Advertisement

Reactions of Negative Ions

  • A. A. Viggiano
  • J. F. Paulson

Abstract

Traditionally, negative ion-molecule reactions have been much less studied than those of positive ions. This is due to the fact that the most popular type of ion source, electron impact, produces a much greater variety of positive ions than negative ions and usually in greater abundances. Thus, in order to make workable signals of many types of negative ions, ion sources in which ion-molecule reactions take place have to be used.

Keywords

Proton Transfer Rate Coefficient Electron Affinity Reaction Efficiency Intramolecular Proton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferguson, E.E., Fehsenfeld, F.C., Schmeltekopf, A.L.: Flowing Afterglow Measurements of Ion-Neutral Reactions. Adv. At. Molec. Phys. 5, 1–55 (1969).CrossRefGoogle Scholar
  2. 2.
    Paulson, J.F., Dale, F.: Reactions of OH- H2O with NO2. J. Chem. Phys. 77, 4006–4008 (1982).CrossRefADSGoogle Scholar
  3. 3.
    Wu, R.L.C., Tiernan, T.O.: Evidence for Excited States of CO3 -* and NO3 -* from Collisional Dissociation Processes. Planet. Space. Sci.29 735–739 (1981).CrossRefADSGoogle Scholar
  4. 4.
    Kleingeld, J.C., Ingemann, S., Jalonen, J.E., Nibbering, N.M.M.: Formation of NH4 - Ion in the Gas Phase. J. Am. Chem. Soc.105 2474–2475 (1983).CrossRefGoogle Scholar
  5. 5.
    Kleingeld, J.C., Nibbering, N.M.M.: The Long Lived h3o- Ion in the Gas Phase: Its Formation, Structure, and Reactions. Int. J. Mass Spectrom. Ion Phys.49 311–318 (1983).CrossRefGoogle Scholar
  6. 6.
    Bartmess, J.E.: Compilation of Gas Phase Anion Thermochemistry. J. Phys. Chem. Ref. Data (in press).Google Scholar
  7. 7.
    Böhme, D.K.: Gas Phase Studies of the Influence of Solvation on Ion Reactivity. In: Nato Advanced Study Institute Volume on Chemistry of Ions in the Gas Phase. Holland. D. Reidel Publishing (in press).Google Scholar
  8. 8.
    DePuy, C.H., Bierbaum, V.M.: Gas Phase Reaction of Organic Ions as Studied by the Flowing Afterglow Technique. Accts. Chem. Res. 14, 146–153 (1981).CrossRefGoogle Scholar
  9. 9.
    Viggiano, A.A., Paulson, J.F.: Temperature Dependence of Associative Detachment Reactions. J. Chem. Phys. 79, 2241–2245 (1983).CrossRefADSGoogle Scholar
  10. 10.
    Bierbaum, V.M., Ellison, G.B., Futrell, J.H., Leone, S.R.: Vibrational Chemiluminescence from Ion-Molecule Reactions: O- + CO -> CO2* + e-. J. Chem. Phys. 67 2375–2376 (1977).CrossRefADSGoogle Scholar
  11. 11.
    Zwier, T.S., Maricq, M.M., Simpson, C.J.S.M., Bierbaum, V.M., Ellison, G.B., Leone, S.R.: Direct Detection of the Product Vibrational-State Distribution in the Associative Detachment Reaction Cl- + H->HCl(v) + e. Phys. Rev. Lett. 44 1050–1053 (1980).CrossRefADSGoogle Scholar
  12. 12.
    Maricq, M.M., Smith, M.A., Simpson, C.J.S.M., Ellison, G.B.: Vibrational Product States from Reactions of CN- with the Hydrogen Halides and Hydrogen Atoms. J. Chem. Phys. 74 6154–6170 (1981).CrossRefADSGoogle Scholar
  13. 13.
    Zwler, T.S., Welsshaar, J.C., Leone, S.R.: Nascent Product Vibrational State Distributions of Ion-Molecule Reactions: The H+F->HF(v) + e Associative Detachment Reaction, J. Chem. Phys. 75 4885–4892 (1981).CrossRefADSGoogle Scholar
  14. 14.
    Smith, M.A., Leone, S.R.: Product Nascent State Distributions in Thermal Energy Associative Detachment Reactions: F- + H, D ->HF(v), DF(v)+ e. J. Chem. Phys. 78, 1325–1334 (1983).CrossRefADSGoogle Scholar
  15. 15.
    Gauyacq, J.P.: Associative Detachment in Collisions Between Negative Halogen Ions and Hydrogen Atoms. J. Phys. B. 15 2721–2739 (1982).CrossRefADSGoogle Scholar
  16. 16.
    Bates, D.R.: Temperature Dependence of Ion-Molecule Association. J. Chem. Phys. 71 2318–2319 (1979).CrossRefADSGoogle Scholar
  17. 17.
    Herbst, E.: Refined Calculated Ion-Molecule Association Rates. J. Chem. Phys. 72 5284–5285 (1980).CrossRefADSGoogle Scholar
  18. 18.
    Fehsenfeld, F.C.: Associative Detachment. In: Interactions Between Ions and Molecules. (Ausloos, P., ed.), p. 387–412. New York: Plenum Publishing Corp. 1974.Google Scholar
  19. Arnold, F.: Physics and Chemistry of Atmospheric Ions. In: Atmospheric Chemistry. (Goldberg, E.D., ed.) p. 273–300. Berlin: Springer Verlag, 1982 and references therein.CrossRefGoogle Scholar
  20. Arljs, E.: Positive and Negative Ions in the Stratosphere. Ann. Geo phys. 1 149–160 (1983) and references therein.ADSGoogle Scholar
  21. 21.
    Arnold, F., Henschen, G.: First Mass Analysis of Stratospheric Negative Ions. Nature. 257, 521–522 (1978).CrossRefADSGoogle Scholar
  22. 22.
    Viggiano, A.A., Perry, R.A., Albritton, D.L., Ferguson, E.E., Fehsenfeld, F.C.: The Role of H2SO4 in Stratospheric Negative-Ion Chemistry. J. Geophys. Res. 85, 4551–4555 (1980).CrossRefADSGoogle Scholar
  23. 23.
    Viggiano, A.A., Perry, R.A., Albritton, D.L., Ferguson, E.E., Fehsenfeld, F.C.: Stratospheric Negative Ion Reaction Rates with H2SO4 in the Stratosphere. J. Geophys. Res. 87 7340–7342 (1982).CrossRefADSGoogle Scholar
  24. Viggiano, A.A., Arnold, F.: Stratospheric Sulfuric Acid Vapor — New and Updated Results. J. Geophys. Res. 88, 1457–1462 (1983) and references therein.CrossRefADSGoogle Scholar
  25. 25.
    Davidson, J.A., Viggiano, A.A., Howard, C.J., Fehsenfeld, F.C., Albritton, D.L., Ferguson, E.E.: Rate Constants for the Reactions of O2 +, NO2 +, NO+, H3O+, CO3, -, NO2 - and Halide Ions with N2O5 at 300K. J. Chem. Phys. 68,2085–2087 (1978).CrossRefADSGoogle Scholar
  26. 26.
    Bohringer, H., Fahey, D.W., Fehsenfeld, F.C., Ferguson, E.E.: The Role of Ion-Molecule Reactions in the Conversion of N2O5 to HNO3 in the Stratosphere. Planet. Space Sci. 31, 185–191 (1983).CrossRefADSGoogle Scholar
  27. 27.
    Viggiano, A.A., Davidson, J.A., Fehsenfeld, F.C., Ferguson, E.E.: Rate Constants for the Collisional Dissociation of N2O5 by N2. J. Chem. Phys. 74, 6113–6125 (1981).CrossRefADSGoogle Scholar
  28. 28.
    Connell, P., Johnston, H.S.: The Thermal Decomposition of N2O5 in N2. Geophys. Res. Lett. 553–556 (1979).Google Scholar
  29. 29.
    Malko, M.W., Troe, J.: Analysis of the Unimolecular Reaction N2O5 + M->NO2 + NO3 + M. Int. J. Chem. Kin. 14, 399–416 (1982).CrossRefGoogle Scholar
  30. 30.
    Paulson, J.F., Dale, F.: unpublished results.Google Scholar
  31. 31.
    Caldwell, G., Rozeboom, M.D., Kiplinger, J.P., Bartmess, J.E.: Displacement, Proton Transfer or Hydrolysis? Mechanistic Control of Acetonitrile Reactivity by Stepwise Solvation of Reactants. J. Am. Chem. Soc. (in press).Google Scholar
  32. 32.
    Dotan, I., Albritton, D.L., Fehsenfeld, F.C., Streit, G.E. Ferguson, E.E. Rate Constants for the Reactions of O-, O2 -, NO2 -, CO3 - and CO4- with HCl and C10- with NO, NO2, SO2 and CO2 at 300K. J. Chem. Phys. 68, 5414–5416 (1978).CrossRefADSGoogle Scholar
  33. 33.
    Viggiano, A.A., Arnold, F., Fahey, D.W., Fehsenfeld, F.C., Ferguson, E.E.: Silicon Negative Ion Chemistry in the Atmosphere — In Situ and Laboratory Measurements. Planet. Space. Sci. 30, 499–509 (1982).CrossRefADSGoogle Scholar
  34. 34.
    Fahey, D.W., Bohringer, H., Fehsenfeld, F.C., Ferguson, E.E.: Reaction Rates Constants for O2 -(H2O)n Ions with n=0 to 4 with O3, NO, SO2 and CO2 J- Chem. Phys. 76, 1799–1805 (1982).CrossRefADSGoogle Scholar
  35. 35.
    Streit, G.E., Newton, T.W.: Negative Ion-Uranium Hexa- fluoride Charge Transfer Reactions. J. Chem. Phys. 73, 3178–3182 (1980).CrossRefADSGoogle Scholar
  36. 36.
    Streit, G.E., Babcock, L.M.: Negative Ion-Molecule Reactions of SF4. J. Chem. Phys. 75, 3864–3870 (1981).CrossRefADSGoogle Scholar
  37. 37.
    Streit, G.E.: Negative Ion Chemistry and the Electron Affinity of SF6. J. Chem. Phys.77, 826–833 (1982)Google Scholar
  38. 38.
    Bierbaum, V.M., Schmitt, R.J., DePuy, C.H., Mead, R.D., Schulz, P.A., Lineberger, W.C.: Experimental Measurement of the Electron Affinity of the Hydroperoxy Radical. J. Am. Chem. Soc. 103, 6262–6263 (1981).CrossRefGoogle Scholar
  39. 39.
    Streit, G.E., Newton, T.W.: The Effect of Chemical Reaction on Diffusive Ion Loss Processes in a Flowing Afterglow. Int. J. Mass Spectrom. Ion Phys. 38, 105–126 (1981).CrossRefGoogle Scholar
  40. 40.
    Lias, S.G., Liebman, J.F., Levin, R.D.: An Evaluated Compilation of Gas Phase Basicities and Proton Affinities of Molecules: Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data (in press).Google Scholar
  41. 41.
    Grabowski, J.J., DePuy, C.H., Bierbaum, V.M.: Gas Phase Hydrogen-Deuterium Exchange Reactions of HO- and DO- with Weakly Acidic Neutrals. J. Am. Chem. Soc. 105, 2565–2571 (1983).CrossRefGoogle Scholar
  42. 42.
    Grabowski, J.J.: Studies of Gas Phase Ion-Molecule Reactions Using a Selected Ion Flow Tube. Doctoral Thesis. University of Colorado (1983).Google Scholar
  43. 43.
    Paulson, J.F., Henchman, M.J.: On the Formation of H3O- in an Ion-Molecule Reaction. In: NATO Advanced Study Institute Volume on Chemistry of Ions in the Gas Phase. Holland. D. Reidel Publishing Co. (in press).Google Scholar
  44. 44.
    Squires, R.R.: Ab Initio Studies of the Structures and Energies of Some Anion-Molecule Complexes. In: NATO Advanced Study Institute Volume on Chemistry of Ions in the Gas Phase. Holland. D. Reidel Publishing Co. (in press).Google Scholar
  45. 45.
    Paulson, J.F., Viggiano, A.A.: unpublished results.Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • A. A. Viggiano
    • 2
  • J. F. Paulson
    • 1
  1. 1.Air Force Geophysics LaboratoryHanscom AFBUSA
  2. 2.Air Force Geophysics ScholarUSA

Personalised recommendations