Tripeptide Equivalent. J. Amer. Chem. Soc. 97, 5008 (1975).

    CAS  Google Scholar 

  202. Kishi, Y.: Synthetic Studies in the Field of Natural Products. Pure and Appl. Chem. 43, 423 (1975).

    CAS  Google Scholar 

  203. Cooper, R. D. G.: Structural Studies on Penicillin Derivatives. VIII. A Possible Model Biosynthetic Route to Penams and Cephems. J. Amer. Chem. Soc. 94, 1018 (1972).

    CAS  Google Scholar 

  204. Otsuka, H., W. Nagata, M. Toshioka, M. Narisada, T. Yoshida, Y. Harada, and H. Yamada: Discovery and Development of Moxalactam (6059-5): The Chemistry and Biology of 1-Oxacephems. Medicinal Research Reviews 1, 217–248 (1981). John Wiley & Sons Inc.

    CAS  Google Scholar 

  205. Nakayama, M., S. Kimura, T. Mizoguchi, S. Tanabe, A. Iwasaki, A. Murakami, M. Okuchi, H. Itoh, and T. Mori: New β-Lactam Antibiotics, Carpetimycins C and D. J. Antibiotics 36, 943 (1983).

    CAS  Google Scholar 

  206. Hosoda, J., N. Tani, T. Konomi, S. Ohsawa, H. Oaki, and H. Imanaka: Incorporation of 14C-Amino Acids into Nocardicin A by Growing Cells. Agric. Biol. Chem. 41, (10), 2007–2012 (1977).

    CAS  Google Scholar 

  207. Townsend, C. A., and A. M. Brown: Nocardicin A: Biosynthetic Experiments with Amino Acid Precursors. J. Amer. Chem. Soc. 105, 913–918 (1983).

    CAS  Google Scholar 

  208. Townsend, C. A., A. M. Brown, and L. T. Nguyen: Nocardicin A: Stereochemical and Biomimetic Studies of Monocyclic β-Lactam Formation. J. Amer. Chem. Soc. 105, 919–927 (1983).

    CAS  Google Scholar 

  209. O’Sullivan, J., A. M. Gillum, C. A. Aklouis, M. L. Souser, and R. B. Sykes: Biosynthesis of Monobactam Compounds: Origin of the Carbon Atoms in the β-Lactam Ring. Antimicrob. Ag. Chemoth. 21, 558 (1982).

    Google Scholar 

  210. Arnstein, H. R. V., and P. T. Grant: The Biosynthesis of Penicillin. 1. The Incorporation of Some Amino Acids into Penicillin. Biochem. J. 57, 353 (1954).

    CAS  Google Scholar 

  211. — — The Biosynthesis of Penicillin. 2. The Incorporation of Cystine into Penicillin. Biochem. J. 57, 360 (1954).

    CAS  Google Scholar 

  212. Stevens, C. M., P. Vohra, E. Inamine, and O. A. Roholt: Utilisation of Sulphur Compounds for the Biosynthesis of Penicillins. J. Biol. Chem. 204, 1001 (1953).

    Google Scholar 

  213. Arnstein, H. R. V., and J. C. Crawhill: The Biosynthesis of Penicillin. 6. A Study of the Mechanism of the Formation of the Thiazolidine-β-Lactam Rings Using Tritium Labelled Cystine. Biochem. J. 67, 180 (1957).

    CAS  Google Scholar 

  214. Bycroft, B. W., C. M. Wels, K. Corbett, and D. A. Lowe: Incorporation of [α-2H]-and [α-3H]-L-Cystine into Penicillin G and the Location of the Label Using Isotope Exchange and 2H-Nuclear Magnetic Resonance. J. C. S. Chem. Commun. 1975, 123.

    Google Scholar 

  215. Morecombe, D. J., and D. W. Young: Synthesis of Chirally Labelled Cysteines and the Steric Origin of C(5) in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1975, 198.

    Google Scholar 

  216. Adriens, P., H. Vanderhaeghe, B. Meesschaert, and H. Eyssen: Incorporation of Double Labelled L-Cystine and DL-Valine in Penicillin: Antimicrob. Ag. Chemoth. 8, 15 (1975).

    Google Scholar 

  217. Young, D. W., D. J. Morecombe, and P. K. Sen: The Stereochemistry of β-Lactam Formation in Penicillin Biosynthesis. Eur. J. Biochem. 75, 133 (1977).

    CAS  Google Scholar 

  218. Aberhart, D. J., L. J. Lin, and J. Y.-R. Chu: Studies on the Biosynthesis of β-Lactam Antibiotics. II. Synthesis and Incorporation into Penicillin G of (2RS,2′RS,3R,3′R)-[3,3′-3H2]-Cystine and (2RS,2′RS,3S,3′S)-[3,3′-3H2]-Cystint. J. C. S. Perkin 1 1975, 2517.

    Google Scholar 

  219. Baldwin, J. E., P. D. Bailey, G. Gallacher, K. A. Singleton, and (in part) P. H. Wallace: Stereospecific Synthesis of Tabtoxin. J. Chem. Soc. Chem. Commun. 1983, 1049.

    Google Scholar 

  220. Stevens, C. M., P. Vohra, and C. W. De Long: Utilisation of Valine in the Biosynthesis of Penicillins. J. Biol. Chem. 211, 297 (1954).

    CAS  Google Scholar 

  221. Stevens, C. M., E. Inamine, and C. W. DE Long: The Rates of Incorporation of L Cystine and D-and L-Valine in Penicillin Biosynthesis. J. Biol. Chem. 219, 405 (1956).

    CAS  Google Scholar 

  222. Arnstein, H. R. V., and M. E. Clubb: The Biosynthesis of Penicillin. 5. Comparison of Valine and Hydroxyvaline as Penicillin Precursors. Biochem. J. 65, 618 (1957).

    CAS  Google Scholar 

  223. Stevens, C. M., and C. W. DE Long: Valine Metabolism and Penicillin Biosynthesis. J. Biol. Chem. 230, 991 (1958).

    CAS  Google Scholar 

  224. Arnstein, H. R. V., and H. Margreiter: The Biosynthesis of Penicillin. 7. Further Experiments on the Utilisation of L-and D-Valine and the Effect of Cysteine and Valine Analogues on Penicillin Biosynthesis. Biochem. J. 68, 339 (1958).

    CAS  Google Scholar 

  225. Warren, S. C., G. G. F. Newton, and E. P. Abraham: The Role of Valine in the Biosynthesis of Penicillin N and Cephalosporin C by a Cephalosporium sp. Biochem. J. 103, 902 (1967).

    CAS  Google Scholar 

  226. Bycroft, B. W., C. M. Wels, K. Corbett, A. P. Maloney, and D. A. Lowe: Biosynthesis of Penicillin G from D-and L-[14C]-and (α-3H]-Valine. J. C. S. Chem. Commun. 1975, 923.

    Google Scholar 

  227. Booth, H., B. W. Bycroft, C. M. Wels, K. Corbett, and A. P. Maloney: Application of 15N Pulsed Fourier Transform Nuclear Magnetic Resonance Spectroscopy to Biosynthesis Studies; incorporation of L-[15N]-Valine in Penicillin G. J. C. S. Chem. Commun. 1976, 110.

    Google Scholar 

  228. Aberhart, D. J., J. Y.-R. Chu, N. Neuss, C. H. Nash, J. L. Occolowitz, L. L. Huckstep, and N. De La Higuera: Retention of Valine Methyl Hydrogens in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1974, 564.

    Google Scholar 

  229. Kluender, H., F.-C. Huang, A. Fritzberg, H. K. Schnoes, C. J. Sih, P. A. Fawcett, and E. P. Abraham: Studies on the Incorporation of (2S,3R)-[4,4,4-2H3]-Valine and (2,S,3S)-[4,4,4-2H3]-Valine into β-Lactam Antibiotics. J. Am. Chem. Soc. 96, 4054 (1974).

    CAS  Google Scholar 

  230. Baldwin, J. E., J. Löliger, W. Rastetter, N. Neuss, L. L. Huckstep, and N. De La Higuera: Use of Chiral Isopropyl Groups in Biosynthesis. Synthesis of (2RS,3R)-[4-13C]-Valine. J. Am. Chem. Soc. 95, 3796 (1973), see also p. 6511 (correction).

    CAS  Google Scholar 

  231. Neuss, N., C. H. Nash, J. E. Baldwin, P. A. Lemke, and J. B. Grutzner: Incorporation of (2RS,3R)-[4-13C]-Valine into Cephalosporin C. J. Am. Chem. Soc. 95, 3797 (1973); see also p. 6511 (correction).

    CAS  Google Scholar 

  232. Kluender, H., C. H. Bradley, C. J. Sih, P. A. Fawcett, and E. P. Abraham: Synthesis and Incorporation of (2S,3S)-[4-13C]-Valine into β-Lactam Antibiotics. J. Am. Chem. Soc. 95, 6149 (1973).

    CAS  Google Scholar 

  233. Aberhart, D. J., and L. J. Lin: Studies on the Biosynthesis of β-Lactam Antibiotics. Part1. Stereospecific synthesis of (2RS,3S)-[4,4,4-2H3]-, (2RS,3S)-[4-3H]-, (2RS,3R)-[4-3H] and (2RS,3S)-[4-13C]-Valine. Incorporation of (2RS,3S)-[4-13C]-Valine into Penicillin V. J. C. S. Perkin I 1974, 2320.

    Google Scholar 

  234. Arnstein, H. R. V., and D. Morris: The Utilisation of L-Cystinyl-L-Valine for Penicillin Biosynthesis. Biochem. J. 76, 323 (1960).

    CAS  Google Scholar 

  235. Arnstein, H. R. V., M. Artman, D. Morris, and E. J. Toms: Sulphur Containing Amino Acids and Peptides in the Mycelium of Penicillium chrysogenum. Biochem. J. 76, 353 (1960).

    CAS  Google Scholar 

  236. Arnstein, H. R. V., and D. Morris: The Structure of a Peptide Containing α-Aminoadipic Acid, Cystine and Valine, Present in the Mycelium of Penicillium chrysogenum. Biochem. J. 76, 357 (1960).

    CAS  Google Scholar 

  237. Abraham, E. P., G. G. F. Newton, and C. W. Hale: Purification and Some Properties of Cephalosporin N, a New Penicillin. Biochem. J. 58, 94 (1954).

    CAS  Google Scholar 

  238. Flynn, E. H., M. H. Mccormick, M. C. Stamper, H. De Valera, and C. W. Godzeski: A New Natural Penicillin from Penicillium chrysogenum. Nature 84, 4594 (1962).

    CAS  Google Scholar 

  239. Cole, M., and F. R. Batchelor: Aminoadipylpenicillin in Penicillin Fermentations. Nature 198, 383 (1963).

    CAS  Google Scholar 

  240. Warren, S. C., G. G. F. Newton, and E. P. Abraham: Use of a-Aminoadipic Acid for the Biosynthesis of Penicillin N and Cephalosporin C by a Cephalosporium sp. Biochem. J. 103, 891 (1967).

    CAS  Google Scholar 

  241. Loder, P. B., and E. P. Abraham: Isolation and Nature of Intracellular Peptide from a Cephalosporin C-Producing Cephalosporium sp. Biochem. J. 123, 471 (1971).

    CAS  Google Scholar 

  242. Chan, J. A., F.-C. Huang, and C. J. Sih: The Absolute Configuration of the Amino Acids in δ-(α-Aminoadipyl)cysteinyl valine from Penicillium chrysogenum. Biochemistry 15, 177 (1976).

    CAS  Google Scholar 

  243. Adriens, P., B. Meesschaert, W. Wuyts, H. Vanderhaeghe, and H. Eyssen: Presence of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine in Fermentations of Penicillium chrysogenum. Antimicrob. Ag. Chemoth. 8, 638 (1975).

    Google Scholar 

  244. Fawcett, P. A., J. J. Usher, J. A. Huddleston, R. C. Bleaney, J. J. Nisbet, and E. P. Abraham: Synthesis of δ-(α-Aminoadipyl)cysteinylvaline and its Role in Penicillin Biosynthesis. Biochem. J. 157, 651 (1976).

    CAS  Google Scholar 

  245. Bauer, K.: Zur Biosynthese der Penicilline: Bildung von δ-(α-Aminoadipyl)cysteinylvalin in Extracten von Penicillium chrysogenum. Z. Naturforsch. B, 25, 1125 (1970).

    CAS  Google Scholar 

  246. Loder, P. B., and E. P. Abraham: Biosynthesis of Peptides Containing α-Aminoadipic Acid and Cysteine in Extracts of a Cephalosporium sp. Biochem. J. 123, 477 (1971).

    CAS  Google Scholar 

  247. Fawcett, P. A., and E. P. Abraham: 8-(α-Aminoadipyl)cysteinylvaline Synthetase. In: Methods in Enzymology, Vol. 43 (J. H. Hash, ed.), p. 471. New York: Academic Press. 1971.

    Google Scholar 

  248. Huang, F.-C., J. A. Chan, C. J. Sih, P. A. Fawcett, and E. P. Abraham: The Nonparticipation of α,β-Dehydrovalinyl Intermediates in the Formation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine. J. Am. Chem. Soc. 97, 3858 (1975).

    CAS  Google Scholar 

  249. Adriens, P., B. Meesschaert, H. Vanderhaeghe, and H. Eyssen: Incorporation of Double-Labelled Valine into δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine by P. chrysogenum. Arch. Int. Physiol. Biochim. 84, 767 (1976).

    Google Scholar 

  250. Fawcett, P. A., P. B. Loder, M. J. Duncan, T. J. Beesley, and E. P. Abraham: Formation and Properties of Protoplasts from Antibiotic-Producing Strains of Penicillium chrysogenum and Cephalosporium acremonium. J. Gen. Microbiol. 79, 293 (1973).

    CAS  Google Scholar 

  251. O’sullivan, J., R. C. Bleaney, J. A. Huddleston, and E. P. Abraham: Incorporation of 3H from δ-(L-α-Amino[4,5-3H]adipyl)-L-cysteinyl-D-[4,4-3H]-valine into Isopenicillin N. Biochem. J. 184, 421 (1979).

    Google Scholar 

  252. Konomi, T., S. Herchen, J. E. Baldwin, M. Yoshida, N. A. Hunt, and A. L. Demain: Cell-Free Conversion of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine into an Antibiotic with the Properties of Isopenicillin N in Cephalosporium acremonium. Biochem. J. 184, 427 (1979).

    CAS  Google Scholar 

  253. Baldwin, J. E., B. L. Johnson, J. J. Usher, E. P. Abraham, J. A. Huddleston, and R. L. White: Direct N.M.R. Observation of Cell-Free Conversion of (L-α-Amino-δ-adipyl) L-cysteinyl-D-valine into Isopenicillin N. J. C. S. Chem. Commun. 1980, 1271.

    Google Scholar 

  254. Neuss, N., D. M. Berry, J. Kupka, A. L. Demain, S. W. Queener, D. C. Duckworth, and L. L. Huckstep: High Performance Liquid Chromatography (HPLC) of Natural Products V: The Use of HPLC in the Cell-Free Biosynthetic Conversion of α-Aminoadipyl-cysteinyl-valine (LLD) into Isopenicillin N. J. Antibiotics 35, 580 (1982).

    CAS  Google Scholar 

  255. Sawada, Y., J. E. Baldwin, P. D. Singh, N. A. Solomon, and A. L. Demain: Cell-Free Cyclisation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Isopenicillin N. Antimicrob. Ag. Chemoth. 18, 465 (1980).

    CAS  Google Scholar 

  256. White, R. L., E.-M. M. John, J. E. Baldwin, and E. P. Abraham: Stoichiometry of Oxygen Consumption in the Biosynthesis of Isopenicillin N from a Tripeptide. Biochem. J. 203, 791 (1982).

    CAS  Google Scholar 

  257. Kupka, J., Y.-Q. Shen, S. Wolfe, and A. L. Demain: Studies on the Ring-Cyclisation and Ring Expanding Enzymes of β-Lactam Biosynthesis in C. acremonium. Can. J. Microbiol. 29, 488 (1983).

    CAS  Google Scholar 

  258. Bahadur, G. A., J. E. Baldwin, J. J. Usher, E. P. Abraham, G. S. Jayatilake, and R. L. White: Cell-Free Biosynthesis of Penicillins. Conversion of Peptides into New β-Lactam Antibiotics. J. Am. Chem. Soc. 103, 7650 (1981).

