Advertisement

Determination of Ion-Atom Potentials from Mobility Experiments

  • I. R. Gatland

Abstract

Drift tube exoeriments have been used to investigate the behavior of low density ion swarms, with applied electric fields, since the 1930’s. Starting with the work of Tyndall and of Bradbury and Nielsen it was recognized that the evolution of the swarm consisted of a steady drift of the swarm center and diffusion out from this center. Thus the experimental data may be analyzed in terms of a drift velocity, \(\vec{v}\), and a diffusion coefficient, D, such that the ion density at position \(\vec{r}\) at time t is \( n(\vec{r},t) = C{\left[ {4\pi Dt} \right]^{{ - 3/2}}}\exp {[\vec{r} - \vec{v}t)^{2}}/4Dt] \)(1) assuming a concentration of C ions at the origin at time zero.

Keywords

Drift Velocity Mobility Data Inversion Procedure Trial Potential Temperature Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. H. Wannier, Bell System Technical Journal 32 170 (1953).Google Scholar
  2. (2).
    E. W. McDaniel and E. A. Mason, “The Mobility and Diffusion of Ions in Gases”, Wiley, 1973.Google Scholar
  3. (3).
    H. R. Skullerud, J. Phys. B. 6, 728 (1973).CrossRefADSGoogle Scholar
  4. (4).
    H. R. Skullerud, J. Phys. B. 6, 918 (1973).CrossRefADSGoogle Scholar
  5. (5).
    S. L. Lin and J. N. Bardsley, J. Chem. Phys. 66, 436 (1977).ADSGoogle Scholar
  6. (6).
    H. R. Skullerud, Brit. J. Appl. Phys. 1, 1567 (1968).Google Scholar
  7. (7).
    L. A. Viehland and E. A. Mason, Ann. Phys. (NY) 91, 499 (1975).CrossRefADSGoogle Scholar
  8. (8).
    L. A. Viehland and E. A. Mason, Ann. Phys. (NY) 110, 287 (1978).CrossRefADSGoogle Scholar
  9. (9).
    L. A. Viehland, M. M. Harrington, and E. A. Mason, Chem. Phys. 17, 433 (1976).CrossRefADSGoogle Scholar
  10. (10).
    E. B. Smith, Physica (Utr) 73, 211 (1974).CrossRefADSGoogle Scholar
  11. S. L. Lin, I. R. Gatland, and E. A. Mason, J. Phys. B: Atom. Molec. Phys. U, 41 79 (1979).Google Scholar
  12. (12).
    F. Howorka, F. C. Fehsenfeld, and D. L. Albritton, J. Phys. B: Atom. Molec. Phys. 12, 4189 (1979).CrossRefADSGoogle Scholar
  13. L. A. Viehland and E. A. Mason, private communication.Google Scholar
  14. (14).
    H. R. Skullerud, Proc. 3rd Int. Swarm Seminar, Innsbruck, Austria, 1983.Google Scholar
  15. (15).
    I. R. Gatland, J. Chem. Phys. 75, 4162 (1981).CrossRefADSGoogle Scholar
  16. (16).
    “Handbook of Mathematical Functions”, M. Abromowitz and I. A. Stequn, Dover, 1965.Google Scholar
  17. (17).
    S. L. Lin, L. A. Viehland, and E. A. Mason, Chem. Phys. 37, 411 (1976).CrossRefGoogle Scholar
  18. (18).
    L. A. Viehland and S. L. Lin, Chem. Phys. 43 135 (1979).CrossRefGoogle Scholar
  19. M. Waldman and R. G. Gordon, J. Chem. Phys. 71, 1325 (1979) and private communication.CrossRefADSGoogle Scholar
  20. (20).
    I. R. Gatland, L. A. Viehland, and E. A. Mason, J. Chem. Phys. 66, 537 (1977).CrossRefADSGoogle Scholar
  21. (21).
    P. C. Hariharan and V. Staemmler, Chem. Phys. 15 409 (1976).CrossRefGoogle Scholar
  22. (22).
    I. R. Gatland, W. F. Morrison, H. W. Ellis, M. G. Thackston, E. W. McDaniel, M. H. Alexander, L. A. Viehland, and E. A. Mason, J. Chem. Phys. 66, 5121 (1977).CrossRefADSGoogle Scholar
  23. (23).
    H. Inouye and S. Kita, J. Chem. Phys. 57 1301 (1972).CrossRefADSGoogle Scholar
  24. (24).
    H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, Atomic Data and Nuclear Data Tables 17, 177 (1976) and 179 (1978).CrossRefADSGoogle Scholar
  25. (25).
    R. E. Olson and B. Liu, Chem. Phys. Lett. 62, 242 (1979).CrossRefADSGoogle Scholar
  26. (26).
    I. R. Gatland, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, J. Chem. Phys. 68, 2775 (1978).CrossRefADSGoogle Scholar
  27. (27).
    I. R. Gatland, D. R. Lamm, M. G. Thackston, W. M. Pope, F. L. Eisele, H. W. Ellis, and E. W. McDaniel, J. Chem. Phys. 68 4951 (1978).CrossRefADSGoogle Scholar
  28. (28).
    D. R. Lamm, M. G. Thackston, F. L. Eisele, H. W. Ellis, J. R. Twist, W. M. Pope, I. R. Gatland and E. W. McDaniel, J. Chem. Phys. 74, 3042 (1981).CrossRefADSGoogle Scholar
  29. (29).
    M. G. Thackston, F. L. Eisele, W. M. Pope, H. W. Ellis, E. W. McDaniel, and I. R. Gatland, J. Chem. Phys. 73, 3183 (1980).CrossRefADSGoogle Scholar
  30. (30).
    D. R. Lamm, R. D. Chelf, J. R. Twist, F. B. Holleman, M. G. Thackston, F. L. Eisele, W. M. Pope, I. R. Gatland, and E. W. McDaniel, J. Chem. Phys. 79, 1965 (1983).CrossRefADSGoogle Scholar
  31. (31).
    L. A. Viehland and E. A. Mason, Chem. Phys. Lett. 28, 298 (1981).CrossRefADSGoogle Scholar
  32. (32).
    C. de Vreugd, R. W. Wijnaendts van Resandt, and J. Los, Chem. Phys. Lett. 65, 93 (1979).CrossRefADSGoogle Scholar
  33. (33).
    L. A. Viehland, E. A. Mason, and S. L. Lin, Phys. Rev. A 24 3004 (1981).CrossRefADSGoogle Scholar
  34. (34).
    R. E. Olson and B. Liu, Phys. Rev. A 17, 1568 (1978).CrossRefADSGoogle Scholar
  35. (35).
    R. E. Olson and B. Liu, Phys. Rev. A 20 1344 (1979).CrossRefADSGoogle Scholar
  36. (36).
    R. E. Olson and B. Liu, Phys. Rev. A 22 1389 (1980).CrossRefADSGoogle Scholar
  37. (37).
    T. L. Bailey, C. J. May, and E. E. Muschlitz, J. Chem. Phys. 26 1446 (1957).CrossRefADSGoogle Scholar
  38. (38).
    S. Kita, K. Nöda, and H. Inouye, J. Chem. Phys. 64, 3446 (1976).CrossRefADSGoogle Scholar
  39. (39).
    L. A. Viehland, Chem. Phys. 78, 279 (1983).CrossRefADSGoogle Scholar
  40. (40).
    P. Polak-Dingels, M. S. Rajan, and E. A. Gislason, J. Chem. Phys. 77 3982 (1982).CrossRefADSGoogle Scholar
  41. (41).
    F. E. Budenholzer, E. A. Gislason, and A. D. Jorgensen, J. Chem. Phys. 78, 5279 (1983).CrossRefADSGoogle Scholar
  42. (42).
    M. S. Rajan and E. A. Gislason, J. Chem. Phys. 78, 2426 (1983).CrossRefADSGoogle Scholar
  43. (43).
    L. A. Viehland, to be submitted to Chem. Phys.Google Scholar
  44. (44).
    T. Koizumi, N. Kobayashi, and Y. Kaneko, J. Phys. Soc. Japan 48 1678 (1980).CrossRefADSGoogle Scholar
  45. (45).
    R. A. Cassidy and M. T. Elford, Proc. 3rd Int. Swarm Seminar, Innsbruck, Austria, 1983.Google Scholar
  46. (46).
    E. A. Gislason, private communication.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • I. R. Gatland
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations