Movement of Genetic Information Between Plant Organelles: Mitochondria-Nuclei

  • R. J. Kemble
  • S. Gabay-Laughnan
  • J. R. Laughnan
Part of the Plant Gene Research book series (GENE)


The endosymbiont hypothesis for the origin of eukaryotic cells suggests that mitochondria and chloroplasts arose from free-living prokaryotes which entered into, and established a stable symbiotic relationship with, a progenitor eukaryotic cell. Because the majority of mitochondrial and chloroplast proteins are genetically encoded in nuclear DNA (nDNA), the hypothesis predicts that transfer of genes from the two cytoplasmic genomes to the nucleus has occurred. Although this argument has, for the most part, been accepted for many years it is only since 1982 that experiments have provided definitive proof at the molecular level that such a transfer of genes has taken place. DNA sequences that have undergone this movement have been termed “promiscuous” (Ellis, 1982; Farrelly and Butow, 1983).


Cytoplasmic Male Sterility Plant Transformation Vector Terminal Protein Mitochondrial Chromosome Fertility Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Challberg, M. D., Desiderio, S. V., Kelly Jr., T. J., 1980: Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc. Natl. Acad. Sci., U.S.A. 77, 5105–5109PubMedCrossRefGoogle Scholar
  2. Ellis, J., 1982: Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature 299, 678–679.PubMedCrossRefGoogle Scholar
  3. Farrelly, F., Butow, R. A., 1983: Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301, 296–301.PubMedCrossRefGoogle Scholar
  4. Gellissen, G., Bradfield, J. Y., White, B. N., Wyatt, G. R, 1983: Mitochondrial DNA sequences in the nuclear genome of a locust. Nature 301, 631–634.PubMedCrossRefGoogle Scholar
  5. Hadler, H. L, Dimitrijevic, B., Mahalingam, R, 1983: Mitochondrial DNA and nuclear DNA from normal rat liver have a common sequence. Proc. Natl. Acad. Sci., U.S.A. 80, 6495–6499.PubMedCrossRefGoogle Scholar
  6. Howell, S. H., 1982: Plant molecular vehicles: potential vectors for introducing foreign DNA into plants. Ann. Rev. Plant Physiol. 33, 609–650.CrossRefGoogle Scholar
  7. Jacobs, H. T., Posakony, J. W., Grula, J. W., Roberts, J. W., Xin, J.-H., Britten, R. J., Davidson, E. H., 1983: Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus. J. Mol. Biol. 165, 609–632.PubMedCrossRefGoogle Scholar
  8. Kemble, R. J., Bedbrook, J. R., 1980: Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm. Nature 284, 565–566.CrossRefGoogle Scholar
  9. Kemble, R. J., Gunn, R. E., Flavell, R. B., 1980: Classification of normal and malesterile cytoplasms in maize. IL Electrophoretic analysis of DNA species in mitochondria. Genetics 95, 451–458.PubMedGoogle Scholar
  10. Kemble, R. J., Mans, R. J., 1983: Examination of the mitochondrial genome of revertant progeny from S cms maize with cloned S-1 and S-2 hybridization probes. J. Mol. Appl. Genet. 2, 161–171.PubMedGoogle Scholar
  11. Kemble, R. J., Mans, R. J., Gabay-Laughnan, S., Laughnan, J. R, 1983: Sequences homologous to episomal mitochondrial DNAs in the maize nuclear genome. Nature 304, 744–747.CrossRefGoogle Scholar
  12. Kemble, R. J., Thompson, R. D., 1982: S 1 and S2, the linear mitochondrial DNAs present in a male sterile line of maize, possess terminally attached proteins. Nucleic Acids Res. 10, 8181–8190.PubMedCrossRefGoogle Scholar
  13. Kim, B. D., Mans, R. J., Conde, M. F., Pring, D. R, Levings, C. S.III, 1982: Physical mapping of homologous segments of mitochondrial episomes from S malesterile maize. Plasmid 7, 1–14.PubMedCrossRefGoogle Scholar
  14. Koncz, C., Sumegi, J., Udvardy, A., Racsmany, M., Dudits, D., 1981: Cloning of mtDNA fragments homologous to mitochondrial S2 plasmid-like DNA in maize. Mol. Gen. Genet. 183, 449–458.CrossRefGoogle Scholar
  15. Laughnan, J. R, Gabay, S. J., 1973: Mutations leading to nuclear restoration of fertility in S male-sterile cytoplasm in maize. Theor. Appl. Genet. 43, 109–116.CrossRefGoogle Scholar
  16. Laughnan, J. R, Gabay, S. J., 1975: An episomal basis for instability of S male sterility in maize and some implications for plant breeding. In: Birky Jr., C. W., Perlman, P. S., Byers, T. J. (eds.). Genetics and the Biogenesis of Cell Organelles, pp. 330–349. Columbus: Ohio State Univ. Press.Google Scholar
  17. Laughnan, J. R., Gabay, S. J., 1978: Nuclear and cytoplasmic mutations to fertility in S male-sterile maize. In: Walden, D. B. (ed.). Maize Breeding and Genetics, pp. 427–446. New York: John Wiley.Google Scholar
  18. Laughnan, J. R., Gabay-Laughnan, S., 1983: Cytoplasmic male sterility in maize. Ann. Rev. Genet. 17, 27–48.PubMedCrossRefGoogle Scholar
  19. Levings, C. S. III, Kim, B. D., Pring, D. R, Conde, M. F., Mans, R. J., Laughnan, J. R, Gabay-Laughnan, S. J., 1980: Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science 209, 1021–1023.PubMedCrossRefGoogle Scholar
  20. Levings, C. S. III, Sederoff, R. R, 1983: Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc. Natl. Acad. Sci., U. S. A. 80, 4055–4059.PubMedCrossRefGoogle Scholar
  21. Lonsdale, D. M., Thompson, R. D., Hodge, T. P., 1981: The integrated forms of the Movement of Information Between Organelles: Mitochondria-Nuclei 87 SI and S2 DNA elements of maize male sterile mitochondrial DNA are flanked by a large repeated sequence. Nucleic Acids Res. 9, 3657–3669PubMedCrossRefGoogle Scholar
  22. Pring, D. R, Levings, C. S. III, Hu, W. W. L., Timothy, D. H., 1977: Unique DNA associated with mitochondria in the “S”-type cytoplasm of male-sterile maize. Proc. Natl. Acad. Sci., U.S.A. 74, 2904–2908PubMedCrossRefGoogle Scholar
  23. Rekosh, D. M. K., Russell, W. C., Bellett, A. J. D., Robinson, A. J., 1977: Identification of a protein linked to the ends of adenovirus DNA. Cell 11, 283–295.PubMedCrossRefGoogle Scholar
  24. Scott, N. S., Timmis, J. N., 1984: Homologies between nuclear and plastid DNA in spinach. Theor. Appl. Genet. 67, 279–288CrossRefGoogle Scholar
  25. Singh, A., Laughnan, J. R, 1972: Instability of S male-sterile cytoplasm in maize. Genetics 71, 607–620.PubMedGoogle Scholar
  26. Tamanoi, F., Stillman, B. W., 1982: Function of adenovirus terminal protein in the initiation of DNA replication. Proc. Natl. Acad. Sci., U.S.A. 79, 2221–2225PubMedCrossRefGoogle Scholar
  27. Thompson, R. D., Kemble, R. J., Flavell, R. B., 1980: Variations in mitochondrial DNA organization between normal and male-sterile cytoplasms of maize. Nucleic Acids Res. 8, 1999–2008PubMedCrossRefGoogle Scholar
  28. van den Boogaart, P., Samallo, J., Agsteribbe, E., 1982: Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298, 187–189PubMedCrossRefGoogle Scholar
  29. Wright, R. M., Cummings, D. J., 1983: Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus. Nature 302, 86–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • R. J. Kemble
    • 1
  • S. Gabay-Laughnan
    • 1
  • J. R. Laughnan
    • 1
  1. 1.Department of Plant BiologyAllelix Inc.MississaugaCanada

Personalised recommendations