    CAS  Google Scholar 

  259. Bahadur, G., J. E. Baldwin, L. D. Field, E.-M. M. Lehtonan, J. J. Usher, C. A. Vallejo, E. P. Abraham, and R. L. White: Direct 1H-N.M.R. Observation of the Cell Free Conversion of δ-(α-Aminoadipyl)-L-cysteinyl-D-valine and δ-(L-α-Aminoadipyl)L-cysteinyl-D-(−)-isoleucine into Penicillins. J. C. S. Chem. Commun. 1981, 917.

    Google Scholar 

  260. Baldwin, J. E., B. Chakravarti, L. D. Field, J. A. Murphy, K. R. Whitten, E. P. Abraham, and G. Jayatilake: The Synthesis of L-α-Aminoadipyl-L-cysteinyl-D-3,4 didehydrovaline, a Potent Inhibitor of Isopenicillin N Synthetase. Tetrahedron 38, 2773 (1982).

    CAS  Google Scholar 

  261. Neuss, N., R. D. Miller, C. A. Affolder, W. Nakatsukasa, J. A. Mabe, L. L. Huckstep, N. De La Higuera, A. H. Hunt, J. L. Occolowitz, and J. H. Gilliam: High Performance Liquid Chromatography (HPLC) of Natural Products. III. Isolation of New Tripeptides from the Fermentation Broth of P. chrysogenum. Helv. Chim. Acta 63, 1119 (1980).

    CAS  Google Scholar 

  262. Abraham, E. P., J. A. Huddleston, G. S. Jayatilake, J. O’Sullivan, and R. L. White: Conversion of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Isopenicillin N in Cell-Free Extracts of Cephalosporium acremonium. In: Recent Advances in the Chemistry of β-Lactam Antibiotics (G. I. Gregory, ed.), p. 125. London: Royal Society of Chemistry. 1980.

    Google Scholar 

  263. Meesschaert, B., P. Adriens, and H. Eyssen: Studies on the Biosynthesis of Isopenicillin N with a Cell-Free Preparation of Penicillium chrysogenum. J. Antibiotics 33, 722 (1980).

    CAS  Google Scholar 

  264. Abraham, E. P., R. M. Adlington, J. E. Baldwin, M. J. Crimmin, L. D. Field, G. S. Jayatilake, and R. L. White: Monocyclic β-Lactam Tripeptide, 1-(D-Carboxy-2-methylpropyl)-3-L-(δ-L-2-aminoadipamido)-4-L-mercaptoazetidin-2-one, a Putative Intermediate in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1982, 1130.

    Google Scholar 

  265. Jensen, S. E., D. W. S. Westlake, and S. Wolfe: Cyclisation of δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine to Penicillins by Cell-Free Extracts of Streptomyces clavuligerus. J. Antibiotics 35, 483 (1982).

    CAS  Google Scholar 

  266. —— High Performance Liquid Chromatographie Assay of Cyclisation Activity in Cell-Free Systems from Streptomyces clavuligerus. J. Antibiotics 35, 1026 (1982).

    CAS  Google Scholar 

  267. Bahadur, G. A., J. E. Baldwin, T. Wan, M. Jung, E. P. Abraham, J. A. Huddleston, and R. L. White: On the Proposed Intermediacy of β-Hydroxyvaline-and Thiaze-pinone-Containing Peptides in Penicillin Biosynthesis. J. C. S. Chem. Commun. 1981, 1146.

    Google Scholar 

  268. Adlington, R. M., R. T. Aplin, J. E. Baldwin, L. D. Field, E.-M. M. John, E. P. Abraham, and R. L. White: Conversion of 17O/18O-Labelled δ-(α-Aminoadipyl)-L-cysteinyl-D-valine into 17O/18O-Labelled Isopenicillin N in a Cell-Free Extract of C. acremonium. J. C. S. Chem. Commun. 1982, 137.

    Google Scholar 

  269. Jayatilake, G. S., J. A. Huddleston, and E. P. Abraham: Conversion of Isopenicillin N into Penicillin N in Cell-Free Extracts of Cephalosporium acremonium. Biochem. J. 194, 645 (1981).

    CAS  Google Scholar 

  270. Behrens, O. K., J. Corse, R. G. Jones, E. C. Kleiderer, Q. F. Soper, F. R. Van Abeele, L. M. Larson, J. C. Sylvester, W. J. Haines, and H. E. Carter: Biosynthesis of Penicillins. II. Utilisation of Deuterophenylacetyl-15N-DL-valine in Penicillin Biosynthesis. J. Biol. Chem. 175, 765 (1948).

    CAS  Google Scholar 

  271. Behrens, O. K., J. Corse, D. E. Huff, R. G. Jones, Q. F. Soper, and C. W. Whitehead: Biosynthesis of Penicillins. III. Preparation and Evaluation of Precursors for New Penicillins. J. Biol. Chem. 175, 771 (1948).

    CAS  Google Scholar 

  272. Fawcett, P. A., J. J. Usher, and E. P. Abraham: Behaviour of Tritium Labelled Isopenicillin N and 6-Aminopenicillanic Acid as Potential Penicillin Precursors in an Extract of Penicillium chrysogenum. Biochem. J. 151, 741 (1975).

    CAS  Google Scholar 

  273. Batchelor, F. R., E. B. Chain, and G. N. Rolinson: 6-Aminopenicillanic Acid. I. 6-Aminopenicillanic Acid in Penicillin Fermentations. Proc. Roy. Soc. B, 154, 478 (1961).

    CAS  Google Scholar 

  274. Pruess, D. L., and M. J. Johnson: Penicillin Acyltransferase in Penicillium chrysogenum. J. Bact. 94, 1502 (1967).

    CAS  Google Scholar 

  275. Cole, M.: Formation of 6-Aminopenicillanic Acid, Penicillins and Penicillin Acylase by Various Fungi. Applied Microbiol. 14, 98 (1966).

    CAS  Google Scholar 

  276. Vanderhaeghe, H., M. Claesen, A. Vlietuick, and G. Parmentier: Specificity of Penicillin Acylase of Fusarium and of Penicillium chrysogenum. Applied Microbiol. 16, 1557 (1968).

    CAS  Google Scholar 

  277. Spencer, B., and C. Maung: Multiple Activities of Penicillin Acyltransferase of Penicillium chrysogenum. Biochem. J. 118, 29P (1970).

    CAS  Google Scholar 

  278. Neuss, N., and S. W. Queener: β-Lactam Antibiotics: Chemistry and Biology, Vol. II (R. B. Morin and M. Gorman, eds.). New York: Academic Press. 1982.

    Google Scholar 

  279. Elson, S. W., and R. S. Oliver: Studies on the Biosynthesis of Clavulanic Acid. I. Incorporation of 13C-Labelled Precursors. J. Antibiotics 31, 586 (1978).

    CAS  Google Scholar 

  280. Elson, S. W., R. S. Oliver, B. W. Bycroft, and E. A. Faruk: Studies on the Biosynthesis of Clavulanic Acid. III. Incorporation of DL-[3,4-13C2] Glutamic Acid. J. Antibiotics 35, 81 (1982).

    CAS  Google Scholar 

  281. Albers-Schönberg, G., B. H. Arison, E. Kaczka, F. M. Kahan, J. S. Kahan, B. Lago, W. M. Maiese, R. E. Rhodes, and J. L. Smith: Abstracts of the Sixteenth Interscience Conference on Antimicrobial Agents and Chemotherapy (1976).

    Google Scholar 

  282. Fukagawa, Y., K. Kubo, K. Okamura, and T. Ishikawa: Biosynthesis of Carbapenem Antibiotics. In: Trends in Antibiotic Research (H. Umezawa, A. Demain, T. Hata, and C. Hutchinson, eds.). Japanese Antibiotics Research Association, Tokyo. 1982.

    Google Scholar 

  283. Singh, P. D., J. H. Johnson, P. C. Ward, J. Scott Wells, W. H. Trejo, and R. B. Sykes: A New Monobactam Produced by a Flexibacter sp. J. Antibiotics 36, 1245 (1983).

    CAS  Google Scholar 

  284. Cooper, R., K. Bush, P. A. Principe, W. H. Trejo, J. Scott Wells, and R. B. Sykes: Two New Monobactam Antibiotics Produced by a Flexibacter sp. J. Antibiotics 36, 1252 (1983).

    CAS  Google Scholar 

  285. Trown, P. W., B. Smith, and E. P. Abraham: Biosynthesis of Cephalosporin C from Amino Acids. Biochem. J. 86, 284 (1963).

    CAS  Google Scholar 

  286. Trown, P. W., E. P. Abraham, G. G. F. Newton, C. W. Hale, and G. A. Miller: Incorporation of Acetate into Cephalosporin C. Biochem. J. 84, 157 (1962).

    CAS  Google Scholar 

  287. Huddleston, J. A., E. P. Abraham, D. W. Young, D. J. Morecombe, and P. K. Sen: The Stereochemistry of β-Lactam Formation in Cephalosporin Biosynthesis. Biochem. J. 169, 705 (1978).

    CAS  Google Scholar 

  288. Whitney, J. G., D. R. Brannon, J. A. Mabe, and K. J. Wicker: Incorporation of Labelled Precursors into A 16886 B, a Novel β-Lactam Antibiotic Produced by Streptomyces clavuligerus. Antimicrob. Ag. Chemother. 1, 247 (1972).

    CAS  Google Scholar 

  289. Kohsaka, M., and A. L. Demain: Conversion of Penicillin N to Cephalosporin(s) by Cell-Free Extracts of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 70, 465 (1976).

    CAS  Google Scholar 

  290. Yoshida, M., T. Konomi, M. Kohsaka, J. E. Baldwin, S. Herchen, P. D. Singh, N. A. Hunt, and A. L. Demain: Cell-Free Ring Expansion of Penicillin N to Deacetoxy cephalosporin C by Cephalosporium acremonium CW-19 and its Mutants. Proc. Natl. Acad. Sci. USA 75, 6253 (1978).

    CAS  Google Scholar 

  291. Baldwin, J. E., S. R. Herchen, and P. D. Singh: Syntheses of Penicillin N, [6α-3H] Penicillin N and [10-14C, 6α-3H] Penicillin N. Biochem. J. 186, 881 (1980).

    CAS  Google Scholar 

  292. Baldwin, J. E., P. D. Singh, M. Yoshida, Y. Sawada, and A. L. Demain: Incorporation of 3H and 14C from [6α-3H] Penicillin N and [10-14C, 6α-3H] Penicillin N into Deacetoxycephalosporin C. Biochem. J. 186, 889 (1980).

    CAS  Google Scholar 

  293. Hook, D. J., L. T. Chang, R. P. Elander, and R. B. Morin: Stimulation of the Conversion of Penicillin N to Cephalosporin by Ascorbic Acid, α-Ketoglutarate and Ferrous Ions in Cell-Free Extracts of Strain of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87, 258 (1979).

    CAS  Google Scholar 

  294. Sawada, Y., N. A. Hunt, and A. L. Demain: Further Studies on Microbiological Ring Expansion of Penicillin N. J. Antibiotics 32, 1303 (1979).

    CAS  Google Scholar 

  295. Sawada, Y., N. A. Solomon, and A. L. Demain: Stimulation of Cell-Free Ring Expansion of Penicillin N by Sonication and Triton X-100. Biotech. Lett. 2, 43 (1980).

    CAS  Google Scholar 

  296. Felix, H. R., H. H. Peter, and H. J. Treichler: Microbiological Ring Expansion of Penicillin N. J. Antibiotics 34, 567 (1981).

    CAS  Google Scholar 

  297. Kupka, J., Y.-Q. Shen, S. Wolfe, and A. L. Demain: Partial Purification and Properties of the α-Ketoglutarate-Linked Ring — Expansion Enzyme of β-Lactam Biosynthesis of Cephalosporium acremonium. FEMS Microbiol. Lett. 16, 1 (1982).

    Google Scholar 

  298. Miller, R. D., L. L. Huckstep, J. P. Mcdermott, S. W. Queener, S. Kukolja, D. O. Spry, T. K. Elzey, S. M. Lawrence, and N. Neuss: High Performance Liquid Chromatography (HPLC) of Natural Products. IV. The Use of HPLC in Biosynthetic Studies of Cephalosporin C in the Cell-Free System. J. Antibiotics 34, 984 (1981).

    CAS  Google Scholar 

  299. Jensen, S. E., D. W. S. Westlake, R. J. Bowers, and S. Wolfe: Cephalosporin Formation by Cell-Free Extracts from Streptomyces clavuligerus. J. Antibiotics 35, 1351 (1982).

    CAS  Google Scholar 

  300. Jensen, S. E., D. W. S. Westlake, and S. Wolfe: Analysis of Penicillin N Ring Expansion Activity from Streptomyces clavuligerus by Ion-Pair High-Pressure Liquid Chromatography. Antimicrob. Ag. Chemoth. 24, 307 (1983).

    CAS  Google Scholar 

  301. Liersch, M., J. Nüesch, and H. J. Treichler: Final Steps in the Biosynthesis of Cephalosporin C. In: Second International Symposium on the Genetics of Industrial Micro-organisms (K. D. Macdonald, ed.), p. 179. London: Academic Press. 1976.

    Google Scholar 

  302. Stevens, C. M., E. P. Abraham, F.-C. Huang, and C. J. Sih: Incorporation of Molecular Oxygen at C-17 of Cephalosporin C During its Biosynthesis. Fed. Proc. 34, 625 (1975).

    Google Scholar 

  303. O’Sullivan, J., R. T. Aplin, C. M. Stevens, and E. P. Abraham. Biosynthesis of a 7-α-Methoxycephalosporin. Incorporation of Molecular Oxygen. Biochem. J. 179, 47 (19

    Google Scholar 

  304. Fujisawa, Y., M. Kikuchi, and T. Kanzaki: Deacetylcephalosporin C Synthesis by Cell Free Extracts of Cephalosporium acremonium. J. Antibiotics 30, 775 (1977).

    CAS  Google Scholar 

  305. Turner, M. K., J. E. Farthing, and S. J. Brewer: The Oxygenation of [3-Methyl-3H] desacetoxycephalosporin C [7β-(5-D-Aminoadipamido)-3-methylceph-3-em-4-carboxylic acid] to [3-Hydroxymethyl-3H] deacetylcephalosporin C by 2-Oxoglutarate-Linked Dioxygenases from Acremonium chrysogenum and Streptomyces clavuligerus. Biochem. J. 173, 839 (1978).

    CAS  Google Scholar 

  306. Fujisawa, Y., and T. Kanzaki: Role of Acetyl-CoA: Deacetylcephalosporin C Acetyltransferase in Cephalosporin C Biosynthesis by Cephalosporium acremonium. Agr. Biol. Chem. 39, 2043 (1975).

    CAS  Google Scholar 

  307. Brewer, S. J., T. T. Boyle, and M. K. Turner: The Carbamoylation of the 3 Hydroxymethyl Group of 7α-Methoxy-7β-(5-D-aminoadipamido)-3-hydroxymethylceph-3-em-4-carboxylic acid (Desacetyl-7α-methoxycephalosporin C) by Homogenates of Streptomyces clavuligerus. Biochem. Soc. Trans. 5, 1026 (1977).

    CAS  Google Scholar 

  308. Brewer, S. J., P. M. Taylor, and M. K. Turner: An Adenosine Triphosphate Dependant Carbamoyl-phosphate-3-hydroxymethylcephem O-carbamoyl-transferase from Streptomyces clavuligerus. Biochem. J. 185, 555 (1980).

    CAS  Google Scholar 

  309. O’Sullivan, J., and E. P. Abraham: The Conversion of Cephalosporins to 7α Methoxycephalosporins by Cell-Free Extracts of Streptomyces clavuligerus. Biochem. J. 186, 613 (1980).

    Google Scholar 

  310. Hood, J. D., A. L. Elson, M. L. Gilpin, and A. G. Brown: Identification of 7α-Hydroxycephalosporin C as an Intermediate in the Methoxylation of Cephalosporin C by a Cell-Free Extract of Streptomyces clavuligerus. J. C. S. Chem. Commun. 1983, 1187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag/Wien

About this chapter

Cite this chapter

Southgate, R., Elson, S. (1985). Naturally Occurring β-Lactams. In: Herz, W., Grisebach, H., Kirby, G.W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 47. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8790-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8790-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8792-0

  • Online ISBN: 978-3-7091-8790-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics