Advertisement

Cluster Ion Association Reactions: Thermochemistry and Relationship to Kinetics

  • A. W. CastlemanJr.
  • R. G. Keesee

Abstract

Interest in the formation and properties of cluster ions has dramatically increased during the last decade. From a fundamental point of view, this is due in large measure to recognition of the value of work on them in bridging the gap between the gas and condensed phase. Another important aspect is that data on the bonding of molecules to ions serves to provide a direct measure of the depth of the potential well of interaction between the ion and the collection of neutral molecules. Work on clusters is also beginning to shed light on nucleation phenomena, the formation of surfaces, and in some cases insight into the physical basis for catalysis. Finally, cluster ion research is useful in unraveling certain problems pertaining to such areas as reaction rate theory and energy transfer.

Keywords

Sulfur Dioxide Enthalpy Change Quadrupole Moment Bond Dissociation Energy Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mark, T. D., and Castleman, Jr., A. W. (1984) Adv. At. Molec. Phys., in press.Google Scholar
  2. 2.
    Kebarle, P. (1972) in Ions and Ion Pairs, (Szwarc, E., Ed.) Wiley, New York.Google Scholar
  3. 3.
    Kebarle, P. (1972) In Ion Molecule Reactions (Franklin, J. L., Ed.) Plenum, New York, 315–362.Google Scholar
  4. 4.
    Kebarle, P. (1977) Ann. Rev. Phys. Chem., 28, 445–476.ADSCrossRefGoogle Scholar
  5. 5.
    Kebarle, P. (1974) Mod. Asp. Electrochem., 9, 1–45.Google Scholar
  6. 6.
    Kebarle, P. (1975) in Interactions Between Ions and Molecules (Ausloos, P., Ed.) Plenum Press, New York, Vol. 6, 459–487.Google Scholar
  7. 7.
    Castleman, A. W., Jr. (1979) in: NATO Advance Study Institute, Kinetics of Ion Molecule Reactions (Ausloos, P., Ed.) Plenum Press, New York, 295–321.Google Scholar
  8. 8.
    Castleman, A. W., Jr. (1979) Advances in Colloid and Interface Science, 10, 73–218.CrossRefGoogle Scholar
  9. 9.
    Castleman, A. W., Jr., and Keesee, R. G. (1981) Electron and Ion Swarms. Proceedings, Second International Swarm Seminar, Oak Ridge, TN (Christophorou, L. G., Ed.) Pergamon Press, 189–201.Google Scholar
  10. 10.
    Castleman, A. W., Jr., Holland, P. M., and Keesee, R. G. (1982) Radiat. Phys. Chem., 20, 57–74.ADSGoogle Scholar
  11. 11.
    Taft, R. W. (1983) Prog. Phys. Org. Chem., 14, 247–350.CrossRefGoogle Scholar
  12. 12.
    Aue, D. M., and Bowers, M. T. (1979) Chapter 9 in Gas Phase Ion Chemistry, Vol. II, Academic Press, 1–51.Google Scholar
  13. 13.
    Beauchamp, J. L. (1971) Ann. Rev. Phys. Chem., 22, 527–561.ADSCrossRefGoogle Scholar
  14. 14.
    Lias, S. G., and Ausloos, P. (1975) Second ACS/ERDA Research Monograph in Radiation Chemistry, published by the American Chemical Society.Google Scholar
  15. 15.
    Friedman, L., and Reuben, B. G. (1971) in: Advances in Chemical Physics (Prigogine, I., and Rice, S. A., Eds.) Vol. XIX, Wiley, 35–140.Google Scholar
  16. 16.
    Schuster, P., Wolschann, P. and Tortschanoff, K. (1977) in Chemical Relaxation in Molecular Biology (Pecht, I., and Rigler, R., Eds.) Springer Verlag, Vol. 24, 107–190.CrossRefGoogle Scholar
  17. 17.
    Wiegand, W. J. (1982) Chapter 3 in: Applied Atomic Collision Physics, Vol. 3 (McDaniel, E. W., and Nighan, W. L., Eds.) Academic Press, 71–96.Google Scholar
  18. 18.
    Franklin, J. L., and Harland, P. W. (1974) Ann. Rev. Phys. Chem., 25, 485–526.ADSCrossRefGoogle Scholar
  19. 19.
    Keesee, R. G., and Castleman, Jr., A. W. (1984) J. Phys. Chem. Ref. Data, submitted.Google Scholar
  20. 20.
    Castieman, A. W., Jr., Holland, P. M., Lindsay, D. M., and Peterson, K. I. (1978) J. Am. Chem. Soc., 100, 6039–6045.CrossRefGoogle Scholar
  21. 21.
    Turner, D. L., and Conway, D. C. (1976) J. Chem. Phys., 65, 3944–3947.ADSCrossRefGoogle Scholar
  22. 22.
    Janik, G. S., and Conway, D. C. (1967) J. Phys. Chem., 71, 823–829.CrossRefGoogle Scholar
  23. 23.
    Turner, D. L., and Conway, D. C. (1979) J. Chem. Phys., 71, 1899–1901.ADSCrossRefGoogle Scholar
  24. 24.
    Conway, D. C., and Janik, G. S. (1970) J. Chem. Phys., 53, 1859–1866.ADSCrossRefGoogle Scholar
  25. 25.
    Keesee, R. G. (1979) Ph.D. Thesis, Univeristy of Colorado.Google Scholar
  26. 26.
    Kistenmacher, H., Popkie, H., and Clementi, E. (1973) J. Chem. Phys., 59, 5842–5848.ADSCrossRefGoogle Scholar
  27. 27.
    McQuarrie, D. A. (1976) Statistical Mechanics, Harper and Row.Google Scholar
  28. 28.
    Dzidic, I., and Kebarle, P. (1970) J. Phys. Chem., 74, 1466–1474.ADSCrossRefGoogle Scholar
  29. 29.
    Castieman, A. W., Jr., Holland, P. M., and Keesee, R. G. (1978) J. Chem. Phys, 68, 1760–1766.ADSCrossRefGoogle Scholar
  30. 30.
    Chupka, W. A, (1959) J. Chem. Phys., 30, 458–461.ADSCrossRefGoogle Scholar
  31. 31.
    Field, F. J. (1961) J. Am. Chem. Soc., 83, 1523–1534.CrossRefGoogle Scholar
  32. 32.
    Melton, C. E., and Rudolf, P. S. (1960) J. Chem. Phys., 32, 1128–1131.ADSCrossRefGoogle Scholar
  33. 33.
    Wexler, S., and Marshall, R. J. (1964) J. Am. Chem. Soc., 86, 781–787.CrossRefGoogle Scholar
  34. 34.
    Kebarle, P., and Hogg, A. M. (1965) J. Chem. Phys., 42, 798–799.ADSCrossRefGoogle Scholar
  35. 35.
    Ferguson, E. E., Fehsenfeld, F. C., and Schmeltekopf, A. L. (1969) Adv. At. Mol. Phys., 5, 1–56.CrossRefGoogle Scholar
  36. 36.
    Smith, D., and Adams, N. G. (1979) Chapter 1 in: Gas Phase Ion Chemistry, Vol. 1 (M. T. Bowers, ed.) Academic Press, pp. 1–44.Google Scholar
  37. 37.
    Albritton, D. L, (1978) Atomic Data Nuclear Tables, 22, 1–101.ADSCrossRefGoogle Scholar
  38. 38.
    Sunner, J., and Kebarle, P. (1981) J. Phys. Chem., 85, 327–335.CrossRefGoogle Scholar
  39. 39.
    Staley, R. H., and Beauchamp, J. L, (1975) J. Am. Chem. Soc., 97, 5920–5921.CrossRefGoogle Scholar
  40. 40.
    Woodin, R. L., and Beauchamp, J. L. (1978) J. Am. Chem. Soc., 100, 501–508.CrossRefGoogle Scholar
  41. 41.
    Larson, J. W., and McMahon, T. B. (1983) J. Am. Chem. Soc., 105, 2944–2950.CrossRefGoogle Scholar
  42. 42.
    Corderman, R. R. and Beauchamp, J. L. (1976) J. Am. Chem. Soc., 98, 3998–4000.CrossRefGoogle Scholar
  43. 43.
    Uppal, J. S., and Staley, R. H. (1982) J. Am. Chem. Soc., 104, 1235–1238.CrossRefGoogle Scholar
  44. 44.
    Uppal, J. S., and Staley, R. H. (1982) J. Am. Chem. Soc., 104, 1238–1243.CrossRefGoogle Scholar
  45. 45.
    Jones, R. W. and Staley, R. H. (1982) J. Am. Chem. Soc., 104, 2296–2300.CrossRefGoogle Scholar
  46. 46.
    Kappes, M. M., and Staley, R. H. (1982) J. Am. Chem. Soc., 104, 1813–1819.CrossRefGoogle Scholar
  47. 47.
    Kappes, M. M., and Staley, R. H. (1982) J. Am. Chem. Soc., 104, 1819–1823.CrossRefGoogle Scholar
  48. 48.
    Jones, R. W. and Staley, R. H. (1982) J. Phys. Chem., 104, 1387–1392.CrossRefGoogle Scholar
  49. 49.
    Bartmess, J. and Caldwell, G. (1984) In: NATO Advanced Study Institute, Ionic Processes in the Gas Phase (M. A. Almoster Ferreira, ed.) Series C, Vol. 118, 346–347Google Scholar
  50. 50.
    Blair, L. K., Isolani, P. C., and Riveros, J. M. (1973) J. Am. Chem. Soc., 95, 1057–1060.CrossRefGoogle Scholar
  51. 51.
    Ceyer, S. T., Tiedemann, P. W., Mahan, B. H., and Lee, Y. T. (1979) J. Chem. Phys., 70, 14–17.ADSCrossRefGoogle Scholar
  52. 52.
    Stephan, K., Futrell, J. H., Peterson, K. I., Castleman, A. W., Jr., Wagner, H. E., Djuric, N., and Mark, T. D. (1982) Int. J. Mass Spectrom. Ion Phys., 44, 167–181.CrossRefGoogle Scholar
  53. 53.
    Arnold, F., Viggiano, A. A., and Schlager, H. (1982) Nature, 297, 371–376.ADSCrossRefGoogle Scholar
  54. 54.
    McCrumb, J. L., and Arnold, F. (1981) Nature 294, 136–139.ADSCrossRefGoogle Scholar
  55. 55.
    McDaniel, D. H., and Vallee, R. E. (1963) Inorg. Chem., 2, 996–1001.CrossRefGoogle Scholar
  56. (a).
    Handbook of Chemistry and Physics (1974) Chemical Rubber Co., 55th EditionGoogle Scholar
  57. (b).
    S. P. Liebmann and J W. Moskowitz (1971) J. Chem. Phys., 54, 3622.ADSCrossRefGoogle Scholar
  58. (c).
    J. Verhoeven and A. Dymanus (1970) J. Chem. Phys., 52, 3222.ADSCrossRefGoogle Scholar
  59. (d).
    Calculated electrostatic energy, see Ref. 217.Google Scholar
  60. (e).
    D. Patael, D. Margolese, T. R. Dyke (1979) J. Chem. Phys., 70, 2740.ADSCrossRefGoogle Scholar
  61. (f).
    J. M. Pochan, R. G. Stone, W. H. Flygare (1969) J. Chem. Phys., 51A, 4278.ADSCrossRefGoogle Scholar
  62. (g).
    J. S. Muenter (1975) J. Molec. Spect., 55, 490.ADSCrossRefGoogle Scholar
  63. (h).
    J. O. Hirschfelder, C. F. Curtis, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).Google Scholar
  64. (i).
    D. E. Stogryn and A. P. Stogryn (1966) Mol. Phys., 11, 371.ADSCrossRefGoogle Scholar
  65. (j).
    J. Trapy., J. Cl. Lelievre., J. Picard (1974) Phys. Lett., 47A, 9 (1974).ADSGoogle Scholar
  66. (k).
    M. A. Morrison, P. J. Hay (1979) J. Chem. Phys., 70, 4034.ADSCrossRefGoogle Scholar
  67. (l).
    A. Koide and T. Kihara (1974) Chem. Phys., 5, 34.ADSCrossRefGoogle Scholar
  68. (m).
    A. E. Barton, A. Chablo, B. J. Howard (1979) Chem. Phys. Lett., 60, 414.ADSCrossRefGoogle Scholar
  69. (n).
    A. A. Maryott, F. Buckley (1953) U.S. NBS Circular 537.Google Scholar
  70. (o).
    J. Koch, S. Friberg, T. Larsen, Zahlenwerte und Funktlonen, ed. H. A. Landolt, R. Bornstein (1962)Google Scholar
  71. (p).
    S. G. Kukolich (1970) Chem. Phys. Lett., 5, 401.ADSCrossRefGoogle Scholar
  72. (q).
    F. A. Gianturco, C. Guidott (1978) J. Phys. B., 11, L385.ADSCrossRefGoogle Scholar
  73. 56.
    Spears, K. G. (1972) J. Chem. Phys., 57, 1842–1844.ADSCrossRefGoogle Scholar
  74. 57.
    Spears, K. G. (1972) J. Chem. Phys., 57, 1850–1858.ADSCrossRefGoogle Scholar
  75. 58.
    Diercksen, G. H. F., and Kraemer, W. P. (1977) in Metal-Ligand Interactions in Inorganic Chemistry and Biochemistry, Part 2, (Pullman, B., and Goldblum, N., Ed.) Riedel, Dordrecht-Holland.Google Scholar
  76. 59.
    Clementi, E., and Popkie, H. (1972) J. Chem. Phys., 57, 1077–1094.ADSCrossRefGoogle Scholar
  77. 60.
    Clementi, E. (1976) in Determination of liquid water structure coordination numbers for ions and solvation for biological molecules. Lecture Notes in Chemistry, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  78. 61.
    Castleman, A. W., Jr. (1978) Chem. Phys. Letts., 53, 560–564.ADSCrossRefGoogle Scholar
  79. 62.
    Peterson, K. I. (1982) Ph.D. Thesis, University of Colorado, University MicrofilmsGoogle Scholar
  80. 63.
    Castleman, Jr., A. W., Peterson, K. I., Upschulte, B. L., Schelling, F. J. (1983) Int. J. Mass Spect, Ion Phys., 47, 203–206.CrossRefGoogle Scholar
  81. 64.
    Davidson, W. R., and Kebarle, P. (1976) J. Am. Chem. Soc., 98, 6125–6133.CrossRefGoogle Scholar
  82. 65.
    Perry, R. A., Rowe, B. R., Viggiano, A. A., Albritton, D. L., Ferguson, E. E., and Fehsenfeld, F. C. (1980) J. Geophys. Res., 7, 693–696.Google Scholar
  83. 66.
    Peterson, K. I., Mark, T. D., Keesee, R. G., and Castieman, A. W. (1984) “Thermochemical Properties of Gas-Phase Mixed Clusters: H2O/CO2 with Na+,” J. Phys. Chem. (submitted).Google Scholar
  84. 67.
    Rowe, B. R., Viggiano, A. A., Fehsenfeld, F. C., Fahey, D. W., and Ferguson, E. E. (1982) J. Chem. Phys., 76, 742–743.ADSCrossRefGoogle Scholar
  85. 68.
    Tang, I. N., and Castieman, A. W. (1972) J. Chem. Phys., 57, 3638–3644.ADSCrossRefGoogle Scholar
  86. 69.
    Tang, I. N., Uan, M. S., and Castieman, A. W. (1976) J. Chem. Phys., 65, 4022–4027.ADSCrossRefGoogle Scholar
  87. 70.
    Tang, I. N., and Castieman, A. W. (1974) J. Chem. Phys., 60, 3981–3986.ADSCrossRefGoogle Scholar
  88. 71.
    Holland, P. M., and Castieman, A. W., Jr. (1982b) J. Chem. Phys. 76, 4195–4205.ADSCrossRefGoogle Scholar
  89. 72.
    Teng, H. H., and Conway, D. C. (1973) J. Chem. Phys., 59, 2316–2323.ADSCrossRefGoogle Scholar
  90. 73.
    Yamdagni, R., and Kebarle, P. (1974) Can. J. Chem., 52, 2449–2453.CrossRefGoogle Scholar
  91. 74.
    Keesee, R. G., Lee, N., and Castieman, A. W., Jr. (1980) J. Chem. Phys., 73, 2195–2202.ADSCrossRefGoogle Scholar
  92. 75.
    Yamdagni, R., and Kebarle, P. (1972) J. Am. Chem. Soc., 94, 2940–2943.CrossRefGoogle Scholar
  93. 76.
    Yamdagni, R., Payzant, J. D., and Kebarle, P. (1973) Can. J. Chem., 51, 2507–2511.CrossRefGoogle Scholar
  94. 77.
    Luczynski, Z., Wlodek, S., and Wincel, H. (1978) Int. J. Mass Spect. Ion Phys., 26, 103–107.CrossRefGoogle Scholar
  95. 78.
    Payzant, J. D., Yamdagni, R., and Kebarle, P. (1971) Can. J. Chem. 49, 3308–3314.CrossRefGoogle Scholar
  96. 79.
    Jonsson, B., Karlstrom, G., and Wennerstrom, H. (1978) J. Am. Chem. Soc. 100, 1658.CrossRefGoogle Scholar
  97. 80.
    Fehsenfeld, F. C., and Ferguson, E. E. (1974) J. Chem. Phys., 61, 3181–3193.ADSCrossRefGoogle Scholar
  98. 81.
    Hiller, J. F., and Vestal, M. L. (1980) J. Chem. Phys., 72, 4713–4722.ADSCrossRefGoogle Scholar
  99. 82.
    Arshadi, M., Yamdagni, R., and Kebarle, P. (1970) J. Phys. Chem., 74, 1475–1482.CrossRefGoogle Scholar
  100. 83.
    Spears, K. G., and Ferguson, E. E. (1972b) J. Chem. Phys., 59, 4174–4183.ADSCrossRefGoogle Scholar
  101. 84.
    Pack, J. L., and Phelps, A. V. (1966) J. Chem. Phys., 45, 4316–4329.ADSCrossRefGoogle Scholar
  102. 85.
    Wlodek, S., Luczynski, Z., and Wincel, H. (1983) Int’l. J. Mass Spect. Ion Phys., 49, 301–309.CrossRefGoogle Scholar
  103. 86.
    Evans, D. H., Keesee, R. G., and Castieman, Jr., A. W., unpublished results.Google Scholar
  104. 87.
    Bohringer, H., Fahey, D. W., and Fehsenfeld, F. C. (1984) Symposium on Atomic and Surface Physics ‘84 (W. Lindinger, F. Howorka, and T. D. Mark, eds.) Maria Aim/Salzburg, Austria, January 31-February 3, 1984, pp. 210–212.Google Scholar
  105. 88.
    Janousek, B. K., and Brauman, J. I. (1979) in Gas Phase Ion Chemistry, Vol. 2. (Bowers, M. T., Ed.) Academic Press, 53–86.Google Scholar
  106. 89.
    Caledonia, G. E. (1975) Chem. Rev., 75, 333–351.CrossRefGoogle Scholar
  107. 90.
    Paulson, J. F. (1970) J. Chem. Phys., 52, 963–964.ADSCrossRefGoogle Scholar
  108. 91.
    Klots, C. E., and Compton, R. N. (1977) J. Chem. Phys., 67, 1779–1780.ADSCrossRefGoogle Scholar
  109. 92.
    Haberland, H., Oschwald, M., Waltenspiel, R., Winterer, M., and Worsnop, D. R. (1983) Proc. 9th Int. Symp. Molecular Beams, Freiburg, 120–122.Google Scholar
  110. 93.
    Keesee, R. G., and Castieman, Jr., A. W. (1984) in: NATO Advanced Study Institute, Ionic Processes in the Gas Phase (M.A. Almoster Ferreira, ed.) Series C, Vol. 118, 340–342.Google Scholar
  111. 94.
    Thackston, M. G., Eisele, F. L., Pope, W. M., Ellis, H. W., McDaniel, E. W., and Gatland, I. R. (1980) J. Chem. Phys., 73, 3183–3185.ADSCrossRefGoogle Scholar
  112. 95.
    Takebe, M. (1983) J. Chem. Phys., 78, 7223–7226 and references therein.ADSCrossRefGoogle Scholar
  113. 96.
    Abraham, F. F. (1974) in Homogeneous Nucleation Theory, The Pretransition Theory of Vapor Condensation, Supplement I, Advances in Theoretical Chemistry, Academic Press, New York.Google Scholar
  114. 97.
    Chang, J. S., and Golden, D. M. (1981) J. Am. Chem. Soc., 103, 496–500.CrossRefGoogle Scholar
  115. 98.
    Troe, J. (1977) J. Chem. Phys., 66, 4758.ADSCrossRefGoogle Scholar
  116. 99.
    Su, T., and Bowers, M. T. (1973) J. Chem. Phys., 58, 3027–3029.ADSCrossRefGoogle Scholar
  117. 100.
    Hsieh, E. T.-Y., and Castieman, A. W., Jr. (1981) International Journal of Mass Spectrometry and Ion Physics, 40, 295–329.CrossRefGoogle Scholar
  118. 101.
    Lee, N., Keesee, R. G., and Castieman, A. W., Jr. (1980) Journal of Colloid and Interface Science, 75, 555–565.CrossRefGoogle Scholar
  119. 102.
    Lau, Y. K., Ikuta, S., and Kebarle, P. (1982) J. Am. Chem. Soc., 104, 1462–1469.CrossRefGoogle Scholar
  120. 103.
    Arshadi, M. R., and Futrell, J. H. (1974) J. Phys. Chem., 78, 1482–1486.CrossRefGoogle Scholar
  121. 104.
    Bartmess, J. E., and Mclver, Jr., R. T. (1979) in: Gas Phase Ion Chemistry, Vol. 2, Academic Press, pp. 88–119.Google Scholar
  122. 105.
    Bromilow, J., Abboud, J. L. M., Lebrilla, C. B., Taft, R. W., Scorrono, G., and Lucchini, V. (1980) J. Am. Chem. Soc., 103, 5448–5453.CrossRefGoogle Scholar
  123. 106.
    Arnett, E. M., Jones, F. M., III, Taagepera, M., Henderson, W. G., Beauchamp, J. L., Holtz, D., and Taft, R. W. (1972) J. Am. Chem. Soc., 94, 4724–4726.CrossRefGoogle Scholar
  124. 107.
    Böhme, D. K., Mackay, G. I., and Tanner, S. D. (1979) J. Am. Chem. Soc., 101, 3724–3730.CrossRefGoogle Scholar
  125. 108.
    Davidson, W. R., Sunner, J., and Kebarle, P. (1979) J. Am. Chem. Soc., 101, 1675–1680.CrossRefGoogle Scholar
  126. 109.
    Yamdagni, R., and Kebarle, P. (1971) J. Am. Chem. Soc., 93, 7139–7143.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • A. W. CastlemanJr.
    • 1
  • R. G. Keesee
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations