Skip to main content

The Activation of Maize Controlling Elements

  • Chapter
Book cover Genetic Flux in Plants

Part of the book series: Plant Gene Research ((GENE))

Abstract

A major contribution to the dynamic flux of the plant genome is the presence of discrete mobile genetic elements that can cause high rates of genetic instability including spontaneous unstable mutations and chromosome rearrangements. These mobile elements, first identified in maize, have since been discovered in a wide variety of prokaryotic and eukaryotic organisms. They may well be ubiquitous but simply not yet identified in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bedbrook, J. R., Jones, J., O’Dell, M., Thompson, R. D., Flavell, R. B., 1980a: A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.

    PubMed  CAS  Google Scholar 

  • Bedbrook, J. R., O’Dell, M., Flavell, R. B., 1980b: Amplification of rearranged repeated DNA sequences in cereal plants. Nature (London) 288, 133–137.

    CAS  Google Scholar 

  • Behrens, U., Fedoroff, N., Laird, A., Muller-Neumann, M., Starlinger, P., Yoder, J., 1984: Cloning of the Zea mays controlling elementsAc from the wx-m 7 allele. Mol. Gen. Genet. 194, 346–347.

    CAS  Google Scholar 

  • Bennetzen, J. L., Swanson, J., Taylor, W. C., Freeling, M., 1984: DNA insertion in the first intron of maize Adh 1 affects message levels: Cloning of progenitor and mutant Adhl alleles. Proc. Natl. Acad. Sci., U. S. A. 81 (13), 4125–4128.

    PubMed  CAS  Google Scholar 

  • Benzion, G., 1984: Genetic and cytogenetic analysis of maize tissue cultures: A cell line pedigree analysis. Ph. D. thesis. Univ. of Minnesota.

    Google Scholar 

  • Brink, R. A, 1955: Distribution of transposed Modulator in red and light variegated twinned mutations from medium variegated pericarp. Maize Genet. Coop. News Letter 29, 78.

    Google Scholar 

  • Brink, R. A., and Nilan, R. A., 1952: The relation between light variegated and medium variegated pericarp in maize. Genetics 37, 519–544.

    PubMed  CAS  Google Scholar 

  • Britten, R. J., Davidson, E. H., 1976: DNA sequence arrangement and preliminary evidence on its evolution. Fed. Proc. 35 (10), 2151–2157.

    PubMed  CAS  Google Scholar 

  • Burr, B., Burr, F. A., 1981: Controlling element events at the Shrunken locus in maize. Genetics 98, 143–156.

    PubMed  CAS  Google Scholar 

  • Chaleff, D., Mauvais, J., McCormick, S., Wessler, S., Fedoroff, N., 1981: Controlling elements in maize. Carnegie Inst. Washington Year Book 80, 158–174.

    Google Scholar 

  • Coe, Jr., E. H., Neuffer, M. G., 1977: The genetics of corn. In:Corn and Corn Improvement. G. F. Sprague, ed., Amer. Soc. Agronomy, Madison, Wise, pp. 111–223.

    Google Scholar 

  • Courage, U., Döring, H. P., Frommer, W. B., Kunze, R., Laird, A, Merckelbach, A., Muller-Neumann, M., Riegel, J., Starlinger, P., Tillmann, E., Week, E., Werr, W., Yoder, J., 1984: Transposable elements Ac and Ds at theShrunken, Waxy and Alcohol Dehydrogenase loci in Zea mays L. Cold Spring Harbor Symp. Quant. Biol. In press.

    Google Scholar 

  • Courage-Tebbe, U., Döring, H.-P., Fedoroff, N., Starlinger, P., 1983: The controlling element Ds at the Shrunken locus in Zea mays: Structure of the unstable sh-m5933 allele and several revertants. Cell 34, 383–393.

    PubMed  CAS  Google Scholar 

  • Dellaporta, S. L., Chomet, P. S., Mottinger, J. P., Wood, J., Yu, S. M., Hicks, J. B., 1984: Endogeneous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. Quant. Biol. 49, 321–327.

    CAS  Google Scholar 

  • d’Eustachio, P., Ruddle, F. H., 1983: Somatic cell genetics and gene families. Science 220, 919–924.

    PubMed  Google Scholar 

  • Doerschug, E. B., 1973: Studies ofDotted, a regulatory element in maize. I. Induction of Dotted by chromatid breaks. II. Phase variation of Dotted. Theor. Appl. Genet. 43, 182–189.

    Google Scholar 

  • Doerschug, E., 1968: Activation cycles of DtTB. Maize Genet Coop. News. Lett. 42, 26–28.

    Google Scholar 

  • Döring, H. P., Tillmann, E., Starlinger, P., 1984 a: DNA sequence of the maize transposable element Dissociation. Nature 307, 127–131.

    PubMed  Google Scholar 

  • Döring, H. P., Freeling, M., Hake, S., Johns, M. A., Kunze, R., Merckelbach, A, Salamini, F., Starlinger, P., 1984b: A Ds-mutation of the Adhl gene in Zea mays L. Mol. Gen. Genet. 193, 199–204.

    Google Scholar 

  • Döring, H. P., Starlinger, P., 1984: Barbara McClintock’s controlling elements: Now at the DNA level. Cell 39, 253–259.

    PubMed  Google Scholar 

  • Döring, H. P., Geiser, M., Starlinger, P., 1981: Transposable element Ds at the Shrunken locus in Zea mays. Molec. Gen. Genet. 184, 377–380.

    Google Scholar 

  • Emerson, R. A, 1917: Genetical studies on variegated pericarp in maize. Genetics 2, 1–35.

    PubMed  CAS  Google Scholar 

  • Emerson, R. A., 1914: The inheritance of a recurring somatic variation in variegated ears of maize. Am. Nat. 48, 87–115.

    Google Scholar 

  • Fedoroff, N. V., Furtek, D. B., Nelson, Jr., O. E., 1984: Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling elementAc. Proc. Natl. Acad. Sci., U. S. A. 81, 3825–3829.

    PubMed  CAS  Google Scholar 

  • Fedoroff, N. V., 1983: Controlling elements in maize. In: Mobile Genetic Elements (ed., J. A. Shapiro). Academic Press, Orlando, Fla., Chp. 1, pp. 1–63.

    Google Scholar 

  • Fedoroff, N., Wessler, S., Shure, M., 1983: Isolation of the transposable maize controlling elements Ac and Ds. Cell 35, 235–242.

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., Sastry, G. R. K, 1974: Controlling elements in maize. Ann. Rev. Genet. 8, 15–50.

    PubMed  CAS  Google Scholar 

  • Flavell, R., 1982: In: Genome Evolution. Dover, G. A, Flavell, R. B. eds. London: Academic Press, pp. 301–323.

    Google Scholar 

  • Freeling, M., 1984: Plant transposable elements and insertion sequences. Ann. Rev. Plant. Physiol. 35, 271–298.

    Google Scholar 

  • Friedeman, P., Peterson, P. A, 1982: The Uq controlHng element system in maize. Mol. Gen. Genet. 187, 19–29.

    Google Scholar 

  • Geiser, M., Week, E., Döring, H. P., Werr, W., Courage-Tebbe, U., Tillmann, E., Starlinger, P., 1982: Genomic clones of a wild type allele and a transposable element-induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J. 1, 1455–1460.

    PubMed  CAS  Google Scholar 

  • Green, C. E., Phillips, R. L., Wang, A. S., 1977: Cytological analysis of plants regenerated from maize tissue cultures. Maize Genet. Coop. News Lett. 51, 53–54.

    Google Scholar 

  • Greenblatt, L M., 1984: A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element. Modulator, in maize. Genetics 108, 471–485.

    PubMed  CAS  Google Scholar 

  • Greenblatt, L M., 1974: Movement ofModulator in maize: a test of a hypothesis. Genetics 77, 671–678.

    PubMed  CAS  Google Scholar 

  • Greenblatt, L M., 1968: The mechanisms of Modulator, transposition in maize. Genetics 58, 585–597.

    PubMed  CAS  Google Scholar 

  • Greenblatt, L M., 1966: Transposition and replication of Modulator in maize. Genetics 53, 361–369.

    PubMed  CAS  Google Scholar 

  • Greenblatt, L M., Brink, R. A, 1963: Transpositions of Modulator in maize into divided and undivided chromosome segments. Nature 197, 412–413.

    Google Scholar 

  • Greenblatt, L M., Brink, R. A., 1962: Twin mutations in medium variegated pericarp maize. Genetics 47, 489–501.

    PubMed  CAS  Google Scholar 

  • Greenbaum, Y., Naveh-Many, T., Cedar, H., Razin, A., 1981: Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862.

    Google Scholar 

  • Gupta, M., Shepherd, N. S., Bertram, L, Saedler, H., 1984: Repetitive sequences and their organization on genomic clones of Zea mays. EMBO J. 3, 133–139.

    PubMed  CAS  Google Scholar 

  • Hake, S., Walbot, V., 1980: The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79, 251–270.

    CAS  Google Scholar 

  • Johns, M. A, Mottinger, J., Freeling, M., 1985: A low coy number, copia-likt transposon in the maize genome. EMBO J., in press.

    Google Scholar 

  • McClelland, M., 1982: The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acid Res. 9, 5859–5866.

    Google Scholar 

  • McClintock, B. 1984: The significance of responses of the genome to challenge. Science 226, 792–801.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1978: Mechanism that rapidly reorganize the genome. Stadler Symp. 10, 25–48.

    Google Scholar 

  • McClintock, B., 1971: The contribution of one component of a control system to versatility of gene expression. Carnegie Inst. Washington Year Book 70, 5–17.

    Google Scholar 

  • McClintock, B., 1964: Aspects of gene regulation in maize. Carnegie Inst. Washington Year Book 63, 592–602.

    Google Scholar 

  • McClintock, B., 1963: Further studies of gene-control systems in maize. Carnegie Inst. Washington Year Book 62, 486–493.

    Google Scholar 

  • McClintock, B., 1962: Topographical relations between elements of control systems in maize. Carnegie Inst. Washington Year Book 61, 448–461.

    Google Scholar 

  • McClintock, B., 1961: Some parallels between gene control systems in maize and in bacteria. The American Naturalist 95, 265–277.

    Google Scholar 

  • McClintock, B., 1959: Genetic and cytological studies of maize. Carnegie Inst. Washington Year Book 58, 452–456.

    Google Scholar 

  • McClintock, B., 1958: Thesuppressor-mutator system of control of gene action in maize. Carnegie Inst. Washington Year Book 58, 452–456.

    Google Scholar 

  • McClintock, B., 1957: Genetic and cytological studies of maize. Carnegie Inst. Washington Year Book 56, 393–401.

    Google Scholar 

  • McClintock, B., 1956 a: Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21, 197–216.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1956 b: Mutation in maize. Carnegie Inst. Washington Year Book 55, 323–332.

    Google Scholar 

  • McClintock, B. 1955: Controlled mutation in maize. Carnegie Inst. Washington Year Book 54, 245–255.

    Google Scholar 

  • McClintock, B., 1954: Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst. Washington Year Book 53, 254–260.

    Google Scholar 

  • McClintock, B., 1953: Mutation in maize. Carnegie Inst. Washington Year Book 52, 227–237.

    Google Scholar 

  • McClintock, B., 1952: Mutable loci in maize. Carnegie Inst. Washington Year Book 51, 212–219.

    Google Scholar 

  • McClintock, B., 1951a: Chromosome organization and genetic expression. Cold Spring Harbor Symp. Quant. Biol. 16, 13–47.

    CAS  Google Scholar 

  • McClintock, B., 1951b: Mutable loci in maize. Carnegie Inst. Washington Year Book. 50, 174.

    Google Scholar 

  • McClintock, B., 1950 a: Mutable loci in maize. Carnegie Inst. Washington Year Book 49, 157–167.

    Google Scholar 

  • McClintock, B., 1950 b: The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci., U. S. A. 36, 344–355.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1949: Mutable loci in maize. Carnegie Inst. Washington Year Book 48, 142–154.

    Google Scholar 

  • McClintock, B., 1948: Mutable loci in maize. Carnegie Inst. Washington Year Book 47, 155–169.

    Google Scholar 

  • McClintock, B., 1947: Cytogenetic studies of maize and Neurospora. Carnegie Inst. Washington Year Book 46, 146–152.

    Google Scholar 

  • McClintock, B., 1946: Maize genetics. Carnegie Inst. Washington Year Book 45, 176–186.

    CAS  Google Scholar 

  • McClintock, B., 1945: Cytogenetic studies of maize and Neurospora. Carnegie Inst. Washington Year Book 44, 108–112.

    Google Scholar 

  • McClintock, B., 1944: Maize genetics. Carnegie Inst. Washington Year Book 43, 127–135.

    Google Scholar 

  • McClintock, B., 1942: The fusion of broken ends of chromosome following nuclear fusion. Proc. Natl. Acad. Sci., U. S. A. 28, 458–463.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1941: The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1938a: The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23, 315–376.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1938 b: The fusion of broken ends of sister half-chromatids following chromatid breakage at meiotic anaphases. Univ. Missouri Agr. Exp. Sta. Res. Bull. 290, 1–48.

    Google Scholar 

  • McClintock, B., 1932: A correlation of ring shaped chromosomes with variegation in Zea mays. Proc. Natl. Acad. Sci., U.S.A. 18, 677–681.

    PubMed  CAS  Google Scholar 

  • McCoy, T. J., Phillips, R. L., Rines, H. W., 1982: Cytogenetic variation in tissue culture regenerated plants of Avena sativa: High frequency of partial chromosome loss. Can. J. Genet. Cytol. 24, 37–50.

    Google Scholar 

  • Mottinger, J. P., Dellaporta, S. L., Keller, P. B., 1984a: Stable and unstable mutations in Aberrant Ratio stock of maize. Genetics 106, 751–767.

    PubMed  CAS  Google Scholar 

  • Mottinger, J. P., Johns, M. A., Freeling, M., 1984b: Mutations of the Adhl gene in The Activation of Maize Controlling Elements 215 maize following infection with barley stripe mosaic virus. Mol. Gen. Genet. 195, 367–369.

    PubMed  CAS  Google Scholar 

  • Muller-Neumann, M., Yoder, J., Starlinger, P., 1985: The sequence of the Ac element of Zea mays. Mol. Gen. Genet, (in press).

    Google Scholar 

  • Nevers, P., Shepherd, N. S., Saedler, H., 1984: Plant transposable elements. In: Advances in Botanical Research. Academic Press, London, in press.

    Google Scholar 

  • Nuffer, M. G., 1966: Stability of the suppressor element in two mutator systems at the Al locus in maize. Genetics 53, 541–549.

    Google Scholar 

  • Nuffer, M. G., 1961: Mutation studies at the A1 locus in maize. 1. A mutable allele controlled by Dt. Genetics 46, 625–640.

    PubMed  CAS  Google Scholar 

  • Nuffer, M. G., 1955: Dosage effect of multiple Dt loci on mutation of a in the maize endosperm. Science 121, 399–400.

    PubMed  CAS  Google Scholar 

  • Osterman, J. C., Schwartz, D., 1981: Analysis of a controlling element mutation at theAdh locus of maize. Genetics 99, 267–273.

    PubMed  CAS  Google Scholar 

  • Peacock, W. J., Dennis, E. S., Gerlach, W. L, Sachs, M. M., Schwartz, D., 1984: Insertion and excision of Ds controlling elements in maize. Cold Spring Harbor Symp. Quant. Biol. 49, 347–354.

    CAS  Google Scholar 

  • Peacock, W. J., Dennis, E. S., Gerlach, W. L, Llewellyn, D., Lory, H., Pryor, A. J., Sachs, M. M., Schwartz, D., Sutton, W. D., 1983: Gene transfer in maize: Controlling elements and the alcohol dehydrogenase genes. In: Proc. Miami Winter Symp., aaa Academic Press.

    Google Scholar 

  • Peterson, P. A, 1981: Instability among the components of a regulatory-element transposon in maize. Cold Spring Harbor Symp. Quant. Biol. 45, 447–455.

    CAS  Google Scholar 

  • Peterson, P. A., 1977: The position hypothesis for controlling elements in maize. In: DNA insertion elements, plasmids, and episomes. (Ed. A. I. Bukhari et al.) Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Peterson, P. A., 1976: Basis for the diversity of states of controlling elements in maize. Mol. Gen. Genet. 149, 5–21.

    Google Scholar 

  • Peterson, P. A., 1968: The origin of an unstable locus in maize. Genetics 59, 391–398.

    PubMed  CAS  Google Scholar 

  • Peterson, P. A., 1961: Mutable a 7 of the En system in maize. Genetics 46, 759–771.

    PubMed  CAS  Google Scholar 

  • Pohlman, R., Fedoroff, N. V., Messing, J., 1984: The nucleotide sequence of the maize controlling element Activator. Cell 37, 635–643.

    PubMed  CAS  Google Scholar 

  • Rhoades, M. M., 1938: Effect of the Dt gene on the mutability of the al allele in maize. Genetics 23, 377–397.

    PubMed  CAS  Google Scholar 

  • Rhoades, M. M., 1936: The effect of varying gene dosage on aleurone colour in maize. J. Genet. 33, 347–354.

    Google Scholar 

  • Rubin, G. M., 1983: Dispersed repetitive DNAs in Drosophila. In: Mobile Genetic Elements. (Ed. Shapiro, J. A.) Academic Press, Inc. Orlando, Fla., Chapter 8, pp. 329–361.

    Google Scholar 

  • Sachs, M. M., Peacock, W. J., Dennis, E. S., Gerlach, W. L., 1983: MaizeAc/Ds controlling elements: A molecular viewpoint. Maydica 28, 289–302.

    CAS  Google Scholar 

  • Schwartz-Sommer, Z., Gierl, A., Klosgen, R. B., Wienard, U., Peterson, P. A., Saedler, H., 1984: The Spm transposable element controls the excision of a 2-Kb DNA insert at the wx m8 allele ofZea mays. EMBO J. 3, 1021–1028.

    Google Scholar 

  • Shapiro, J. A. (ed.), 1983: Mobile Genetic Elements. Academic Press, Orlando, Fla.

    Google Scholar 

  • Shepherd, N. S., Schwarz-Sommer, Z., Blumberg vel Spalve, J., Gupta, M., Wienand, U., Saedler, H., 1984: Similarities of the Cm 7 repetitive family of Zea mays to eucaryotic transposable elements. Nature 307, 185–187.

    PubMed  CAS  Google Scholar 

  • Shure, M., Wessler, S., Fedoroff, N., 1983: Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233.

    PubMed  CAS  Google Scholar 

  • Sprague, G. F., McRinney, H. H., 1966: Aberrant ratio: an anomaly in maize associated with vims infection. Genetics 54, 1287–1296.

    PubMed  CAS  Google Scholar 

  • Sprague, G. F., Brimhall, B., Hixon, R. M., 1943: Some effects on the waxy gene in corn on the properties of the endosperm starch. J. Am. Soc. Agron. 35, 817–822.

    Google Scholar 

  • Stadler, L. J., 1930: Some genetic effects of X-rays in plants. J. Hered. 21, 3–19.

    Google Scholar 

  • Stadler, L. J., 1928: Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci., U.S.A. 14, 69–75.

    PubMed  CAS  Google Scholar 

  • Sutton, W. D., Gerlach, W. L., Schwartz, D., Peacock, W. J., 1984: Molecular analysis of Ds controlling element mutations at the Adhl locus of maize. Science 223, 1265–1268.

    PubMed  CAS  Google Scholar 

  • Van Schaik, N. W., Brink, R. A., 1959: Transposition of Modulator, a component of the variegated pericarp allele in maize. Genetics 44, 725–738.

    PubMed  Google Scholar 

  • Vanyushin, B. F., 1984: Replicative DNA methylation in animals and higher plants. Current Tropics in Micro, and Immun. 108, 99–114.

    CAS  Google Scholar 

  • Weck, E., Courage, U., Döring, H. P., Fedoroff, N., Starlinger, P., 1984: Analysis of sh’m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays. EMBO J. 3, 1713–1716.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dellaporta, S.L., Chomet, P.S. (1985). The Activation of Maize Controlling Elements. In: Hohn, B., Dennis, E.S. (eds) Genetic Flux in Plants. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8765-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8765-4_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8767-8

  • Online ISBN: 978-3-7091-8765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics