The Heat Kernel on Riemannian Manifolds and Lie Groups

  • T. Arede
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 26/1984)


We give exact formulae for the heat Kernel on a class of Riemannian manifolds and Lie groups. These formulae express the heat Kernel in terms of lengths of geodesies of the corresponding manifolds.


Riemannian Manifold Symmetric Space Heat Kernel Maximal Compact Subgroup Semiclassical Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio, Ph. Blanchard, R. Høegh-Krohn, R. Feynman, Path Integrals and the trace formula for Schrödinger operators, Commun. Math. Phys. 83 (1982) 49–76.CrossRefMATHADSGoogle Scholar
  2. 2.
    S. Albeverio, T. Arede, The relation between quantum mechanics and classical mechanics: a survey of some mathematical aspects; ZIF Preprint, Bielefeld 1984 (to be published in Proceedings of Como Conference (1983).Google Scholar
  3. 3.
    T. Arede, La geometrie du noyau de la chaleur sur les variétés. Thèse de 3ème cycle. Université d’Aix-Marseille II (Luminy), 1983.Google Scholar
  4. 4.
    T. Arede, Manifolds for which the heat Kernel is given in terms of lengths of geodesies (to be published).Google Scholar
  5. 5.
    R. Azencott, H. Doss, L’equation de Schrödinger quand h tend vers zero; une approche probabiliste, to appear in Proc. of Marseille Conf, March 83, Ed. by S. Albeverio et al. Springer, Berlin (1983).Google Scholar
  6. 6.
    A. Benabdallah, Noyau de diffusion sur les espace homogènes compacts. Bull. Soc. Mat. de France (1973) 263–265.Google Scholar
  7. 7.
    A.L. Besse, Manifolds all of whose geodesies are closed, 1978, Ergebnisse der Mathematik 93, Springer Verlag, Berlin.Google Scholar
  8. 8.
    C. DeWitt-Morette, A. Maeshwari, B. Nelson, Path integration in non-relativistic quantum mechanics; Physics Reports 50, no.5 (1979) 255–372, Amsterdam, North-Holland.Google Scholar
  9. 9.
    J.S. Dowker, When is the “sum over classical paths” exact? J. Phys. A. Gen. Phys, Vol.3 (1970).Google Scholar
  10. 10.
    D. Elworthy, Stochastic differential equations on manifolds, London Mathematical Society; Lect. Notes Series 70, Cambridge Univ. Press.Google Scholar
  11. 11.
    D. Elworthy, A. Truman, The diffusion equation and classical mechanics: an elementary formula, Proc. of Marseille (1981), Lect, Notes in Physics A 73, Springer-Verlag,Berlin.Google Scholar
  12. 12.
    L.D. Eskin, The heat equation and the Weierstrass transform on certain symmetric Riemannian spaces. Amer, Math, Soc. Trans, 75 (1968) 239–254MATHGoogle Scholar
  13. 13.
    S. Helgason, Differential geometry, Lie groups and symmetric spaces. Academic Press (1978)MATHGoogle Scholar
  14. 14.
    N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes; North-Holland/Kodanska (1981) TokyoMATHGoogle Scholar
  15. 15.
    O. Loos, Symmetric Spaces, Vol, I, II; W.A. Benjamin (1969)MATHGoogle Scholar
  16. 16.
    M.S. Marinov, M.V. Terentyev, Dynamics on the group manifold and path integral, Fortschr, d. Phys, 27 (1979) 511–545CrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Milnor, Morse Theory, Princeton University Press (1963)MATHGoogle Scholar
  18. 18.
    J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv, in Math, (1976) 293–329Google Scholar
  19. 19.
    H. Ruse, A. Walker, T. Willmore, Harmonic Spaces, Ediz, Cremonese Roma (1961).MATHGoogle Scholar
  20. 20.
    L.S. Schulman, Techniques and applications of path integration, Wiley, New York (1981)MATHGoogle Scholar
  21. 21.
    J.P. Serre, Algebres de Lie semisimples complexes, W.A. Benjamin, New York (1966).Google Scholar
  22. 22.
    A. Walkter, Note on a distance invariant and the calculation of Ruse’s invariant, Proc. Ed. Math. Soc., 2 Ser, 79 (1940) 16–26Google Scholar
  23. 23.
    J. Wolf, Spaces of Constant Curvature, McGraw-Hill, Book Company (1976).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • T. Arede
    • 1
  1. 1.Fac. EngenhariaDEMECPortoPortugal

Personalised recommendations