Movement of Genetic Information Between the Chloroplast and Nucleus

  • J. N. Timmis
  • N. Steele Scott
Part of the Plant Gene Research book series (GENE)


The discovery of cytoplasmic inheritance in plants at the turn of the century (Correns and Baur as described in Kirk and Tilney-Basset, 1978), culminated in the demonstration of plastid (pt) DNA in the late 1960’s. At the same time there was mounting biochemical and genetic evidence which showed that most of plastid biogenesis and function was controlled by nuclear genes and involved proteins synthesized on cytoplasmic ribosomes (see reviews by Kirck and Tilney-Bassett, 1978; Ellis, 1983). The expression of plastid DNA and the use of plastid ribosomes to synthesize large amounts of particular plastid proteins has only been described in the special case of the photosynthetically competent plastid, the chloroplast (Scott and Possingham, 1980). We wish to distinguish between the general term plastid which describes a family of related plant cell organelles of which the most commonly studied and perhaps the most numerous and important are chloroplasts. In general we will use the name plastid and only use the term chloroplast in specific instances. It appears however that chloroplasts and all other plastids carry an identical subgenome which has been called the plastome. In this article we will briefly describe the interaction of the genetic information from nucleus and plastid that is involved in the formation of chloroplasts and other plastid forms and go on to discuss in more detail the recent observations which indicate that plastids and nuclei share extensive DNA sequence homology (Timmis and Scott, 1983).


Small Subunit EcoRI Fragment Bisphosphate Carboxylase Cytoplasmic Ribosome Large Subunit Gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry-Lowe, S., McKnight, T. D., Shah, D. M., Meagher, R. B., 1982: The nucleotide sequence, expression, and evolution of one member of a multigene family encoding the small subunit of ribulose-l,5-bisphosphate carboxylase in soybean. J. Mol. Appl. Gen. 1, 483–498.Google Scholar
  2. Bohnert, H. J., Grouse, E. J., Schmitt, J. M., 1982: Organization and expression of plastid genomes. In: Encyclopaedia of plant physiology, vol. 14B (Parthier, B., Boulter, D., eds.). Berlin — Heidelberg — New York: Springer, pp. 475–530.Google Scholar
  3. Börner, T., Schumann, B., Hagemann, R., 1976: Biochemical studies on a plastid ribosome-deflcient mutant ofHordeum vulgare. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, T. et al, eds.). Amsterdam: Elsevier/ North-Holland Biomedical Press, pp. 41–48.Google Scholar
  4. Bottomley, W., Bohnert, H. J., 1982: The biosynthesis of chloroplast proteins. In: Encyclopaedia of plant physiology, vol. 14 B (Parthier, B., Boulter, D., eds.). Berlin — Heidelberg — New York: Springer, pp. 531–596.Google Scholar
  5. Broglie, R., Coruzzi, G., Lamppa, G., Keith, B., Chua, N.-H., 1983: Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-l,5-bisphosphate carboxylase. Biotechnology 1, 55–61.CrossRefGoogle Scholar
  6. Doerfler, W., 1983: DNA methylation and gene activity. Ann. Rev. Biochem. 52, 93–124.PubMedCrossRefGoogle Scholar
  7. Dunsmuir, P., Smith, S., Bedbrook, J., 1983: A number of different nuclear genes for the small subunit of RuBPCase are transcribed in petunia. Nucleic Acids Res. 11, 4177–4183.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Edleman, M., Swinton, D., Schiff, J. A, Epstein, H. T., Zeldin, D., 1967: DNA of the blue-green algae (Cyanophyta). Bact. Rev. 31, 315–335.Google Scholar
  9. Ellis, R. J., 1982: Promiscuous DNA — chloroplast genes inside plant mitochondria. Nature 299, 678–679.PubMedCrossRefGoogle Scholar
  10. Ellis, R. J., 1982: Chloroplast protein synthesis: principles and problems. Subcell. Biochem. 9, 237–261.Google Scholar
  11. Feierabend, J., Schräder-Reichardt, U., 1976: Biochemical differentiation of plastids and other organelles in rye leaves with a high temperature-induced deficiency of plastid ribosomes. Planta 129, 133–145.CrossRefGoogle Scholar
  12. Hall, W. T., Claus, T., 1963: Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J. Cell Biol. 19, 551–563.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Harmey, M. A., Neuport, W., 1984: The biosynthesis of mitochondria. In: Synthesis and intercellular transport of mitochondrial proteins (Martonosi, A. N., ed.). New York: Plenum (in press).Google Scholar
  14. Heinhorst, S., Shrively, J. M., 1983: Encoding of both subunits of ribulose-l,5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature 304, 373–374.CrossRefGoogle Scholar
  15. Herdman, M., Stanier, R. Y., 1977: The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Microbiol. Lett. 1, 7–11.Google Scholar
  16. Hermann, R. G., Feierabend, J., 1980: The presence of DNA in ribosome-deficient plastids of heat-bleached rye leaves. Eur. J. Biochem. 104, 603–609.CrossRefGoogle Scholar
  17. Ingle, J., Timmis, J. N., Sinclair, J., 1975: The relationship between satellite DNA, ribosomal RNA gene redundancy and genome size in plants. Plant Physiol. 55, 496–501.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Kirk, J. T. O., Tilney-Bassett, R. A. E., 1978: The plastids. Their chemistry, structure, growth and inheritance. Amsterdam: Elsevier.Google Scholar
  19. Knoth, R., Herrmann, F. H., Bottger, M., Börner, T., 1974: Structur und Funktion der genetischen Information in den Plastiden. Biochem. Physiol. Pflanzen. 166, 129–148.Google Scholar
  20. Koch, W., Edwards, K, Kossel, H. 1981: Sequencing of the 16S-23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25, 203–213.PubMedCrossRefGoogle Scholar
  21. Lamppa, G. K, Elliot, L. V., Bendich, A. J., 1980: Changes in chloroplast number during pea leaf development. Planta 148, 437–443.PubMedGoogle Scholar
  22. Lonsdale, D. M., Hodge, T. P., Howe, C. J., Stem, D. B., 1983: Maize mitochondrial DNA contains a sequence homologous to the ribulose-l,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34, 1007–1014.PubMedCrossRefGoogle Scholar
  23. Margulis, L., 1970: Origin of eukaryotic cells. New Haven: Yale University Press.Google Scholar
  24. Martin, P. G., Jennings, A. C., 1983: The study of plant phylogeny using amino acid sequences of ribulose-l,5-bisphosphate carboxylase. I. Biochemical methods and patterns of variability. Aust. J. Biol. 31, 395–409.Google Scholar
  25. Orian, J. M., Murphy, M., Marzuki, S., 1981: Mitochondrially synthesized protein subunits of the yeast mitochondrial adenosine triphosphatase. A reassessment. Biochim. Biophys. Acta 652, 234–239.PubMedCrossRefGoogle Scholar
  26. Palmer, J. D. Thompson, W. F., 1981: Clone banks of the mung bean, pea and spinach chloroplast genomes. Gene 15, 21–26.PubMedCrossRefGoogle Scholar
  27. Sapienza, C., Rose, M. R., Doolittle, W. F., 1982: High-frequency genomic rearrangements involving archebacterial repeat sequence elements. Nature 299, 182–185.PubMedCrossRefGoogle Scholar
  28. Schwarz, Z., Kossel, H., 1980: The primary structure of 16S rDNA from Zea mays chloroplast is homologous to E. coli 16 S rRNA. Nature 283, 739–742.CrossRefGoogle Scholar
  29. Scott, N. S., Cain, P., Possingham, J. V., 1982: Plastid DNA levels in albino and green leaves of the ’albostrians’ mutant of Hordeum vulgare. Z. Pflanzenphysiol. 108, 187–191.Google Scholar
  30. Scott, N. S., Possingham, J. V., 1980: Chloroplast DNA in expanding spinach leaves. J. Exp. Bot. 123, 1081–1092.CrossRefGoogle Scholar
  31. Scott, N. S., Timmis, J. N., 1974: Homologies between nuclear and plastid DNA in spinach. Theor. Appl. Genet. 67, 279–288.CrossRefGoogle Scholar
  32. Scott, N. S., Tymms, M. J., Possingham, J. V., 1984: Plastid DNA levels in the different tissues of potato. Planta 161, 12–19.PubMedCrossRefGoogle Scholar
  33. Smith, S. M., Bedbrook, J., Speirs, J., 1983: Characterization of three cDNA clones encoding different mRNAs for the precursor to the small subunit of wheat ribulose bisphosphate carboxylase. Nucleic Acids Res. 11, 8719–8734.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Southern, E. M., 1975: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.PubMedCrossRefGoogle Scholar
  35. Stern, D. B., Lonsdale, D. M., 1982: Mitochondrial and chloroplast genomes of maize have a 12 kilobase DNA sequence in common. Nature 299, 698–702.PubMedCrossRefGoogle Scholar
  36. Stern, D. B., Palmer, J. D., 1984: Extensive and widespread homologies between mitochondrial and chloroplast DNA in plants. Proc. Natl. Acad. Sci., U.S.A. 81, 1946–1950.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Timmis, J. N., Scott, N. S., 1983: Spinach nuclear and chloroplast DNAs have homologous sequences. Nature 305, 65–67.CrossRefGoogle Scholar
  38. Timmis, J. N., Scott, N. S., 1984: Promiscuous DNA: sequences homologous between DNA of separate organelles. Trends in Biochem. Sci. 9, 271–273.CrossRefGoogle Scholar
  39. van den Boogaart, P., Samallo, J., Agsteribbe, E., 1982: Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298, 187–189.PubMedCrossRefGoogle Scholar
  40. Viemy, C., Keller, A.-M., Begel, O., Belcour, L., 1982: A sequence of mitochondrialDNA is associated with the onset of senescence in a fungus. Nature 279, 157–159.Google Scholar
  41. Walbot, v., Coe, E. H., 1979: Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc. Natl. Acad. Sci., U.S.A. 76, 2760–2764.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Westhoff, P., Alt, J., Nelson, N., Bottomley, W., Btinemann, H., Herrmann, R. G., 1983: Genes and transcripts for the P700 chlorphyll a apoprotein and subunit 2 of photosystem 1 reaction centre complex from spinach thylakoid membranes. PI. Molec. Biol. 2, 95–107.CrossRefGoogle Scholar
  43. Williamson, S. E., Doolittle, W. F., 1983: Genes for tRNAIle and tRNAAle in the spacer between the 16 S and 23 S rRNA genes of a blue-green alga: strong homology to chloroplast tRNA genes and tRNA genes of the E. coli rrnD gene cluster. Nucleic Acids Res. 11, 225–235.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wright, R. M., Commings, D. J., 1983: Integration of mitochondrial gene sequences within the nuclear genome during senescence in a fungus. Nature 302, 86–88.PubMedCrossRefGoogle Scholar
  45. Wright, R. M., Horrum, M. A, Commings, D. J., 1982: Are mitochondrial structural genes selectively amplified during senescence inPodospora anserina ? Cell 29, 505–515.PubMedCrossRefGoogle Scholar
  46. Zurawski, G., Bottomley, W., Whitfield, P. R., 1982: Structures of the genes for the p and 8 subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc. Natl. Acad. Sci., U. S. A. 79, 6260–6264.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Zurawski, G., Perrot, B., Bottomley, W., Whitfield, P. R., 1981: The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res. 9, 3251–3270PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • J. N. Timmis
    • 1
  • N. Steele Scott
    • 2
  1. 1.Department of GeneticsUniversity of AdelaideAdelaideSouth Australia
  2. 2.CSIRO Division of Horticultural ResearchAdelaideSouth Australia

Personalised recommendations