Plant Mitochondrial DNA: Unusual Variation on a Common Theme

  • Arnold J. Bendich
Part of the Plant Gene Research book series (GENE)


There are two unusual features of the plant mitochondrial genome that seemingly distinguish it from the mitochondrial genome in all other eukaryotes. First, the size of the genome is very large — embarassingly so — and can be extremely variable even among closely related species. And second, the circular DNA molecules obtained from plant mitochondria are not easily related to the size of the genome as inferred from reassociation kinetics measurements or from restriction enzyme analyses. The circles are heterogeneous in size, do not approach the size of the genome inferred from the other methods, and do not amount to more than a few per cent of the molecules obtained from mitochondria of intact plant tissues, although they can be obtained in much greater yield from cultured cells. The unusual properties of the circles have led to the speculation that the mitochondrial genome in plants is organized differently than it is in other eukaryotes with the genes borne on different linkage groups of chromosomes, as is found in the nucleus (discussed in Bendich, 1982). The large size of the genome has led to the suggestion that there may be more — perhaps many more — genes in plant mtDNA than in mtDNA of other eukaryotes (Leaver and Gray, 1982; Grivell, 1983; Levings, 1983; Hack and Leaver, 1983). It will be the purpose of this article to briefly review the information concerning genome size and DNA circularity for plant mitochondria and to ask whether the limited data for plants do in fact point to a fundamental genetic difference between the mitochondria of plants and other eukaryotes.


Mitochondrial Genome Linear Molecule Plant Mitochondrion Circular Molecule Unusual Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altman, P. L., Katz, D. D., eds., 1976: In: Biological Handbooks. I. Cell Biology, pp. 217–218. Bethesda, Maryland: Federation of American Society of Experimental Biology.Google Scholar
  2. Attardi, G., Cantatore, P., Chomyn, A., Crews, S., Gelfand, R., Merkel, C., Montoya, J., Ojala, D., 1982: A comprehensive view of mitochondrial gene expression in human cells. In: Slonimski, P., Borst, P., Attardi, G. (eds.), Mitochondrial Genes, pp. 51–71. Cold Spring Harbor, New York: Cold Spring Harbor Lab.Google Scholar
  3. Bayen, M., Rode, A., 1973: The 1.700 DNA of Chlorella heterogeneity and complexity. Plant Sci. Lett. 1, 385–389.CrossRefGoogle Scholar
  4. Bendich, A. J., 1982: Plant mitochondrial DNA: the last frontier. In: Slonimski, P., Borst, P., Attardi, G. (eds.). Mitochondrial Genes, pp. 477–481. Cold Spring Harbor, New York: Cold Spring Harbor Lab.Google Scholar
  5. Bendich, A. J., Gauriloff, L. P., 1984: Morphometric analysis of cucurbit mitochondria: the relationship between chondriome volume and DNA content. Protoplasma 119, 1–7.CrossRefGoogle Scholar
  6. Benne, R, De Vries, B. F., Van den Berg, J., Klaver, B., 1983: The nucleotide sequence of a segment of Trypanosoma brucei mitochondrial maxi-circle DNA that contains the gene for the apoctyochrome b and some unusual unassigned reading frames. Nucleic Acids Res. 11, 6925–6941.PubMedCrossRefGoogle Scholar
  7. Bennett, M. D., Smith, J. B., Smith, R. I. L., 1982: DNA amounts of angiosperms from the Antarctic and South Georgia. Environ. Exp. Bot. 22, 307–318.Google Scholar
  8. Bönen, L., Boer, P. H., Gray, M. W., 1984: The wheat cytochrome oxidase subunit II gene has an intron insert and three radical amino acid changes relative to maize. EMBO J. 3, 2531–2536.PubMedGoogle Scholar
  9. Bönen, L., Gray, M. W., 1980: Organization and expression of the mitochondrial genome of plants. I. The genes for wheat mitochondrial ribosomal and transfer RNA: evidence for an unusual arrangement. Nucleic Acids Res. 8, 319–335.PubMedCrossRefGoogle Scholar
  10. Borst, P., Grivell, L. A, Groot, G. S. P., 1984: Organelle DNA. Trends in Biochem. Sciences 9, 128–130.Google Scholar
  11. Boutry, M., Briquet, M., 1982: Mitochondrial modifications associated with the cytoplasmic male sterility in faba beans. Eur. J. Biochem. 127, 129–135.PubMedCrossRefGoogle Scholar
  12. Boutry, M. Briquet, M., Goffeau, A., 1983: The a subunit of a plant mitochondrial FpATPase is translated in mitochondria. J. Biol. Chem. 258, 8524–8526.PubMedGoogle Scholar
  13. Boutry, M., Faber, A.-M., Charbonnier, M., Briquet, M., 1984: Microanalysis of plant mitochondrial protein synthesis products: detection of variant polypeptides associated with cytoplasmic male sterility. Plant Molec. Biol. 3, 445–452.CrossRefGoogle Scholar
  14. Brennicke, A., 1980: Mitochondrial DNA from Oenothera berteriana. Plant Physiol. 65, 1207–1210.PubMedCrossRefGoogle Scholar
  15. Brennicke, A., Blanz, P., 1982: Circular mitochondrial DNA species from Oenothera with unique sequences. Molec. Gen. Genet. 187, 461–467.CrossRefGoogle Scholar
  16. Burke, J. M., Breitenberger, C., Heckman, J. E., Dujon, B., RajBandary, U. L., 1984: J. Biol. Chem. 259, 504–511.PubMedGoogle Scholar
  17. Cantatore, P., Attardi, G., 1980: Mapping of nascent light and heavy strand transcripts on the physical map of HeLa cell mitochondrial DNA. Nucleic Acids Res. 8, 2605–2625.PubMedCrossRefGoogle Scholar
  18. Cavalier-Smith, T., 1978: Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution to the DNA C-value paradox. J. Cell Sci. 34, 247–278.PubMedGoogle Scholar
  19. Chen, K. K., Donelson, J. E., 1980: Sequences of two kinetoplast DNA minicircles of Trypanosoma brucei. Proc. Natl. Acad. Sci., U.S.A 77, 2445–2449.PubMedGoogle Scholar
  20. Chetrit, P., Mathieu, C., Muller, J. R, Vedel, F., 1984: Curr. Genet. 8, 413–421.CrossRefGoogle Scholar
  21. Christiansen, G., Christiansen, C., 1976: Comparison of the fine structure of mitochondrial DNA from Saccharomyces cerevisiae and S. carlsbergensis: electron microscopy of partially denatured molecules. Nucleic Acids Res. 3, 465–476.PubMedGoogle Scholar
  22. Clark-Walker, G. D., McArthur, C. R, Daley, D. J., 1981: Does mitochondrial DNA length influence the frequency of spontaneous petite mutants in yeasts? Curr. Genet. 4, 7–12.CrossRefGoogle Scholar
  23. Collins, R. A., Lambowitz, A. M., 1983: Structural variations and optional introns in the mitochondrial DNAs of Neurospora strains isolated from nature. Plasmid 9, 53–70.PubMedCrossRefGoogle Scholar
  24. Cummings, D. J., Pritchard, A. E., 1982: Replication mechanism of mitochondrial DNA from Paramecium aurelia: sequence of the cross-linked origin. In: Slonimski, P., Borst, P., Attardi, G. (eds.). Mitochondrial Genes, pp. 441–447. Cold Spring Harbor, New York: Cold Spring Harbor Lab.Google Scholar
  25. Dale, R. M. K., 1981: Sequence homology among different size classes of plant mtDNAs. Proc. Natl. Acad. Sci., U.S.A. 78, 4453–4457.PubMedCrossRefGoogle Scholar
  26. Dale, R. M. K., Duessing, J. H., Keene, D., 1981: Supercoiled mitochondrial DNAs from plant tissue culture cells. Nucleic Acids Res. 9, 4583–4593.PubMedCrossRefGoogle Scholar
  27. Dale, R. M. K., Wu, M., Kiernan, M. C. C., 1983: Analysis of four tobacco mitochondrial DNA size classes. Nucleic Acids Res. 11, 1673 — 1685.PubMedCrossRefGoogle Scholar
  28. Dawson, A. J., Jones, V. P., Leaver, C. J., 1984: The apocytochrome b gene in maize mitochondria does not contain introns and is preceded by a potential ribosome binding site. EMBO J. 3, 2107–2113.PubMedGoogle Scholar
  29. de Zamaroczy, M., Faugeron-Fonty, G., Bernardi, G., 1983: Excision sequences in the mitochondrial genome of yeast. Gene 21, 193–202.PubMedCrossRefGoogle Scholar
  30. Dixon, L. K., Leaver, C. J., 1982: Mitochondrial gene expression and cytoplasmic male sterility in sorghum. Plant Molec. Biol. 1, 89–102.CrossRefGoogle Scholar
  31. Dover, G., 1980: Ignorant DNA? Nature 285, 618–620;PubMedCrossRefGoogle Scholar
  32. Cavalier-Smith, T., Smith, T. F., Reid, R. A, Nature 285, 617–620.Google Scholar
  33. Dujon, B., 1981: Mitochondrial genetics and functions. In: Strathern, J. N., Jones, E. W., Broach, J. R. (eds.). The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance, pp. 505–635. Cold Spring Harbor, New York: Cold Spring Harbor Lab.Google Scholar
  34. Englund, P., 1981: Kinetoplast DNA. In: Levandowsky, M., Hunter, S. H. (eds.). Biochemistry and Physiology of Protozoa, ed., Volume 4, pp. 333–383. New York: Academic Press.Google Scholar
  35. Falconet, D., Lejeune, B., Quetier, F., Gray, M. W., 1984: Evidence for homologous Plant Mitochondrial DNA: Unusual Variation on a Common Theme 135 recombination between repeated sequences containing 18 S and 5 S ribosomal RNA genes in wheat mitochondrial DNA. EMBO J. 3, 297–302.PubMedGoogle Scholar
  36. Fontarnau, A., Hernández-Yago, J., 1982: Characterization of mitochondrial DNA in Citrus. Plant. Physiol. 70, 1678–1682.PubMedCrossRefGoogle Scholar
  37. Forde, B. G., Leaver, C. J., 1980: Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc. Natl. Acad. Sci., U.S.A. 77, 418–422.PubMedCrossRefGoogle Scholar
  38. Fox, T. D., Leaver, C. J., 1981: The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26, 315–323.PubMedCrossRefGoogle Scholar
  39. Gall, J. G., 1981: Chromosome structure and the C-value paradox. J. Cell Biol. 91, 3s-14s.PubMedCrossRefGoogle Scholar
  40. Grant, D., Chiang, K. S., 1980: Physical mapping and characterization of Chlamydomonas mitochondrial DNA molecules: Their unique ends, sequence homogeneity and conservation. Plasmid 4, 82–96.PubMedCrossRefGoogle Scholar
  41. Grivell, L. A, 1983: Mitochondrial DNA. Scientific Amer. 248, 78–89.CrossRefGoogle Scholar
  42. Hack, E., Leaver, C. J., 1983: The a-subunit of the maize Fi-ATPase is synthesized in the mitochondrion. EMBO J. 2, 1783–1789.PubMedGoogle Scholar
  43. Hack, E., Leaver, C. J., 1984: Synthesis of a dicyclohexylcarbodiimide-binding proteolipid by cucumber (Cucumis sativus L.) mitochondria. Curr. Genet. 8, 537–542.CrossRefGoogle Scholar
  44. Hajduk, S. L., 1979: Dyskinetoplasty in two species of trypanosomatids. J. Cell Sci. 35, 185–202.PubMedGoogle Scholar
  45. Hajduk, S. L, Klein, V. A, Englund, P. T., 1984: Replication of kinetoplast DNA maxicircles. Cell 36, 483–492.PubMedCrossRefGoogle Scholar
  46. Hakkaart, M. J. J., van den Elzen, P. J. M., Veltkamp, E., Nijkamp, H. J. J., 1984: Maintenance of multicopy plasmid Clo DF13 in E. coli cells: evidence for site-specific recombination at parB. Cell 36, 203–209.PubMedCrossRefGoogle Scholar
  47. Herrmann, R. G., Palta, H. K., Kowallik, K. V., 1980: Chloroplast DNA from three archegoniates. Planta 148, 319–327.CrossRefGoogle Scholar
  48. Hiesel, R, Brennicke, A., 1983: Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron. EMBO J. 2, 2173–2178.PubMedGoogle Scholar
  49. Hollenberg, C. P., Borst, P., Van Brüggen, E. F. H., 1970: Mitochondrial DNA. V. A 25-μ closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity. Biochim. Biophys. Acta 209, 1 — 15.PubMedGoogle Scholar
  50. Hudspeth, E. S., Shumard, D. S., Bradford, C. J. R, Grossman, L. I., 1983: Organization of Achlya mtDNA: a population with two orientations and a large inverted repeat containing the rRNA genes. Proc. Natl. Acad. Sci., U.S.A. 80, 142–146.PubMedCrossRefGoogle Scholar
  51. Jakovcic, S., Hendler, F., Halbreich, A., Rabinowitz, M., 1979: Transcription of yeast mitochondrial deoxyribonucleic acid. Biochem. 18, 3200–3205.CrossRefGoogle Scholar
  52. James, A. A., Morrison, P. T., Kolodner, R, 1983: Isolation of genetic elements that increase frequencies of plasmid recombination. Nature 303, 256–259.PubMedCrossRefGoogle Scholar
  53. Jayaram, M., Broach, J. R, 1983: Yeast plasmid 2-μm circle promotes recombination within bacterial transposon Tn5. Proc. Natl. Acad. Sci., U.S.A. 80, 7264–7268.PubMedCrossRefGoogle Scholar
  54. Kemble, R. J., Bedbrook, J. R, 1980: Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm. Nature 284, 565–566.CrossRefGoogle Scholar
  55. Kemble, R. J., Gunn, R. E., Flavell, R. B., 1980: Classification of normal and malesterile cytoplasms in maize. II. Electrophoretic analysis of DNA species in mitochondria. Genetics 95, 451–458.PubMedGoogle Scholar
  56. Kemble, R. J., Mans, R. J., 1983: Examination of the mitochondrial genome of revertant progeny from S cms maize with cloned S-1 and S-2 hybridization probes. J. Molec. Appl. Genet. 2, 161 — 171.Google Scholar
  57. Kim, B. D., Lee, K. J., DeBusk, A. G., 1982 a: Linear and Uasso-like’ structures of mitochondrial DNA from Pennisetum typhoides. FEBS Letts. 147, 231–234.CrossRefGoogle Scholar
  58. Kim, B. D., Mans, R. J., Conde, M. F., Pring, D. R, Levings, C. S. Ill, 1982 b: Physical mapping of homologous segments of mitochondrial episomes from S malesterile maize. Plasmid 7, 1 — 14.PubMedCrossRefGoogle Scholar
  59. Kolodner, R., Tewari, K. K., 1972: Physicochemical characterization of mitochondrial DNA from pea leaves. Proc. Natl. Acad. Sci., U.S.A. 69, 1830–1834.PubMedCrossRefGoogle Scholar
  60. Kool, A. J., de Haas, J. M., Mol, J. N. M., van Marrewijk, G. A. M., 1984: Isolation and physicochemical characterization of mitochondrial DNA from cultured cells of Petunia hybrida. Theor. Appl. Genet. 68, in press.Google Scholar
  61. Labouesse, M., Slonimski, P. P., 1983: Construction of novel cytochrome b genes in yeast mitochondria by subtraction or addition of introns. EMBO J. 2, 269–276.PubMedGoogle Scholar
  62. Lazowska, J., Slonimski, P. P., 1976: Electron microscopy analysis of circular repetitive DNA molecules from genetically characterized rho~ mutants of Saccharomyces cerevisiae. Molec. Gen. Genet. 146, 61–78.PubMedCrossRefGoogle Scholar
  63. Leaver, C. J., Gray, M. W., 1982: Mitochondrial organization and expression in higher plants. Ann. Rev. Plant Physiol. 33, 373–402.CrossRefGoogle Scholar
  64. Lebacq, P., Vedel, F., 1981: Sal I restriction enzyme analysis of chloroplast and mitochondrial DNAs in the genusBrassica. Plant Sci. Lett. 23, 1–9.CrossRefGoogle Scholar
  65. Leon, P., Macaya, G., 1983: Properties of DNA rosettes and their relevance to chromosome structure. Chromosoma 88, 307–314.PubMedCrossRefGoogle Scholar
  66. Levings, C. S III, 1983: The plant mitochondrial genome and its mutants. Cell 32, 659–661.PubMedCrossRefGoogle Scholar
  67. Levings, C. S. III, Shah, D. M., Hu, W. W. L., Pring, D. R., Timothy, D. H., 1979: Molecular heterogeneity among mitochondrial DNAs from different maize cytoplasms. In: Cummings, D. J., Borst, P., David, I. B., Weissman, S. M., Fox, C. F. (eds.), Extrachromosomal DNA, ICN-UCLA Symposia on Molecular and Cellular Biology, Volume 15, pp. 63–73. New York: Academic Press.Google Scholar
  68. Lifshitz, I., Shamay, I., Beckmann, J., 1982: Isolation of circular mitochondrial DNA from suspension culture cells of Petunia. Plant Molec. Biol. Newslett. 3, 6–7.Google Scholar
  69. Locker, J., Rabinowitz, M., Getz, G. S., 1974: Electron microscopic and renaturation kinetic analysis of mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J. Molec. Biol. 88, 489–507.PubMedCrossRefGoogle Scholar
  70. Lonsdale, D. M., Hodp, T. P., Fauron, M.-R, Flavell, R. B., 1983b: A predicted structure for the mitochondrial genome from the fertile cytoplasm of maize. In: Goldberg, R. B. (ed.). Plant Molecular Biology, ICN-UCLA Symposium on Molecular and Cellular Biology, New Series, Volume 12, pp. 445–456. New York: Alan R. Liss.Google Scholar
  71. Lonsdale, D. M., Hodge, T. P., Howe, C. J., Stem, D. B., 1983 a: Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34, 1007–1014.PubMedCrossRefGoogle Scholar
  72. Mannella, C., Goewert, R. R., Lambowitz, A. M., 1979: Characterization of variant Neurospora crassa mitochondrial DNAs which contain tandem reiterations. Cell 18, 1197–1207.PubMedCrossRefGoogle Scholar
  73. Marotta, R, Colin, Y, Goursot, R, Bernardi, G., 1982: A region of extreme instability in the mitochondrial genome of yeast. EMBO J. 1, 529–534.PubMedGoogle Scholar
  74. McArthur, C. R., Clark-Walker, G. D., 1983: Mitochondrial DNA size diversity in theDekkera/Brettanomyces yeasts. Curr. Genet. 7, 29–35.CrossRefGoogle Scholar
  75. Nikiforova, L. D., Negruk, V. L, 1983: Comparative electrophoretical analysis of plasmid-like mitochondrial DNA in Vicia faba and in some other legumes. Planta 157, 81–84.CrossRefGoogle Scholar
  76. Palmer, J. D., Shields, C. R., 1984: Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307, 437–440.CrossRefGoogle Scholar
  77. Palmer, J. D., Shields, C. R, Cohen, D. B., Orton, T. J., 1983: An unusual mitochondrial DNA plasmid in the genusBrassica. Nature 301, 725–728.CrossRefGoogle Scholar
  78. Posakony, J. W., Scheller, R. H., Anderson, D. M., Britten, R. J., Davidson, E. H., 1981: Repetitive sequences of the sea urchin genome. III. Nucleotide sequences of cloned repeated elements. J. Molec. Biol. 149, 41–67.PubMedCrossRefGoogle Scholar
  79. Powling, A., Ellis, T. H. N., 1983: Studies on the organelle genomes of sugarbeet with male-fertile and male-sterile cytoplasms. Theor. Appl. Genet. 65, 323–328.CrossRefGoogle Scholar
  80. Quetier, F., Vedel, F., 1980: Physico-chemical and restriction endonuclease analysis of mitochondrial DNA from higher plants. In: Leaver, C. J. (ed.). Genome Organization and Expression in Plants, pp. 401–406. New York: Plenum.Google Scholar
  81. Ryan, R., Grant, D., Chiang, K.-S., Swift, H., 1978: Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci., U.S.A. 75, 3268–3272.PubMedCrossRefGoogle Scholar
  82. Schardl, C. L., Lonsdale, D. M., Pring, D. R, Rose, K. R, 1984: Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310, 292–296.CrossRefGoogle Scholar
  83. Sloof, P., Bos, J. L, Konings, A. F. J. M., Menke, H. H., Borst, P., Gutteridge, W. E., Leon, W., 1983: Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi. J. Molec. Biol. 167, 1–21.PubMedCrossRefGoogle Scholar
  84. Sparks, R. B., Jr., Dale, R. M. K., 1980: Characterization of H-labeled supercoiled mitochondrial DNA from tobacco suspension culture cells. Mol. Gen. Genet. 180, 351–355.CrossRefGoogle Scholar
  85. Spencer, D. F., Schnare, M. N., Gray, M. W., 1984: Pronounced structural similarities between the small subunit ribosomal RNA genes of wheat mitochondria and Escherichia coli. Proc. Natl. Acad. Sci., U.S.A. 81, 493–497.PubMedCrossRefGoogle Scholar
  86. Stern, D. B., Lonsdale, D. M., 1982: Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299, 698–702.PubMedCrossRefGoogle Scholar
  87. Stern, D. B., Newton, K. J., 1985: Mitochondrial gene expression in Cucurbitaceae: conserved and variable features. Curr. Genet., in press.Google Scholar
  88. Stern, D. B., Palmer, J. D., Thompson, W. F., Lonsdale, D. M., 1983: Mitochondrial DNA sequence evolution and homology to chloroplast DNA in angiosperms. In: Goldberg, R. B. (ed.). Plant Molecular Biology, ICN-UCLA Symposium on Molecular and Cellular Biology, New Series, Volume 12, pp. 467–477. New York: Alan R. Liss.Google Scholar
  89. Stevens, B., 1981: Mitochondrial structure. In: Strathern, J. N., Jones, E. W., Broach, J. R. (eds.), The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance, pp. 471–504. Cold Spring Harbor, New York: Cold Spring Harbor Lab.Google Scholar
  90. Stohl, L. L., Collins, R. A, Cole, M. D., Lambowitz, A. M., 1982: Characterization of two new plasmid DNAs found in mitochondria of wild-type Neurospora intermidia strains. Nucleic Acids Res. 10, 1439–1458.PubMedCrossRefGoogle Scholar
  91. Suyama, J., Miura, K., 1968: Size and structural variations of mitochondrial DNA. Proc. Natl. Acad. Sci., U.S.A. 60, 235–242.PubMedCrossRefGoogle Scholar
  92. Synenki, R. M., Levings, C. S., Shah, D. M., 1978: Physicochemical characterization of mitochondrial DNA from soybeans. Plant Physiol. 61, 460–464.PubMedCrossRefGoogle Scholar
  93. Varmus, H., 1982: Form and function of retroviral proviruses. Science 216, 812–820.PubMedCrossRefGoogle Scholar
  94. Vedel, F., Mathieu, C., Lebacq, P., Ambard-Bretteville, F., Remy, R, Pelletier, G., 1982: Comparative macromolecular analysis of the cytoplasms of normal and cytoplasmic male sterile Brassica napus. Theor. Appl. Genet. 62, 255–262.Google Scholar
  95. Vetter, D., Andrews, B. J., Roberts-Beatty, L., Sadowski, P. D., 1983: Sitespecific recombination of yeast 2-μm DNA in vitro. Proc. Natl. Acad. Sci., U. S. A 80, 7284–7288.PubMedCrossRefGoogle Scholar
  96. Ward, B. L., Anderson, R. S., Bendich, A. J., 1981: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25, 793–803.PubMedCrossRefGoogle Scholar
  97. Watson, J. D., 1972: Origin of concatemeric T7 DNA. Nature 239, 197–201.CrossRefGoogle Scholar
  98. Williamson, D. H., Fennel, D. J., 1974: Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Molec. Gen. Gent. 131, 193–207.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • Arnold J. Bendich
    • 1
  1. 1.Departments of Botany and GeneticsUniversity of WashingtonSeattleUSA

Personalised recommendations