The Activation of Maize Controlling Elements

  • S. L. Dellaporta
  • P. S. Chomet
Part of the Plant Gene Research book series (GENE)


A major contribution to the dynamic flux of the plant genome is the presence of discrete mobile genetic elements that can cause high rates of genetic instability including spontaneous unstable mutations and chromosome rearrangements. These mobile elements, first identified in maize, have since been discovered in a wide variety of prokaryotic and eukaryotic organisms. They may well be ubiquitous but simply not yet identified in other organisms.


Transposable Element Chromosome Breakage Dicentric Chromosome Carnegie Inst Autonomous Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedbrook, J. R., Jones, J., O’Dell, M., Thompson, R. D., Flavell, R. B., 1980a: A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.PubMedGoogle Scholar
  2. Bedbrook, J. R., O’Dell, M., Flavell, R. B., 1980b: Amplification of rearranged repeated DNA sequences in cereal plants. Nature (London) 288, 133–137.Google Scholar
  3. Behrens, U., Fedoroff, N., Laird, A., Muller-Neumann, M., Starlinger, P., Yoder, J., 1984: Cloning of the Zea mays controlling elementsAc from the wx-m 7 allele. Mol. Gen. Genet. 194, 346–347.Google Scholar
  4. Bennetzen, J. L., Swanson, J., Taylor, W. C., Freeling, M., 1984: DNA insertion in the first intron of maize Adh 1 affects message levels: Cloning of progenitor and mutant Adhl alleles. Proc. Natl. Acad. Sci., U. S. A. 81 (13), 4125–4128.PubMedGoogle Scholar
  5. Benzion, G., 1984: Genetic and cytogenetic analysis of maize tissue cultures: A cell line pedigree analysis. Ph. D. thesis. Univ. of Minnesota.Google Scholar
  6. Brink, R. A, 1955: Distribution of transposed Modulator in red and light variegated twinned mutations from medium variegated pericarp. Maize Genet. Coop. News Letter 29, 78.Google Scholar
  7. Brink, R. A., and Nilan, R. A., 1952: The relation between light variegated and medium variegated pericarp in maize. Genetics 37, 519–544.PubMedGoogle Scholar
  8. Britten, R. J., Davidson, E. H., 1976: DNA sequence arrangement and preliminary evidence on its evolution. Fed. Proc. 35 (10), 2151–2157.PubMedGoogle Scholar
  9. Burr, B., Burr, F. A., 1981: Controlling element events at the Shrunken locus in maize. Genetics 98, 143–156.PubMedGoogle Scholar
  10. Chaleff, D., Mauvais, J., McCormick, S., Wessler, S., Fedoroff, N., 1981: Controlling elements in maize. Carnegie Inst. Washington Year Book 80, 158–174.Google Scholar
  11. Coe, Jr., E. H., Neuffer, M. G., 1977: The genetics of corn. In:Corn and Corn Improvement. G. F. Sprague, ed., Amer. Soc. Agronomy, Madison, Wise, pp. 111–223.Google Scholar
  12. Courage, U., Döring, H. P., Frommer, W. B., Kunze, R., Laird, A, Merckelbach, A., Muller-Neumann, M., Riegel, J., Starlinger, P., Tillmann, E., Week, E., Werr, W., Yoder, J., 1984: Transposable elements Ac and Ds at theShrunken, Waxy and Alcohol Dehydrogenase loci in Zea mays L. Cold Spring Harbor Symp. Quant. Biol. In press.Google Scholar
  13. Courage-Tebbe, U., Döring, H.-P., Fedoroff, N., Starlinger, P., 1983: The controlling element Ds at the Shrunken locus in Zea mays: Structure of the unstable sh-m5933 allele and several revertants. Cell 34, 383–393.PubMedGoogle Scholar
  14. Dellaporta, S. L., Chomet, P. S., Mottinger, J. P., Wood, J., Yu, S. M., Hicks, J. B., 1984: Endogeneous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. Quant. Biol. 49, 321–327.Google Scholar
  15. d’Eustachio, P., Ruddle, F. H., 1983: Somatic cell genetics and gene families. Science 220, 919–924.PubMedGoogle Scholar
  16. Doerschug, E. B., 1973: Studies ofDotted, a regulatory element in maize. I. Induction of Dotted by chromatid breaks. II. Phase variation of Dotted. Theor. Appl. Genet. 43, 182–189.Google Scholar
  17. Doerschug, E., 1968: Activation cycles of DtTB. Maize Genet Coop. News. Lett. 42, 26–28.Google Scholar
  18. Döring, H. P., Tillmann, E., Starlinger, P., 1984 a: DNA sequence of the maize transposable element Dissociation. Nature 307, 127–131.PubMedGoogle Scholar
  19. Döring, H. P., Freeling, M., Hake, S., Johns, M. A., Kunze, R., Merckelbach, A, Salamini, F., Starlinger, P., 1984b: A Ds-mutation of the Adhl gene in Zea mays L. Mol. Gen. Genet. 193, 199–204.Google Scholar
  20. Döring, H. P., Starlinger, P., 1984: Barbara McClintock’s controlling elements: Now at the DNA level. Cell 39, 253–259.PubMedGoogle Scholar
  21. Döring, H. P., Geiser, M., Starlinger, P., 1981: Transposable element Ds at the Shrunken locus in Zea mays. Molec. Gen. Genet. 184, 377–380.Google Scholar
  22. Emerson, R. A, 1917: Genetical studies on variegated pericarp in maize. Genetics 2, 1–35.PubMedGoogle Scholar
  23. Emerson, R. A., 1914: The inheritance of a recurring somatic variation in variegated ears of maize. Am. Nat. 48, 87–115.Google Scholar
  24. Fedoroff, N. V., Furtek, D. B., Nelson, Jr., O. E., 1984: Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling elementAc. Proc. Natl. Acad. Sci., U. S. A. 81, 3825–3829.PubMedGoogle Scholar
  25. Fedoroff, N. V., 1983: Controlling elements in maize. In: Mobile Genetic Elements (ed., J. A. Shapiro). Academic Press, Orlando, Fla., Chp. 1, pp. 1–63.Google Scholar
  26. Fedoroff, N., Wessler, S., Shure, M., 1983: Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242.PubMedGoogle Scholar
  27. Fincham, J. R. S., Sastry, G. R. K, 1974: Controlling elements in maize. Ann. Rev. Genet. 8, 15–50.PubMedGoogle Scholar
  28. Flavell, R., 1982: In: Genome Evolution. Dover, G. A, Flavell, R. B. eds. London: Academic Press, pp. 301–323.Google Scholar
  29. Freeling, M., 1984: Plant transposable elements and insertion sequences. Ann. Rev. Plant. Physiol. 35, 271–298.Google Scholar
  30. Friedeman, P., Peterson, P. A, 1982: The Uq controlHng element system in maize. Mol. Gen. Genet. 187, 19–29.Google Scholar
  31. Geiser, M., Week, E., Döring, H. P., Werr, W., Courage-Tebbe, U., Tillmann, E., Starlinger, P., 1982: Genomic clones of a wild type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J. 1, 1455–1460.PubMedGoogle Scholar
  32. Green, C. E., Phillips, R. L., Wang, A. S., 1977: Cytological analysis of plants regenerated from maize tissue cultures. Maize Genet. Coop. News Lett. 51, 53–54.Google Scholar
  33. Greenblatt, L M., 1984: A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element. Modulator, in maize. Genetics 108, 471–485.PubMedGoogle Scholar
  34. Greenblatt, L M., 1974: Movement ofModulator in maize: a test of a hypothesis. Genetics 77, 671–678.PubMedGoogle Scholar
  35. Greenblatt, L M., 1968: The mechanisms of Modulator, transposition in maize. Genetics 58, 585–597.PubMedGoogle Scholar
  36. Greenblatt, L M., 1966: Transposition and replication of Modulator in maize. Genetics 53, 361–369.PubMedGoogle Scholar
  37. Greenblatt, L M., Brink, R. A, 1963: Transpositions of Modulator in maize into divided and undivided chromosome segments. Nature 197, 412–413.Google Scholar
  38. Greenblatt, L M., Brink, R. A., 1962: Twin mutations in medium variegated pericarp maize. Genetics 47, 489–501.PubMedGoogle Scholar
  39. Greenbaum, Y., Naveh-Many, T., Cedar, H., Razin, A., 1981: Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862.Google Scholar
  40. Gupta, M., Shepherd, N. S., Bertram, L, Saedler, H., 1984: Repetitive sequences and their organization on genomic clones of Zea mays. EMBO J. 3, 133–139.PubMedGoogle Scholar
  41. Hake, S., Walbot, V., 1980: The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79, 251–270.Google Scholar
  42. Johns, M. A, Mottinger, J., Freeling, M., 1985: A low coy number, copia-likt transposon in the maize genome. EMBO J., in press.Google Scholar
  43. McClelland, M., 1982: The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acid Res. 9, 5859–5866.Google Scholar
  44. McClintock, B. 1984: The significance of responses of the genome to challenge. Science 226, 792–801.PubMedGoogle Scholar
  45. McClintock, B., 1978: Mechanism that rapidly reorganize the genome. Stadler Symp. 10, 25–48.Google Scholar
  46. McClintock, B., 1971: The contribution of one component of a control system to versatility of gene expression. Carnegie Inst. Washington Year Book 70, 5–17.Google Scholar
  47. McClintock, B., 1964: Aspects of gene regulation in maize. Carnegie Inst. Washington Year Book 63, 592–602.Google Scholar
  48. McClintock, B., 1963: Further studies of gene-control systems in maize. Carnegie Inst. Washington Year Book 62, 486–493.Google Scholar
  49. McClintock, B., 1962: Topographical relations between elements of control systems in maize. Carnegie Inst. Washington Year Book 61, 448–461.Google Scholar
  50. McClintock, B., 1961: Some parallels between gene control systems in maize and in bacteria. The American Naturalist 95, 265–277.Google Scholar
  51. McClintock, B., 1959: Genetic and cytological studies of maize. Carnegie Inst. Washington Year Book 58, 452–456.Google Scholar
  52. McClintock, B., 1958: Thesuppressor-mutator system of control of gene action in maize. Carnegie Inst. Washington Year Book 58, 452–456.Google Scholar
  53. McClintock, B., 1957: Genetic and cytological studies of maize. Carnegie Inst. Washington Year Book 56, 393–401.Google Scholar
  54. McClintock, B., 1956 a: Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21, 197–216.PubMedGoogle Scholar
  55. McClintock, B., 1956 b: Mutation in maize. Carnegie Inst. Washington Year Book 55, 323–332.Google Scholar
  56. McClintock, B. 1955: Controlled mutation in maize. Carnegie Inst. Washington Year Book 54, 245–255.Google Scholar
  57. McClintock, B., 1954: Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst. Washington Year Book 53, 254–260.Google Scholar
  58. McClintock, B., 1953: Mutation in maize. Carnegie Inst. Washington Year Book 52, 227–237.Google Scholar
  59. McClintock, B., 1952: Mutable loci in maize. Carnegie Inst. Washington Year Book 51, 212–219.Google Scholar
  60. McClintock, B., 1951a: Chromosome organization and genetic expression. Cold Spring Harbor Symp. Quant. Biol. 16, 13–47.Google Scholar
  61. McClintock, B., 1951b: Mutable loci in maize. Carnegie Inst. Washington Year Book. 50, 174.Google Scholar
  62. McClintock, B., 1950 a: Mutable loci in maize. Carnegie Inst. Washington Year Book 49, 157–167.Google Scholar
  63. McClintock, B., 1950 b: The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci., U. S. A. 36, 344–355.PubMedGoogle Scholar
  64. McClintock, B., 1949: Mutable loci in maize. Carnegie Inst. Washington Year Book 48, 142–154.Google Scholar
  65. McClintock, B., 1948: Mutable loci in maize. Carnegie Inst. Washington Year Book 47, 155–169.Google Scholar
  66. McClintock, B., 1947: Cytogenetic studies of maize and Neurospora. Carnegie Inst. Washington Year Book 46, 146–152.Google Scholar
  67. McClintock, B., 1946: Maize genetics. Carnegie Inst. Washington Year Book 45, 176–186.Google Scholar
  68. McClintock, B., 1945: Cytogenetic studies of maize and Neurospora. Carnegie Inst. Washington Year Book 44, 108–112.Google Scholar
  69. McClintock, B., 1944: Maize genetics. Carnegie Inst. Washington Year Book 43, 127–135.Google Scholar
  70. McClintock, B., 1942: The fusion of broken ends of chromosome following nuclear fusion. Proc. Natl. Acad. Sci., U. S. A. 28, 458–463.PubMedGoogle Scholar
  71. McClintock, B., 1941: The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282.PubMedGoogle Scholar
  72. McClintock, B., 1938a: The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23, 315–376.PubMedGoogle Scholar
  73. McClintock, B., 1938 b: The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Univ. Missouri Agr. Exp. Sta. Res. Bull. 290, 1–48.Google Scholar
  74. McClintock, B., 1932: A correlation of ring shaped chromosomes with variegation in Zea mays. Proc. Natl. Acad. Sci., U.S.A. 18, 677–681.PubMedGoogle Scholar
  75. McCoy, T. J., Phillips, R. L., Rines, H. W., 1982: Cytogenetic variation in tissue culture regenerated plants of Avena sativa: High frequency of partial chromosome loss. Can. J. Genet. Cytol. 24, 37–50.Google Scholar
  76. Mottinger, J. P., Dellaporta, S. L., Keller, P. B., 1984a: Stable and unstable mutations in Aberrant Ratio stock of maize. Genetics 106, 751–767.PubMedGoogle Scholar
  77. Mottinger, J. P., Johns, M. A., Freeling, M., 1984b: Mutations of the Adhl gene in The Activation of Maize Controlling Elements 215 maize following infection with barley stripe mosaic virus. Mol. Gen. Genet. 195, 367–369.PubMedGoogle Scholar
  78. Muller-Neumann, M., Yoder, J., Starlinger, P., 1985: The sequence of the Ac element of Zea mays. Mol. Gen. Genet, (in press).Google Scholar
  79. Nevers, P., Shepherd, N. S., Saedler, H., 1984: Plant transposable elements. In: Advances in Botanical Research. Academic Press, London, in press.Google Scholar
  80. Nuffer, M. G., 1966: Stability of the suppressor element in two mutator systems at the Al locus in maize. Genetics 53, 541–549.Google Scholar
  81. Nuffer, M. G., 1961: Mutation studies at the A1 locus in maize. 1. A mutable allele controlled by Dt. Genetics 46, 625–640.PubMedGoogle Scholar
  82. Nuffer, M. G., 1955: Dosage effect of multiple Dt loci on mutation of a in the maize endosperm. Science 121, 399–400.PubMedGoogle Scholar
  83. Osterman, J. C., Schwartz, D., 1981: Analysis of a controlling element mutation at theAdh locus of maize. Genetics 99, 267–273.PubMedGoogle Scholar
  84. Peacock, W. J., Dennis, E. S., Gerlach, W. L, Sachs, M. M., Schwartz, D., 1984: Insertion and excision of Ds controlling elements in maize. Cold Spring Harbor Symp. Quant. Biol. 49, 347–354.Google Scholar
  85. Peacock, W. J., Dennis, E. S., Gerlach, W. L, Llewellyn, D., Lory, H., Pryor, A. J., Sachs, M. M., Schwartz, D., Sutton, W. D., 1983: Gene transfer in maize: Controlling elements and the alcohol dehydrogenase genes. In: Proc. Miami Winter Symp., aaa Academic Press.Google Scholar
  86. Peterson, P. A, 1981: Instability among the components of a regulatory-element transposon in maize. Cold Spring Harbor Symp. Quant. Biol. 45, 447–455.Google Scholar
  87. Peterson, P. A., 1977: The position hypothesis for controlling elements in maize. In: DNA insertion elements, plasmids, and episomes. (Ed. A. I. Bukhari et al.) Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  88. Peterson, P. A., 1976: Basis for the diversity of states of controlling elements in maize. Mol. Gen. Genet. 149, 5–21.Google Scholar
  89. Peterson, P. A., 1968: The origin of an unstable locus in maize. Genetics 59, 391–398.PubMedGoogle Scholar
  90. Peterson, P. A., 1961: Mutable a 7 of the En system in maize. Genetics 46, 759–771.PubMedGoogle Scholar
  91. Pohlman, R., Fedoroff, N. V., Messing, J., 1984: The nucleotide sequence of the maize controlling element Activator. Cell 37, 635–643.PubMedGoogle Scholar
  92. Rhoades, M. M., 1938: Effect of the Dt gene on the mutability of the al allele in maize. Genetics 23, 377–397.PubMedGoogle Scholar
  93. Rhoades, M. M., 1936: The effect of varying gene dosage on aleurone colour in maize. J. Genet. 33, 347–354.Google Scholar
  94. Rubin, G. M., 1983: Dispersed repetitive DNAs in Drosophila. In: Mobile Genetic Elements. (Ed. Shapiro, J. A.) Academic Press, Inc. Orlando, Fla., Chapter 8, pp. 329–361.Google Scholar
  95. Sachs, M. M., Peacock, W. J., Dennis, E. S., Gerlach, W. L., 1983: MaizeAc/Ds controlling elements: A molecular viewpoint. Maydica 28, 289–302.Google Scholar
  96. Schwartz-Sommer, Z., Gierl, A., Klosgen, R. B., Wienard, U., Peterson, P. A., Saedler, H., 1984: The Spm transposable element controls the excision of a 2-Kb DNA insert at the wx m8 allele ofZea mays. EMBO J. 3, 1021–1028.Google Scholar
  97. Shapiro, J. A. (ed.), 1983: Mobile Genetic Elements. Academic Press, Orlando, Fla.Google Scholar
  98. Shepherd, N. S., Schwarz-Sommer, Z., Blumberg vel Spalve, J., Gupta, M., Wienand, U., Saedler, H., 1984: Similarities of the Cm 7 repetitive family of Zea mays to eucaryotic transposable elements. Nature 307, 185–187.PubMedGoogle Scholar
  99. Shure, M., Wessler, S., Fedoroff, N., 1983: Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233.PubMedGoogle Scholar
  100. Sprague, G. F., McRinney, H. H., 1966: Aberrant ratio: an anomaly in maize associated with vims infection. Genetics 54, 1287–1296.PubMedGoogle Scholar
  101. Sprague, G. F., Brimhall, B., Hixon, R. M., 1943: Some effects on the waxy gene in corn on the properties of the endosperm starch. J. Am. Soc. Agron. 35, 817–822.Google Scholar
  102. Stadler, L. J., 1930: Some genetic effects of X-rays in plants. J. Hered. 21, 3–19.Google Scholar
  103. Stadler, L. J., 1928: Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci., U.S.A. 14, 69–75.PubMedGoogle Scholar
  104. Sutton, W. D., Gerlach, W. L., Schwartz, D., Peacock, W. J., 1984: Molecular analysis of Ds controlling element mutations at the Adhl locus of maize. Science 223, 1265–1268.PubMedGoogle Scholar
  105. Van Schaik, N. W., Brink, R. A., 1959: Transposition of Modulator, a component of the variegated pericarp allele in maize. Genetics 44, 725–738.PubMedGoogle Scholar
  106. Vanyushin, B. F., 1984: Replicative DNA methylation in animals and higher plants. Current Tropics in Micro, and Immun. 108, 99–114.Google Scholar
  107. Weck, E., Courage, U., Döring, H. P., Fedoroff, N., Starlinger, P., 1984: Analysis of sh’m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J. 3, 1713–1716.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1985

Authors and Affiliations

  • S. L. Dellaporta
    • 1
  • P. S. Chomet
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations