Advertisement

Feynman Path Integrals

From the Prodistribution Definition to the Calculation of Glory Scattering
  • Cécile DeWitt-Morette
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 26/1984)

Abstract

In these lectures I shall present a path integral calculation, starting from a global definition of Feynman path integrals and ending at a scattering cross section formula. Along the way I shall discuss some basic issues which had to be resolved to exploit the computational power of the proposed definition of Feynman integrals.

Keywords

Black Hole Path Integral Jacobi Matrice Jacobi Operator Jacobi Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Robert Greenler: “Rainbows, halos, and glories” (Cambridge University Press, 1980).Google Scholar
  2. 1b.
    H.C. Bryant, and N. Jamie,: “The Glory”, Scientific American 231 (1974) 60.CrossRefGoogle Scholar
  3. 1c.
    H.C. Bryant, and A.J. Cox: “Mie theory and the glory”, J. Opt. Soc. Am. 56 (1966) 1529–1532.CrossRefADSGoogle Scholar
  4. 1d.
    H.M. Nussenzveig: “Complex angular momentum theory of the rainbow and the glory”, J. Opt. Soc. Am. 69 (1979) 1068–1079.CrossRefADSMathSciNetGoogle Scholar
  5. 1e.
    W.Kenneth Ford, and Jonn A. Wheeler: “Semiclassical description of scattering”, Ann.Phys. 7 and references therein (1979) 259–286.ADSGoogle Scholar
  6. 1f.
    M.V. Berry: “Uniform approximations for glory scattering and diffraction peaks” J.Phys.B. ser.2 vol.2 (1969) 381–392.ADSGoogle Scholar
  7. 1g.
    F.A. Handler, and R.A. Matzner: “Gravitational wave scattering”, Phys.Rev. D22 (1980) 2331.ADSMathSciNetGoogle Scholar
  8. 2a.
    Cécile DeWitt-Morette: “Feynman’s path integral definition without limiting procedure”. Comm.Math.Phys. 28 (1972) 47–67.CrossRefMathSciNetGoogle Scholar
  9. 2b.
    C. DeWitt-Morette: “Feynman path integrals: I.Linear and affine techniques; II. The Feynman-Green function”. Comm.Math.Phys. 37 (1974) 63–81.CrossRefMATHADSMathSciNetGoogle Scholar
  10. 2c.
    C. DeWitt-Morette: “The semiclassical expansion”, Ann. Phys. 97 (1976) 367–399.CrossRefADSMathSciNetGoogle Scholar
  11. 2d.
    C. DeWitt-Morette, A. Maheshwari, and B. Nelson: “Path integration in phase space”, Gen. Rel. Grav. 8 (1977) 58–593.CrossRefMathSciNetGoogle Scholar
  12. 2e.
    C. DeWitt-Morette, A. Maheshwari, and B. Nelson: “Path integration in non-relativistic quantum mechanics”. Physics Rep. 50 (1979) 255–372, and references therein.CrossRefADSMathSciNetGoogle Scholar
  13. 3.
    C.R. Doering, and C. DeWitt-Morette: “The positivity of the Jacobi operator on configuration space and phase space”, in The quantum theory of gravity, ed. S. Christensen (Adams Hilger, Ltd., 1984).Google Scholar
  14. 4a.
    C. DeWitt-Morette, Tian-Rong Zhang: “A Feynman-Kac formula in phase space with application to coherent state transitions”, Phys.Rev. D28 (1983) 2517–2525.ADSMathSciNetGoogle Scholar
  15. 4b.
    C. DeWitt-Morette, and Tian-Rong Zhang: “Path integrals and conservation laws”, Phys.Rev. D28 (1983) 2503–2516.ADSMathSciNetGoogle Scholar
  16. 4c.
    C. DeWitt-Morette, Bruce Nelson, and Tian-Rong Zhang, “The caustic problem in quantum mechanics with application to scattering theory”, Phys.Rev. D28 (1983) 2526–2546.ADSMathSciNetGoogle Scholar
  17. 4d.
    C. DeWitt-Morette, and Bruce Nelson: “Glories and other degenerate critical points of the action”, Phys.Rev. D (1984).Google Scholar
  18. 4e.
    R. Matzner, C. DeWitt-Morette, B. Nelson and T.-R. Zhang: “Glory Scattering from Black Holes”, Preprint,University of Texas, Center for Relativity (1984).Google Scholar
  19. 4f.
    T.-R. Zhang, and C. DeWitt-Morette: “WKB cross section for polarized glories”. Preprint, University of Texas, Center for Relativity (1984).Google Scholar
  20. 5.
    S. Albeverio, and R. Høegh-Krohn: “Mathematical theory of Feynman path integrals”. Lecture Notes in Mathematics, N. 523 (Springer Verlag, 1976).MATHGoogle Scholar
  21. 6.
    N. Sanchez:”Elastic scattering of waves by a black hole”, Phys.Rev. D18 (1978) 1798–1804, and references therein.ADSGoogle Scholar
  22. 7.
    N. Bourbaki: “Elements de mathématique”. Chapter IX, Vol. VI, also referred to as Fascicule 35 or No.1343 of the Actualités Scientifiques et Industrielle (Hermann, Paris, 1969).Google Scholar
  23. 8a.
    L.S. Schulman:“Caustics and multivaluedness: two results of adding path amplitudes”, in Functional integration and its application, edited by A.M. Arthurs (Oxford University Press, 1975).Google Scholar
  24. 8b.
    L.S. Schulman: Techniques and applications of path integration (J. Wiley and Sons, New York, 1981).MATHGoogle Scholar
  25. 9.
    P. Pechukas: “Time-dependent semiclassical scattering theory: I. Potential scattering”, Phys.Rev. 181 (1969) 166–185.CrossRefADSGoogle Scholar
  26. 10.
    Sir Charles Darwin: “The gravity field of a particle”, Proc. Roy. Soc. London A249 J 80–194.Google Scholar
  27. 11a.
    B. Nelson and B. Sheeks: “Path Integration for Time Dependent Metrics”, J.Math.Phys. 22 (1982) 1944–1947.CrossRefADSMathSciNetGoogle Scholar
  28. 11b.
    B. Nelson and B. Sheeks: “Path Integration for Velocity Dependent Potentials”, Commun.Math.Phys. 84 (1982) 515–530.CrossRefMATHADSMathSciNetGoogle Scholar
  29. 12a.
    R.A. Isaacson: “Gravitational radiation in the limit of high frequency”, Phys.Rev. 166 (1968) 1263–1280.CrossRefADSGoogle Scholar
  30. 12b.
    Y. Choquet-Bruhat: “Construction de solutions radiatives approchées des equations d’Einstein”, Commun.Math.Phys. 12 (1969) 16–35.CrossRefADSMathSciNetGoogle Scholar
  31. 13.
    R.A. Matzner: “Scattering of Massless Scalar Waves by a Schwarzschild Singularity”, J.Math.Phys. 9 (1969) 163–170.CrossRefADSMathSciNetGoogle Scholar
  32. 14.
    C.W. Misner, K.S. Thorne, J.A. Wheeler: “Gravitation” (W.H. Freeman, San Francisco 1973).Google Scholar
  33. 15.
    B.S. DeWitt: “Dynamical Theory of Groups and Fields”(Gordon and Breach, New York 1965); also in ”Relativity, Groups and Topology” eds. C.M. DeWitt and B.S. DeWitt (Gordon and Breach, New York 1964).MATHGoogle Scholar
  34. 16a.
    R.P. Feynman: “Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction”, Phys.Rev. 80 (1950) 440–457, Appendix A.CrossRefMATHADSMathSciNetGoogle Scholar
  35. 16b.
    J. Schwinger: “On gauge invariance and vacuum polarization”, Phys.Rev. 82 (1951) 664–679.CrossRefMATHADSMathSciNetGoogle Scholar
  36. 16c.
    The s-parametrization has been introduced and exploited in the following papers: V. Fock, Phys. Zeit. Sow. Un. (1937) 404;Google Scholar
  37. E.C.C. Stueckelberg: “La Mécanique du point matériel en théorie de la relativité et en théorie des quanta”, Helv.Phys. Acta 15 (1942) 23–37;MathSciNetGoogle Scholar
  38. Y. Nambu: “The Use of the Proper Time in Quantum Electrodynamics”, Prog. Theor. Phys. (Kyoto) 5 (1950) 82–94;CrossRefADSMathSciNetGoogle Scholar
  39. C. Garrod: “Hamiltonian path integral methods”. Rev.Mod. Phys. 38 (1966) 483–494.CrossRefMATHADSMathSciNetGoogle Scholar
  40. 17a.
    C. DeWitt-Morette, K.D. Elworthy, B.L. Nelson, and G. S. Sammelman: “A stochastic scheme for constructing solutions of the Schrodinger equations”, Ann. Inst. H. Poincaré XXXII, 4, (1980) 327–341.MathSciNetGoogle Scholar
  41. 17b.
    K.D. Elworthy and A. Truman: “The diffusion equation and classical mechanics: an elementary formula”,pp. 136–146, in Stochastic processes in quantum theory and statistical physics eds. S. Albeverio, Ph. Combe, M. Sirugue-Collin, Springer-Verlag, Lecture Notes in Physics 172 (Springer-Verlag Berlin 1982).The elementary formula has recently been generalized by K. Watling.CrossRefGoogle Scholar
  42. 18a.
    C. DeWitt-Morette: “Path Integration at the Crossroad of Stochastic and Differential Calculus”, pp. 166–170, in Gauge Theory and Gravitation, eds. K. Kikkawa, N. Nakaniski, and H. Nariai, Lecture Notes in Physics 176 (Springer-Verlag, Berlin 1983).CrossRefGoogle Scholar
  43. 18b.
    C. DeWitt-Morette: “Path integration quantization”, to appear in the Proceedings of the III. Marcel Grossmann Meeting (Shanghai 1982).Google Scholar
  44. 19.
    See for instance Y. Choquet-Brahat, C. DeWitt-Morette: “Analysis, Manifolds and Physics”, revised edition (North Holland, Amsterdam 1982).Google Scholar
  45. 20.
    See for instance L.D. Landau and E.M. Lifshitz: “The Classical Theory of Fields”(Pergamon Press,Oxford 1960).Google Scholar
  46. 21.
    See for instance L.D. Landau and E.M. Lifshitz: “Mechanics”(Pergamon Press,Oxford 1960).MATHGoogle Scholar
  47. 22.
    T.-R. Zhang: Ph.D. dissertation.Google Scholar
  48. 23.
    G.N. Watson: “Theory of Bessel Functions”(Cambridge University Press 1844) pp. 178–179.Google Scholar
  49. 24.
    S. Weinberg, “Gravitation and Cosmology”(Wiley, New York 1972).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Cécile DeWitt-Morette
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of TexasAustinUSA
  2. 2.Zentrum für Interdisziplinäre ForschungUniversität BielefeldBielefeld 1FR Germany

Personalised recommendations