Advertisement

Theory of Ion-Molecule Collisions at (1 eV-5 keV)/AMU

  • M. R. Flannery

Abstract

In 1on-mo1ecule collisions from thermal energies, to a few eV, up to a few keV, various processes such as chemical reactions (nuclear rearrangements), charge transfer (electronic rearrangement) and rotational, vibrational and electronic transitions occur, rarely in Isolation except over limited energy ranges. Inelastic scattering changes the internal state by rotational, vibrational and electronic excitation of one or both collision Darteners while preserving the identity of each partner, in contrast to reactive scattering (chemical reactions, three-body ion-molecule association, charge transfer, dissociation, ionization) which changes the chemical identities. There are few theories which elucidate the coupling between reactive and inelastic mechanisms, since development of feasible theoretical treatments of each of the processes In isolation presents. In itself, a considerable challenge.

Keywords

Differential Cross Section Vibrational Excitation Integral Cross Section Rotational Excitation Charge Transfer Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albritton, D. L., lon-Neutral Reaction-Rate Constants Measured in Flow Reactors through 1977. Atom. Data Nucl. Data Tables 22, 1–101 (1978).CrossRefADSGoogle Scholar
  2. 2.
    Douglas, C. H., McClure, D. J., and Gentry, W. R., J. Chem. Phys. 67, 4931 (1977).CrossRefADSGoogle Scholar
  3. 3.
    Nakai, Y., Kikuchi, A., Shirai, T., and Sataka, M., Data on collisions of Hydrogen Atoms and Ions with Atoms and Molecules. Japan Atomic Energy Research Institute. Report JAERI-M83-013, February 1983.Google Scholar
  4. 4.
    Tawara, H., Kat OT., Nakai, Y., Electron capture and loss cross sections for collisions between heavy ions and hydrogen molecules. Institute of Plasma Physics. Report IPPJ-AM-28, June 1983.Google Scholar
  5. 5.
    Itoh, Y., Kobayashi, N., and Kaneko, Y., J. Phys. B. 14, 679 (1981).CrossRefADSGoogle Scholar
  6. 6.
    Kobayashi, N., Itoh, Y., and Kaneko, Y., J. Phys. Soc. Jap. 46, 208 (1979).CrossRefADSGoogle Scholar
  7. 7.
    Gentry, W. R., and Giese, C. F., Phys. Rev. A 11, 90 (1975).CrossRefADSGoogle Scholar
  8. 8.
    Bates, D. R., and Reid, R. H. G., Proc. Roy. Soc. A 310, 1 (1969).CrossRefADSGoogle Scholar
  9. 9.
    Flannery, M. R., Cosby, P. C., and Moran, T. F., J. Chem. Phys. 59, 5494 (1973).CrossRefADSGoogle Scholar
  10. 10.
    Flannery, M. R., McCann, K. J., and Moran, T. F., J. Chem. Phys. 63, 1462, 3857 (1975).CrossRefADSGoogle Scholar
  11. 11.
    Bernstein, R. B., (ed.), Atom-Molecule Collision Theory. (Chap. 8–12) New York, Plenum, 1979.Google Scholar
  12. 12.
    Dickinson, A. S., Non-Reactive Heavy Particle Collision Calculations. Comput. Phys. Commun. 17, 51–80 (1979).CrossRefADSGoogle Scholar
  13. 13.
    Miller, W. H., (ed.). Dynamics of Molecular Collisions: Part A, Part B. New York, Plenum, 1976.Google Scholar
  14. 14.
    Lawley, K. P., (ed.). Potential Energy Surfaces. New York, Wiley, 1980.Google Scholar
  15. 15.
    Bowman, J. M., (ed.). Molecular Collision Dynamics. Berlin, Springer- Verlag, 1983.Google Scholar
  16. 16.
    Miller, W. H., classical-Limit Quantum Mechanics and the Theory of Molecular Collisions. Adv. Chem. Phys. 25, 69–177 (1974).CrossRefGoogle Scholar
  17. 17.
    Child, M. S., (ed.), Semiclassical Methods in Molecular Scattering and Spectroscopy. Holland, Reidel, 1980.Google Scholar
  18. 18.
    Dickinson, A. S., and Richards, D., classical and Semiclassical Methods in Inelastic Heavy-Particle Collisions. In: Adv. Atom. Molec. Phys. 18, 165–205 (1982).CrossRefGoogle Scholar
  19. 19.
    Lester, W. A., and Shaefer, J., J. Chem. Phys. 62, 1913 (1975).CrossRefADSGoogle Scholar
  20. 20.
    Arthurs, A. M., and Dalgarno, A., Proc. R. Soc. A 256, 540 (1960).CrossRefMATHADSMathSciNetGoogle Scholar
  21. 21.
    McGuire, P., Chem. Phys. Letts. 23, 575 (1973)CrossRefADSGoogle Scholar
  22. McGuire, P., Kouri, D. J., J. Chem. Phys. 60, 2488 (1974)CrossRefADSGoogle Scholar
  23. Pack, R. T., J. Chem. Phys. 60, 633 (1974).CrossRefADSGoogle Scholar
  24. 22.
    Tsien, T. P., and Pack, R. T., Chem. Phys. Lett. 6, 54 (1970).CrossRefADSGoogle Scholar
  25. 23.
    Rabitz, H., J. Chem. Phys. 57, 1718 (1972).CrossRefADSGoogle Scholar
  26. 24.
    DePristo, A. E., and Alexander, M. H., J. Chem. Phys. 63, 3552 (1975).CrossRefADSGoogle Scholar
  27. 25.
    Bates, D. R., Proc. Roy. Soc. A 243, 15 (1957).CrossRefMATHADSGoogle Scholar
  28. 26.
    Chase, D. M., Phys. Rev. 104, 839 (1956).CrossRefADSGoogle Scholar
  29. 27.
    Pfeffer, G. A., and Secrest, D., J. Chem. Phys. 78, 3052 (1983).CrossRefADSGoogle Scholar
  30. 28.
    McGuire, P., J. Chem. Phys. 65, 3275 (1976).CrossRefADSGoogle Scholar
  31. 29.
    Schinke, R., Dupuis, M., and Lester, W. A., J. Chem. Phys. 72, 3909–3916 (1983).CrossRefADSGoogle Scholar
  32. 28.
    Schinke, R., J. Chem. Phys. 72, 3917–3922 (1983), and references therein.Google Scholar
  33. 31.
    McGuire, P., Chem. Phys. 4, 249 (1974).CrossRefADSGoogle Scholar
  34. 32.
    Kouri, D. J., and McGuire, P., Chem. Phys. Letts. 29, 414 (1974).CrossRefADSGoogle Scholar
  35. 33.
    Schinke, R., Chem. Phys. 34, 65 (1978).CrossRefADSGoogle Scholar
  36. 34.
    Hermann, V., Schmidt, H., and Linder, F., J. Phys. B. 11, 493–506 (1978).CrossRefADSGoogle Scholar
  37. 35.
    David, R., Faubel, M., and Toennies, J. P., Chem. Phys. Letts, 18, 87 (1973).CrossRefADSGoogle Scholar
  38. 36.
    Faubel, M., and Toennies, J. P., scattering studies of Rotational and vibrational excitation of Molecules. In: Adv. Atom. Molec. Phys. Vol. 13, 229–314 (1977).CrossRefGoogle Scholar
  39. 37.
    McCann, K. J., and Flannery, M. R., J. Chem. Phys. 63, 4695 (1975).CrossRefADSGoogle Scholar
  40. 38.
    McCann, K. J., and Flannery, M. R., Chem. Phys. Letts. 35, 124 (1975).CrossRefADSGoogle Scholar
  41. 39.
    McCann, K. J., and Flannery, M. R., J. Chem. Phys. 69, 5275–5287 (1978).CrossRefADSGoogle Scholar
  42. 40.
    DePristo, A. E., J. Chem. Phys. 78, 1237 (1983).CrossRefADSGoogle Scholar
  43. 41.
    Micha, D., J. Chem. Phys. (in press).Google Scholar
  44. 42.
    Flannery, M. R., and McCann, K. J., J. Phys. B 7, 2518 (1974).CrossRefADSGoogle Scholar
  45. 43.
    Flannery, M. R., and McCann, K. J., Phys. Rev. A 9, 1947 (1974).CrossRefADSGoogle Scholar
  46. Flannery, M. R., (in preparation).Google Scholar
  47. 45.
    Kruger, H., and Schinke, R., J. Chem. Phys. 66, 5087 (1977).CrossRefADSGoogle Scholar
  48. 46.
    Schinke, R., Chem. Phys. 24, 379 (1977); 47, 287 (1980).CrossRefADSGoogle Scholar
  49. 47.
    McKenzie, R. L., J. Chem. Phys. 66, 1457 (1977).CrossRefADSGoogle Scholar
  50. 48.
    Iwamatsu, M., Onodera, Y., Itoh, Y., Kobayashi, H., and Kaneko, Y., Chem. Phys. Lett. 77, 585 (1981).CrossRefADSGoogle Scholar
  51. 49.
    Billing, G. D., J. Chem. Phys. 61, 3340 (1974).CrossRefADSGoogle Scholar
  52. 50.
    Bates, D. R., and McCarroll, R., charge Transfer. Phil. Mag. Suppl. 11, 39–81 (1962).Google Scholar
  53. 51.
    Moran, T. F., Electron Transfer Reactions, Chao. 1: Electron- Molecule Collisions and Their Applications. ChriStophorou, L. G. (ed. Vol. 2. New York, Academic, 1984.Google Scholar
  54. 52.
    Gurnee, E. F., and Magee, J. L., J. Chem. Phys. 26, 1237 (1957).CrossRefADSGoogle Scholar
  55. 53.
    Moran, T. F., Flannery, M. R., and Cosby, P. C., J. Chem. Phys. 61, 1261 (1974).CrossRefADSGoogle Scholar
  56. 54.
    Moran, T. F., Flannery, M. R., and Albritton, D. L., J. Chem. Phys. 62, 2869 (1975).CrossRefADSGoogle Scholar
  57. 55.
    Moran, T. F., McCann, K. J., Flannery, M. R., and Albritton, D. L., J. Chem. Phys. 65, 3172 (1976).CrossRefADSGoogle Scholar
  58. 56.
    Moran, T. F., McCann, K. J., Cobb, M., Borkman, R. F., and Flannery, M. R., J. Chem. Phys. 74, 2325 (1981).CrossRefADSGoogle Scholar
  59. 57.
    Yeseyev, A. V., Radtsig, A. A., and Smirnov, B. M., J. Phys. B. 18, 4437 (1982), and references therein.ADSGoogle Scholar
  60. 58.
    Sears, S. B., and DePristo, A. E., J. Chem. Phys. 77, 290, 298 (1983).Google Scholar
  61. 59.
    Becker, C., J. Chem. Phys. 76, 5928 (1982).CrossRefADSGoogle Scholar
  62. 60.
    Hedrick, A. F., Moran, T. F., McCann, K. J., and Flannery, M. R., J. Chem. Phys. 66, 24 (1977).CrossRefADSGoogle Scholar
  63. 61.
    Sidis, v., and Bruijn, D. P., Chem. Phys. (in press).Google Scholar
  64. 62.
    Stedeford, J. B. H., and Hasted, J. B., Proc. Roy. Soc. A 227, 466 (1955).CrossRefADSGoogle Scholar
  65. 63.
    Koopman, D. W., Phys. Rev. 154, 79 (1967).CrossRefADSGoogle Scholar
  66. 64.
    Moran, T. F., and Roberts, J. R., J. Chem. Phys. 49, 3411 (1968).CrossRefADSGoogle Scholar
  67. 65.
    Latimer, C. J., Browning, R., and Gilbody, H. B., J. Phys. B. 2, 1055 (1969).CrossRefADSGoogle Scholar
  68. 66.
    Hayden, H. C., and Amme, R. C., Phys. Rev. 172, 104 (1968).CrossRefADSGoogle Scholar
  69. 67.
    Rothwell, H. R., Van Zyl, B., and Amme, R. C., J. Chem. Phys. 61, 3851 (1974).CrossRefADSGoogle Scholar
  70. 68.
    Campbell, F. M., Browning, R., and Latimer, J. C., J. Phys. B. 14, 3493 (1981).CrossRefADSGoogle Scholar
  71. 69.
    Borkman, R. F., and Cobb, M., J. Chem. Phys. 74, 2920 (1981).CrossRefADSGoogle Scholar
  72. 70.
    Lee, C-Y., and DePristo, A. R., J. Amer. Chem. Soc. (in press).Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • M. R. Flannery
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations