Advertisement

Transverse Ion Diffusion in Gases

  • E. Märk
  • T. D. Märk

Abstract

Transport properties of ions in gases (i.e. ion mobilities and diffusion coefficients) are of intrinsic, fundamental and applied interest /1/. On the one hand they can give information about the ion-neutral interaction potential; on the other hand they can be used to describe quantitatively the behavior of ions moving in a neutral buffer gas and related charge transport phenomena and are required together with ionization cross section data /2/ for a quantitative understanding of electrical discharges.

Keywords

Drift Tube Uniform Electric Field Transverse Diffusion Exit Aperture Drift Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mc Daniel, E.W., Mason, E.A.: The mobility and diffusion of ions in gases. New York: Wiley 1973.Google Scholar
  2. 2.
    Märk, T.D., Dunn, G.H.: Electron impact ionization. Wien: Springer. 1984.Google Scholar
  3. 3.
    Nernst, W.: Zur Kinetik der in Lösung befindlicher Körper. Z. Phys. Chem. 2, 613–637 (1888).Google Scholar
  4. 4.
    Townsend, J.S.: The diffusion of ions into gases. Phil. Trans. A 193, 129–158 (1900).CrossRefADSGoogle Scholar
  5. 5.
    Townsend, J.S.: The charges on positive and negative ions in gases. Proc. Roy. Soc. A 80, 207–211 (1908), and, The charges on ions in gases, and the effect of water vapor on the motion of negative ions. Proc. Roy. Soc. A 81, 464–471 (1908).CrossRefMATHADSGoogle Scholar
  6. 6.
    Thomson, J.J., Thomson, G.P.: Conduction of electricity through gases. Vol. I (unrevised reprint of 1928 3rd edition). New York: Dover. 1969.Google Scholar
  7. 7.
    Loeb, L.B.: Basic processes of gaseous electronics. Berkeley: Univ. Calif. Press. 1960.Google Scholar
  8. 8.
    Massey, H.S.W.: Electronic and ionic impact phenomena. Vol. III. Oxford: Clarendon. 1971Google Scholar
  9. 9.
    Viehland, L.A., Mason, E.A., Morrison, W.F., Flannery, M.R.: Tables of transport collision integrals for (n, 6,4) ion-neutral potentials. Atom. Data Nucl. Data Tabl. 16, 495–514 (1975)CrossRefADSGoogle Scholar
  10. 10.
    Ellis, H.W., Pai, R.Y., Mc Daniel, E.W., Mason, E.A., Viehland, L.A.: Transport properties of gaseous ions over a wide energy range. Atom. Data Nucl. Data Tabl. 16, 177–210 (1976).CrossRefADSGoogle Scholar
  11. 11.
    Ellis, H.W., Mc Daniel, E.W., Albritton, D.L., Viehland, L.A., Lin, S.L., Mason, E.A.: Transport properties of gaseous’ions over a wide energy range. Part II. Atom. Data Nucl. Data Tabl. 22, 179–217 (1978).CrossRefADSGoogle Scholar
  12. 12.
    Viehland, L.A., Mason, E.A.: Gaseous ion mobility and diffusion in electric fields of arbitrary strength. Ann. Phys. 110, 287–328 (1978).CrossRefADSGoogle Scholar
  13. 13.
    Kumar, K., Skullerud, H.R., Robson, R.E.: Kinetic theory of charged particle swarms in neutral gases. Aust. J. Phys. 33, 343–448 (1980).ADSMathSciNetGoogle Scholar
  14. 14.
    Märk, T.D., Castieman, Jr. A.W.: Experimental studies on cluster ions. Adv. Atom. Molec. Phys. 20 (1984).Google Scholar
  15. 15.
    Crompton, R.W., Elford, M.T., Gascoigne, J.: Precision measurements of the Townsend energy ratio for electron swarms in highly uniform electric fields. Austral. J. Phys. 18, 409–436 (1965)CrossRefADSGoogle Scholar
  16. 16.
    Dutton, J., Llewellyn Jones, F., Rees, W.D., Williams, E.M.: Drift and diffusion of ions in hydrogen. Phil. Trans. Roy, A 259, 339–354 (1966).CrossRefADSGoogle Scholar
  17. 17.
    Dutton, J., Howells, P.: The motion of oxygen ion in oxygen. J. Phys. B1, 1160–1170 (1968).ADSGoogle Scholar
  18. 18.
    Skullerud, H.R.: Measurement of positive ion diffusion in argon and hydrogen. In: Proc. 7th Int. Conf. Phenom. ionized Gases, p. 50–53 Belgrade: Gradevinska Knjiga. 1965.Google Scholar
  19. 19.
    Tunnicliffe, R.J., Rees, J.A.: The determination of Townsend energy ratio (k.) for positive potassium ions in hdydrogen and nitrogen. in: Proc. 8th Int. Conf. Phenom. Ionized Gases, p. 14. Wien: Springer. 1967.Google Scholar
  20. 20.
    Fleming, I.A., Tunnicliffe, R.J., Rees, J.A.: The drift and diffusion of potassium ions in nitrogen. J. Phys. D2, 551–556 (1969).ADSGoogle Scholar
  21. 21.
    Fleming, I.A., Tunnicliffe, R.J., Rees, J.A.: Concerning determinations of the drift velocity and lateral diffusion of positive ions in hydrogen. J.Phys. B2, 780–789 (1969).ADSGoogle Scholar
  22. 22.
    Miller, T.M., Moseley, J.T., Martin, D.W., Mc Daniel, E.W.: Reactions of H+ in H2 and D+ in D2; Mobilities of hydrogen and alkali ions in H2 and D2 gases. Phys. Rev. 173, 115–122 (1968).CrossRefADSGoogle Scholar
  23. 23.
    Moseley, J.T., Snuggs, R.M., Martin, D.W., Mc Daniel, E.W.: Longitudinal agd transyerse diffusion coefficients of mass identified N and N2 ions in nitrogen. Phys. Rev. Lett. 21, 873–878 (1968).Google Scholar
  24. 24.
    Moseley, J.T., Gatland, I.R., Martin, D.W., Mc Daniel, E.W.: Measurement of transport properties of ions in gases: Results for K+ ions in N2. Phys. Rev. 178, 234–239 (1969).CrossRefADSGoogle Scholar
  25. 25.
    Moseley, J.T., Snuggs, R.M., Martin, D.W., Mc Daniel, E.W.: Mobilities, diffusion coefficients, and reaction rates of mass-identified nitrogen ions in nitrogen. Phys. Rev. 178, 240–248 (1969).CrossRefADSGoogle Scholar
  26. 26.
    Gray, D.R., Rees, J.A.: The lateral diffusion of mass identified positive ions in oxygen. J. Phys. B5, 1048–1055 (1972).ADSGoogle Scholar
  27. 27.
    Alger, S.R., Stefansson, T. Rees, J.A.: Measurements of the lateral diffusion of O2 + ions in oxygen, N3 + and N4 + ions in nitrogen, and CO+.CO ions in carbon monoxide. J. Phys. B11, 3289–3297 (1978).ADSGoogle Scholar
  28. 28.
    Varney, R.N., Helm, H., Alge, E., Störi, H., Lindinger, W.: Transverse diffusion of Ar+ and Ar2+ in Ar at 298 K. J. Phys. B14, 1695–1705 (1981)ADSGoogle Scholar
  29. 29.
    Sejkora, G., Hilchenbach, M., Grössl, M., Helm, H., Elford, M.T., Lindinger, W., Märk, T.D.: Lateral diffusion of mass identified ions: experimental. In: Proc. 3rd Symp. Atom. Surf. Phys. (Lindinger, W., et al., Eds.) p. 322–326. Maria Aim. 1982.Google Scholar
  30. 30.
    Sejkora, G., Hilchenbach, M., Elford, M.T., Märk, T.D.: Lateral diffusion of mass identified ions; low current stable ion source. Europhys. Conf. Abstr. 6D, 143,1982)Google Scholar
  31. 31.
    Girstmair, P., Sejkora, G., BryanJ, H.C., Märk, T.D.: Transverse diffusion of the (N2) 2 + cluster ion. In: Proc. XIIIth Int. Conf. Phys. Electr. Atom. Coll., post deadline paper, p. 11, Berlin. 1983.Google Scholar
  32. 32.
    Sejkora, G., Bryant, H.C., Girstmair, P., Hesche, M., Djuric, N., Märk, T.D.: Transverse diffusion of mass identified ions in their parent gas. In: Proc. 3rd Intern. Swarm Seminar (Lindinger, W., et al., Eds.) p. 201–205. Innsbruck. 1983.Google Scholar
  33. 33.
    Sejkora, G., Ijlärk, T.D.: Transverse diffusion of mass identified N2 ions in nitrogen. Chem. Phys. Lett. 97, 123–126 (1983).CrossRefADSGoogle Scholar
  34. 34.
    Sejkora, G., Girstmair, P., Bryant, H.C, Märk, T.D.: The transverse diffusion of Ar+ and Ar2+ in Ar. Phys. Rev. A, in print (1984).Google Scholar
  35. 35.
    Märk, T.D., Sejkora, G., Girstmair, P., Hesche, M., Märk, E., Bryant, H.C., Elford, M.T.: Transverse ion diffusion studied with the radial ion distribution method. In: Proc. 4th Symp. Atom. Surf. Phys. (Howorka, F et al., Eds.), 144–154, Maria Aim. (1984).Google Scholar
  36. 36.
    MSrk, T.D., Girstmair, P., Sejkora, G., Hesche, M., Mark, E., Bryant, H.C.: Transverse ion diffusion in rare gases. In: Proc. 7th ESCAMPIG, Bari. 1984.Google Scholar
  37. 37.
    Stefannson, T.: Diffusion of lithium ions in argon. In: Proc. 3rd Intern. Swarm Seminar (Lindinger, W., et al., Eds) p. 227–233. Innsbruck. 1983.Google Scholar
  38. 38.
    Mc Daniel, E.W., Moseley, J.T.: Tests of the Wannier expressions for diffusion coefficients of gaseous ions in electric fields. Phys. Rev. A3, 1040–1044 (1971).ADSGoogle Scholar
  39. 39.
    Robson, R.E.: A thermodynamic treatment of anisotropic diffusion in an electric field. Aust. J. Phys. 25, 685–693 (1972).ADSGoogle Scholar
  40. 40.
    Wannier, G.H.: On a conjecture about diffusion of gaseous ions. Austr. J. Phys. 26, 897–900 (1973).CrossRefADSGoogle Scholar
  41. 41.
    Skullerud, H.R.: Monte-Carlo investigations of the motion of gaseous ions in electrostatic fields. J. Phys. B6, 728–742 (1973).ADSGoogle Scholar
  42. 42.
    Whealton, J.H., Mason, E.A., Robson, R.E.: Composition dependence of ion-transport coefficients in gas mixtures. Phys. Rev. A9, 1017–1020 (1974).ADSGoogle Scholar
  43. 43.
    Whealton, J.H., Mason, E.A.: Transport coefficients of gaseous ions in an electric field. Ann. Phys. 84, 8–38 (1974).CrossRefADSGoogle Scholar
  44. 44.
    Viehland, L.A., Mason, E.A.: On the relation between gaseous ion mobility and diffusion coefficients at arbitrary electric field strengths. J. Chem. Phys. 63, 2913–2915 (1975).CrossRefADSGoogle Scholar
  45. 45.
    Viehland, L.A., Mason, E.A.: Gaseous ion mobility in electric fields of arbitrary strength. Ann. Phys. 91, 499–533 (1975).CrossRefADSGoogle Scholar
  46. 46.
    Skullerud, H.R.: On the relation between the diffusion and mobility of gaseous ions moving in strong electric fields. J. Phys. B9, 535–546 (1976).ADSGoogle Scholar
  47. 47.
    Robson, R.E.: On the generalized Einstein relation for gaseous ions in an electrostatic field. J. Phys. B9, L 337-L 339 (1976).ADSGoogle Scholar
  48. 48.
    Skullerud, H.R.: Progress in the transport theory of weakly ionized gases. In: Proc. 13th Int. Conf. Phys. Ionized Gases, p. 303–319. Berlin, 1977.Google Scholar
  49. 49.
    Viehland, L.A., Lin, S.L.: Application of the three- temperature theory of gaseous ion transport. Chem. Phys. 43, 135–144 (1979).CrossRefGoogle Scholar
  50. 50.
    Lin, S.L., Viehland, L.A., Mason, E.A.: Three-temperature theory of gaseous ion transport- Chem. Phys. 37, 411–424 (1979).CrossRefGoogle Scholar
  51. 51.
    Sinha, S., Lin, S.L., Bardsley, J.N.: The mobility of He+ in He. J. Phys. B12, 1613–1622 (1979).Google Scholar
  52. 52.
    Skullerud, H.R., Forsth, L.R.: Perturbation treatment of thermal motions in gaseous ion-transport theory. J. Phys. B12, 1881–1888 (1979).ADSGoogle Scholar
  53. 53.
    Waldman, M., Mason, E.A.: Generalized Einstein relations from a three-temperature theory of gasous ion transport. Chem. Phys. 58, 121–144 (1981)CrossRefADSGoogle Scholar
  54. 54.
    Viehland, L.A., Mason, E.A. Lin, S.L.: Test of the interaction potentials of H- and Br ions with He atoms and of Cl- ions with Ar atoms. Phys. Rev. A 24, 3004–3009 (1981).CrossRefADSGoogle Scholar
  55. 55.
    Viehland, L.A., Mason, E.A.: Well depths of XeF- and XeCl- from ion transport data. Chem. Phys. Lett. 83, 298–300 (1981).CrossRefADSGoogle Scholar
  56. 56.
    Viehland, L.A.: Gaseous ion transport coefficients. Chem. Phys. 70, 149–156 (1982).CrossRefADSGoogle Scholar
  57. 57.
    Waldman, M., Mason, E.A., Viehland, L.A.: Influence of resonant charge transfer on ion diffusion and generalized Einstein relations. Chem. Phys. 66, 339–349 (1982).CrossRefGoogle Scholar
  58. 58.
    Skullerud, H.R.: Calculation of ion drift and diffusion basis set expansions with non-gaussian weight functions. In: Proc. 3rd Intern. Swarm Seminar (Lindinger, W., et al., Eds) p. 212–217. Innsbruck. 1983.Google Scholar
  59. 59.
    Pai, R.Y., Ellis, H.W., Akridge, G.R., McDaniel, E.W.: Longitudinal diffusion coefficients of Li+ and Na+ ions in He, Ne and Ar: Experimental test of the generalized Einstein relation. J. Chem. Phys. 63, 2916–2918 (1975).CrossRefADSGoogle Scholar
  60. 60.
    Pai, R.Y., Ellis, H.W., Akridge, G.R., Mc Daniel, E.W.: Generalized Einstein relation: Application to ions in molecular gases. Phys. Rev. A12, 1781–1784 (1975).ADSGoogle Scholar
  61. 61.
    Ellis, H.W., Thackston, M.G., Pai, R.Y., Mc Daniel, E.W.: Longitudinal diffusion coefficients of Rb+ ions in He, Ne, Ar, H2, N2, O2 and CO2 J. Chem. Phys. 65, 3390–3391 (1976)CrossRefADSGoogle Scholar
  62. 62.
    Pai, R.Y., Ellis, H.W., Mc Daniel, E.W.: Th generalized Einstein relation-application to Li and Na ions in hydrogen gas. J. Chem. Phys. 64, 4238–4239 (1976).CrossRefADSGoogle Scholar
  63. 63.
    Eisele, F.L., Thackston, M.G., Pope, W.M., Gatland, I.R., Ellis, H.W., Mc Daniel, E.W.: Experimental test of the generalized Einstein relation for Cs ions in molecular gases: H2, N2, O2, CO, and CO2 J. Chem. Phys. 67, 1278- 1279 (1977)CrossRefADSGoogle Scholar
  64. 64.
    Thackston, M.G., Eisele, F.L., Pope, W.M., Ellis, H.W., Mc Daniel, E.W.: Farther tests of the generalized Einstein relation: Cs+ ions in Ar, Kr, and Xe. J. Chem. Phys.68, 3950–3951 (1978).CrossRefADSGoogle Scholar
  65. 65.
    Morrison, W.F., Akridge, G.R., Ellis, H.W., Pai, R.Y., Mc Danel, E.W., Viehland, L.A., Mason, E.A.: Test of the Li -He interaction potential. J. Chem. Phys. 63, 2238–2241 (1975).CrossRefADSGoogle Scholar
  66. 66.
    Viehland, L.A. Mason, E.A., Stevens, T.H., Monchik, L.: Test of the H2 + He interaction poteçtial. Comparison of the interactions of He with H+, H2 +, and H3 +. Chem. Phys. Lett. 44, 360–362 (1976).CrossRefADSGoogle Scholar
  67. 67.
    Viehland, L.A., Harrington, M.M., Mason, E.A.: Direct determination of ion-neutral molecule interaction potentials from gaseous ion mobility measurements. Chem. Phys. 22, 433–441 (1976).CrossRefADSGoogle Scholar
  68. 68.
    Gatland, I.R., Morrison, W.F., Ellis, H.W., Thackston, M.G., Mc Daniel, E.W., Alexander, M.H., Viehland, L.A., Mason, E.A.: The Li +-He interaction potential. J. Chem. Phys. 66, 5121–5125 (1977).CrossRefADSGoogle Scholar
  69. 69.
    Gatland, I.R., Viehland, L.A., Mason, E.A.: Tests of alkali ion-inert gas interaction potentials by gaseous ion mobility experiments. J. Chem. Phys. 66, 537–541 (1977)CrossRefADSGoogle Scholar
  70. 70.
    Gatland, I.R., Thackston, M.G., Pope, W.M., Eisele, F.L., Ellis, H.W., Mc Daniel, E.W.: Mobilities and inter- action potentials for Cs+ -Ar, Cs+ -Kr, and Cs+ -Xe. J. Chem. Phys. 68, 2775–2778 (1978).CrossRefADSGoogle Scholar
  71. 71.
    Gatland, I.R., Lamm, D.R., Thackston, M.G., Pope, W.M., Eisele, F.L., Ellis, H.W., Mc Danjel, E.W: Mobilitie and interaction potentials for Rb+ -Ar, Rb+ -Kr, and Rb+ -Xe. J. Chem. Phys. 69, 4951–4954 (1978).CrossRefADSGoogle Scholar
  72. 72.
    Thackston, M.G., Eisele, F.L., Pope, W.M., Ellis, H.W., Mc Daniel, E.W., Gatland, I.R.: Mobility of Cl ions in Xe gas and the CI- -Xe interaction potential. J. Chem. Phys. 73, 3183–3185 (1980).CrossRefADSGoogle Scholar
  73. 73.
    Lamm, D.R., Thackston, M.G., Eisele, F.L., Ellis, H.W., Twist, J.R., Pope, W.M., Gatland, I.R., Mc Janiel, E.W.: Mobilities and interaction potentials for K+ -Ar, K+ -Kr, and K+ -Xe. J. chem. Phys. 74, 3042–3045 (1981).CrossRefADSGoogle Scholar
  74. 74.
    Takebe, M.: The generalized mobility curve for alkali- ions in rare gases: Clustering reactions and mobility curves. J. Chem. Phys. 78, 7223–7226 (1983).CrossRefADSGoogle Scholar
  75. 75.
    Cassidy, R.A., Elford, M.T.: The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials. In: Proc. 3rd Intern. Swarm Seminar (Lindinger, W., et al., Eds) p. 222–226. Innsbruck. 1983.Google Scholar
  76. 76.
    Llewellyn Jones, F.: The energy of agitation of positive ions in argon. Proc. Phys. Soc. 47, 74–85 (1935).CrossRefGoogle Scholar
  77. 77.
    Crompton, R.W.: The present status of the Townsend- Huxley experiment in theory and practice. Aust. J. Phys. 25, 409–417 (1972).ADSGoogle Scholar
  78. 78.
    Mc Daniel, E.W., Cermak, V., Dalgarno, A., Ferguson, E.E., Friedman, L.: Ion-molecule reactions. New York: Wiley. 1969.Google Scholar
  79. 79.
    Mc Daniel, E.W., Mc Dowell, M.R.C.: Case Studies in Atomic Collision Physics I (Eds.). Amsterdam: North Holland. 1969.Google Scholar
  80. 80.
    Rees, J.A., Alger, B.A.: Transport properties of mass- identified ions in oxygen, nitrogen, carbon dioxide and carbon monoxide. Proc. lEE 126, (1979) 356–360.Google Scholar
  81. 81.
    Huxley, L.G.H., Crompton, R.W.: The diffusion and drift of electrons in gases. New York: Wiley. 1974.Google Scholar
  82. 82.
    Elford, M.T.: Private communication. 1981.Google Scholar
  83. 83.
    Hilchenbach, M.: Radioaktive lonenquelle mit Townsend- lawinenverStärkung. Diplomarbeit. Universität Innsbruck. 1982.Google Scholar
  84. 84.
    Sejkora, G.: Bestimmung transversaler Diffusionskoeffizienten als Funktion der reduzierten Feldstärke. Aufbau einer mikroprozessorgesteuerten Apparatur und Messungen in Argon und Stickstoff. Dissertation. Universität Innsbruck. 1982.Google Scholar
  85. 85.
    Märk, T.D., Helm, H.: Mass spectrometry as a technique for studying atomic properties of low pressure plasmas (particle extraction and detection system). Acta Physica Austriaca 40, 158–180 (1974).Google Scholar
  86. 86.
    Helm, H., Märk, T.D., Lindinger, W.: Plasma sampling -a versatile tool in plasma chemistry. J. Pure Appi. Chem. 52, 1739–1757 (1980).CrossRefGoogle Scholar
  87. 87.
    Grossi, M., Langenwalter, M., Helm, H., Märk, T.D.: Molecular ion formation in decaying plasmas produced in pure argon and krypton, J. Chem. Phys. 74, 1728–1735 (1981)CrossRefADSGoogle Scholar
  88. 88.
    Wannier, G.H.: Motion of gaseous ions in strong electric fields. Bell Syst. Techn. J. 32, 170–254 (1953)Google Scholar
  89. 89.
    Varney, R.N., Pal, Märk,T.D.: Properties of the ionic systems N4, O4 and O4 -. Acta Physica Austriaca 38, 287–294 (1973).Google Scholar
  90. 90.
    Rees, J.A.: Transport properties of ions in electronegative gases. Vacuum 24, 603–607 (1974).CrossRefGoogle Scholar
  91. 91.
    Naidu, M.S., Prasad, A.N.: Mobility and diffusion of negative ions in sulphur hexafluoride. J. Phys. D3, 951–956 (1970).ADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • E. Märk
    • 1
  • T. D. Märk
    • 2
  1. 1.Höhere Technische Bundeslehr- und VersuchsanstaltInnsbruckAustria
  2. 2.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations