Quinazoline (1) is a building block for approximately eighty naturally occurring alkaloids isolated from a number of families of the plant kingdom, from microorganisms and from animals. The first known quinazoline alkaloid was vasicine (peganine), isolated in 1888 from Adhatoda vasica, and later from other species. This plant has been used in Indian indigenous medicine for centuries. The antimalarial activity of febrifugine (9) provided a strong stimulus for the synthesis and biological screening of a vast number of quinazoline derivatives. A number of interesting new alkaloids have been discovered in a variety of sources, and study of the chemistry and pharmacology of quinazoline alkaloids has intensified in the last twenty years. In many cases, structures of the quinazolines have been confirmed by synthesis. The biosynthesis of this type of alkaloid has received intensive study also.


Aromatic Proton Anthranilic Acid Quinazoline Derivative Isatoic Anhydride Aspergillus Clavatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablondi, F., S. Gordon, J. Morton II, and J. H. Williams: An Antimalarial Alkaloid from Hydrangea. II. Isolation. J. Org. Chem. 17, 14 (1952).Google Scholar
  2. 2.
    Amin, A. H., and D. R. Mehta: A Bronchodilator Alkaloid (Vasicinone) from Adhatoda vasica Nees. Nature 184, 1317 (1959).Google Scholar
  3. 3.
    Amin, A. H., D. R. Mehta, and S. S. Samarth: Biological Activity in the Quinazolone Series. Progr. Drug Res. 14, 218 (1970).Google Scholar
  4. 4.
    Arif, A. J., Ch. Singh, A. P. Bhaduri, C. M. Gupta, A. W. Khan, and M. M. Dhar: Actinomycetes Studies: Part II — Cell-free Synthesis of Echinomycin & an Echinomycin Analogue. Indian J. Biochem. 7, 193 (1970).Google Scholar
  5. 5.
    Armarego, W. L. F.: Quinazolines. Adv. Heterocyclic Chem. 24, 1 (1979).Google Scholar
  6. 6.
    Armarego, W. L. F.: In: The Chemistry of Heterocyclic Compounds Vol. 24/1: Quinazolines. New York- London-Sydney: Interscience Publishers Ltd. 1967.Google Scholar
  7. 7.
    Armarego, W. L. F., and Ph. A. Reece: Quinazolines. Part XXI. Synthesis of cis-2-Amino-8a-carboxymethyl-3,4,4a,5,6,7,8,8a-octahydroquinazoline and Related Compounds. Conversions of Perhydroquinazolin-2-ones into 2-Amino-3,4,4a,5,6,7,8,8a- octahydroquinazolines. J. Chem. Soc. Perkin Trans. I 1975, 1470.Google Scholar
  8. 8.
    Armarego, W. L. F., and P. G. Tucker: Quinazolines. XXIV. TJje Synthesis of 2,4- Diazatetracyclo[7,3,l,l7,11,O1,6]tetradecanes (Adamantano[l,2-d]pyrimidines). Aust. J. Chem. 32, 1805 (1979), and earlier papers.Google Scholar
  9. 9.
    Arndt, R.. R., S. H. Eggers, and A. Jordaan: The Alkaloids of Anisotes sessiliflorus C.B.C1. (Acanthaceae) — Five New 4-Quinazolone Alkaloids. Tetrahedron 23, 3521 (1967).Google Scholar
  10. 10.
    Asahina, Y., and K. Kashiwaki: Chemical Constituents of the Fruits of Evodia rutaecarpa. J. Pharm. Soc. Japan No. 405, 1293 (1915).Google Scholar
  11. 11.
    Asahina, Y., and T. Ohta: Eine Synthese des Evodiamins. Ber. dtsch. Chem. Ges. 61, 319; 869 (1928).Google Scholar
  12. 12.
    Atal, C. K.: Chemistry and Pharmacology of Vasicine — A New Oxytocic and Abortifacient. New Delhi: Ray Bandhu Industrial Co. 1980.Google Scholar
  13. 12a.
    Ayafor, J. F., B. L. Sondengam, and B. T. Ngadjui: Quinoline and Indolopyridoquinazoline Alkaloids from Vepris louisii. Phytochemistry 21, 2733 (1982).Google Scholar
  14. 13.
    Baker, B. R., F. J. Mc Evoy, R. E. Schaub, J. P. Joseph, and J. H. Williams: An Antimalarial Alkaloid from Hydrangea. XXI. Synthesis and Structure of Febrifugine and Isofebrifugine. J. Org. Chem. 18, 178 (1953).Google Scholar
  15. 13a.
    Baker, B. R., and F. J. Mc Evoy: An Antimalarial Alkaloid from Hydrangea. XXIII. Synthesis by the Pyridine Approach. II. J. Org. Chem. 20, 136 (1955).Google Scholar
  16. 14.
    Barringer Jr., D. F., G. Berkelhammer, S. D. Carter, L. Goldman, and A. E. Lanzilotti: The Stereochemistry of Febrifugine. I. The Equilibrium between cis- and trans-(3-Substituted 2-piperidyl)-2-propanones. J. Org. Chem. 38, 1933 (1973).Google Scholar
  17. 15.
    Barringer Jr., D. F., G. Berkelhammer, and R. S. Wayne: The Stereochemistry of Febrifugine. II. Evidence for the Trans Configuration in the Piperidine Ring. J. Org. Chem. 38, 1937 (1973).Google Scholar
  18. 16.
    Batsuren, D., M. V. Telezhenetskaya, S. Yu. Yunusov, and T. Baldan: Alkaloids of Peganum nigellastrum. Khim. Prir. Soedin. 1978, 418 (Russ).Google Scholar
  19. 16a.
    Bergman, J.: The Quinazolinocarboline Alkaloids. In: (133); Vol. XXI, p. 30 (1983).Google Scholar
  20. 17.
    Bergman, J., and S. Bergman: Synthesis of Rutaecarpine and Related Indole Alkaloids. Heterocycles 16, 347 (1981).Google Scholar
  21. 18.
    Bergman, J., B. Egestad, and J.-O. Lindström: The Structure of Some Indolic Constituents in Couroupita guaianensis Aubl. Tetrahedron Lett. 1977, 2625.Google Scholar
  22. 19.
    Bhatnagar, A. K., S. Bhattacharji, and S. P. Popli: On the Identity of Vasicinol. Indian J. Chem. 3, 525 (1965).Google Scholar
  23. 20.
    Bhatnagar, A. K., and S. P. Popli: Mass Fragmentation of the Alkaloids of Adhatoda vasica Nees. Indian J. Chem. 4, 291 (1966).Google Scholar
  24. 21.
    Bhattacharyya, J., and S. C. Pakrashi: Carbon-13 NMR Analysis of Some 4-Quinazolinone Alkaloids and Related Compounds. Heterocycles 14, 1469 (1980).Google Scholar
  25. 22.
    Bhattacharyya, J., and S. C. Pakrashi: The Identity of Glycophymine and Glycosminine: an Alkaloid of Glycosmis arborea (Roxb.) DC. Heterocycles 12, 929 (1979).Google Scholar
  26. 23.
    Bhattacharyya, P., M. Sakar, T. Roychowdhury, and D. P. Chakraborty: New Synthesis of the Quinazolone Alkaloids Arborine and Glycorine. Chem. and Ind. 1978, 532.Google Scholar
  27. 24.
    Bird, C. W.: The Structure of Methylisatoid. Tetrahedron 19, 901 (1963).Google Scholar
  28. 25.
    Borr, H. G.: Chinazolin-Alkaloide. In: Fortschritte der Alkaloid-Chemie seit 1933, p. 331, Berlin: Akademie-Verlag 1950; Ergebnisse der Alkaloid-Chemie bis 1960, p. 741, Berlin: Akademie-Verlag 1961.Google Scholar
  29. 26.
    Bowen, I. H., K. P. W. C. Perera, and J. R. Lewis: Alkaloids of the Leaves of Glycosmis bilocularis. Phytochemistry 17, 2125 (1978).Google Scholar
  30. 27.
    Brufani, M., W. Fedeli, F. Mazza, A. Gerhard, and W. Keller-Schierlein: The Structure of Tryptanthrin. Experientia 27, 1249 (1971).Google Scholar
  31. 28.
    Buděšinsky, Z., P. Lederer, and J. Danek: 3-(3-Amino-2-hydroxypropyl)- and 3-(3- Aminoacetoxy)-4(3H)-quinazolines. Collect. Czech. Chem. Comm. 42, 3473 (1977).Google Scholar
  32. 29.
    Budzikiewicz, H., C. Djerassi, and D. H. Williams: Structure Elucidation of Natural Products by Mass Spectrometry, VoL I, p. 212. San Francisco: Holden-Day, Inc. 1964.Google Scholar
  33. 29a.
    Büchi, G., P. R. De Shong, S. Katsumura, and Y. Sugimura: Total Synthesis of Tryptoquivaline G. J. Amer. Chem. Soc. 101, 5084 (1979).Google Scholar
  34. 30.
    Büchi, G., K. Ch. Luk, B. Kolbe, and J. M. Townsend: Four New Mycotoxins of Aspergillus clavatus Related to Tryptoquivaline. J. Org. Chem. 42, 244 (1977).Google Scholar
  35. 31.
    Cambridge, G. W., A. B. A. Jansen, and D. A. Jarman: Bronchodilating Action of Vasicinone and Related Compounds. Nature 196, 1217 (1962).Google Scholar
  36. 32.
    Canonica, L., B. Danieli, P. Manitto, and G. Russo: New Quinazolinocarboline Alkaloids from Euxylophora paraensis Hub. Tetrahedron Lett. 1968, 4865.Google Scholar
  37. 33.
    Chakravarti, D., and R. N. Chakravarti: Quinazolone Alkaloids. J. Proc. Inst. Chemists (India) 39 (Part III), 131 (1967).Google Scholar
  38. 34.
    Chakravarti, D., R. N. Chakravarti, L. A. Cohen, B. Das Gupta, S. Dutta, and H. K. Miller: Alkaloids of Glycosmis arborea — II. Structure of Arborine. Tetrahedron 16, 224 (1961).Google Scholar
  39. 35.
    Chakravarti, D., R. N. Chakravarti, and S. C. Chakravarti: Arborine and Glycosine. Science and Culture (India) 18, 553 (1953).Google Scholar
  40. 36.
    Chakravarti, D., R. N. Chakravarti, and S. C. Chakravarti: Alkaloids of Glycosmis arborea. Part I. Isolation of Arborine and Arborinine: The Structure of Arborine. J. Chem. Soc. 1953, 3337.Google Scholar
  41. 37.
    Chakravarti, R. N.: Chemistry of Arborine. Bull. Calcutta School Trop. Med. 11, 37 (1963).Google Scholar
  42. 38.
    Chakravarti, R. N., and S. C. Chakravarti: Chemical Investigation of Glycosmis arborea Correa. J. Proc. Inst. Chemists (India) 24, 96 (1952).Google Scholar
  43. 39.
    Chatterjee, A., S. Bose, and C. Ghosh: Rhetsine and Rhetsinine: The Quinazoline Alkaloids of Xanthoxylum rhetsa. Tetrahedron 7, 257 (1959).Google Scholar
  44. 39a.
    Chatterjee, A., and J. Mitra: Chemistry of Rhetine and Synthesis of Rhetsine. The Alkaloids of Zanthoxylum rhetsa. Science and Culture (India) 25, 493 (1960).Google Scholar
  45. 40.
    Chatterjee, A., and M. Ganguly: Alkaloidal Constituents of Peganum harmala and Synthesis of the Minor Alkaloid Deoxyvasicinone. Phytochemistry 7, 307 (1968).Google Scholar
  46. 41.
    Chatterjee, A., and S. Ghosh Majumdar: Alkaloids of Glycosmispentaphylla (Retz.) DC. Part I. J. Amer. Chem. Soc. 76, 2459 (1954).Google Scholar
  47. 42.
    Chatterjee, A., and S. Ghosh Majumdar: Constitution and Synthesis of Glycosin, the New Alkaloid of Glycosmis pentaphylla Retz. DC. J. Amer. Chem. Soc. 75, 4365 (1953).Google Scholar
  48. 43.
    Chatterjee, M. L., and M. S. DE: Pharmacological Studies with Arborine. Bull. Calcutta School Trop. Med. 8, 102 (1960).Google Scholar
  49. 44.
    Chien, P.-L., and C. C. Cheng: Structural Modification of Febrifugine. Some Methylenedioxy Analogs. J. Med. Chem. 13, 867 (1970).Google Scholar
  50. 45.
    Chou, T. Q., F. Y. Fu, and Y. S. Kao: Antimalarial Constituents of Chinese Drug, Ch’ang Shan, Dichroa febrifuga Lour. J. Amer. Chem. Soc. 70, 1765 (1948).Google Scholar
  51. 46.
    Clardy, I., J. P. Springer, G. Büchi, K. Matsuo, and R. Wightman: Tryptoquivaline and Tryptoquivalone, Two Tremorgenic Metabolites of Aspergillus clavatus. J. Amer. Chem. Soc. 97, 663 (1975).Google Scholar
  52. 47.
    Culbertson, H., J. C. Decius, and B. E. Christensen: Quinazolines. XIII. A Study of the Infrared Spectra of Certain Quinazoline Derivatives. J. Amer. Chem. Soc. 74, 4834 (1952).Google Scholar
  53. 48.
    Danieli, B., C. Farachi, and G. Palmisano: A New Indolopyridoquinazoline in the Bark of Euxylophora paraensis. Phytochemistry 15, 1095 (1976).Google Scholar
  54. 49.
    Danieli, B., G. Lesma, and G. Palmisano: A New Tryptophan Derived Alkaloid from Evodia rutaecarpa (Juss.) Benth. et Hook. Experientia 35, 156 (1979).Google Scholar
  55. 50.
    Danieli, B., G. Lesma, and G. Palmisano: Quinazolinocarboline Alkaloids Chemistry: Reactivity of Euxylophorines—Part I. Heterocycles 12, 353 (1979).Google Scholar
  56. 51.
    Danieli, B., G. Lesma, and G. Palmisano: The Configuration of (+)-Evodiamine: a Long-standing Problem in the Chemistry of Indole Alkaloids. J. Chem. Soc. Chem. Commun. 1982, 1092.Google Scholar
  57. 52.
    Danieli, B., P. Manitto, F. Ronchetti, and G. Russo: New Indolopyridoquinazoline Alkaloids from Euxylophora paraensis. Phytochemistry 11, 1833 (1972).Google Scholar
  58. 53.
    Danieli, B., P. Manitto, F. Ronchetti, G. Russo, and G. Ferrari: Paraensine, a New Indolopyridoquinazoline Alkaloid from Euxylophora paraensis Hub. Experientia 28, 249 (1972).Google Scholar
  59. 54.
    Danieli, B., and G. Palmisano: A New Approach to Quinazolinocarboline Alkaloids: Synthesis of (±)-Evodiamine, Rutaecarpine and Dehydroevodiamine. Heterocycles 9, 803 (1978).Google Scholar
  60. 54a.
    Danieli, B., and G. Palmisano: Unusually Simple Methylation at N-13 of Indolo-pyridoquinazoline Alkaloids. Gazz. Chim. Ital. 105, 45 (1975).Google Scholar
  61. 55.
    Danieli, B., G. Palmisano, G. Rainoldi, and G. Russo: 1-Hydroxyrutaecarpine from Euxylophora paraensis. Phytochemistry 13, 1603 (1974).Google Scholar
  62. 56.
    Danieli, B., G. Palmisano, G. Russo, and G. Ferrari: Minor Indolopyridoquinazoline Alkaloids from Euxylophora paraensis. Phytochemistry 12, 2521 (1973).Google Scholar
  63. 56a.
    Danieli, B., and G. Palmisano: Ind-N-Alkylation of Rutecarpine and Synthesis of Two Novel Related Heterocyclic Ring Systems: Indolo[l′,2′:3,4]pyrazo[l,2-a]quinazoline and Indolo[l′,2′:3,4][l,4]diazepino[l,2-a]quinazoline. J. Heterocycl. Chem. 14, 839 (1977).Google Scholar
  64. 56b.
    Danieli, B., G. Lesma, and G. Palmisano: Quinazolinocarboline Alkaloids Chemistry: Thermal Rearrangement of 14-Alkylindolo[2′,3′:3,4]pyrido[2,1-b]quinazolin-5-one. Part II. Heterocycles 12, 1433 (1979).Google Scholar
  65. 56c.
    De Corrêa, D. B., O. R. Gottlieb, and A. P. De Padua: Chemistry of Brazilian Rutaceae. I. Dihydrocinnamic Acids from Hortia badinii. Phytochemistry 14, 2059 (1975).Google Scholar
  66. 56d.
    De Corrêa, D. B., O. R. Gottlieb, A. P. De Padua, and A. I. Da Rocha: The Chemistry of Brazilian Rutaceae. II. Constituents of Hortia longifolia. Rev. Latinoamer. Quirn. 7 (1), 43 (1976) [Chem. Abstr. 84, 161790g (1976)].Google Scholar
  67. 57.
    Devi, G., R. S. Kapil, and S. P. Popli: Potential CNS & CVS Agents: Syntheses Based on Vasicinone. Indian J. Chem. 14B, 354 (1976).Google Scholar
  68. 58.
    Dhar, K. L., M. P. Jain, S. K. Koul, and C. K. Atal: Vasicol, a New Alkaloid from Adhatoda vasica. Phytochemistry 20, 319 (1981).Google Scholar
  69. 59.
    Dhar, M. M., Ch. Singh, A. W. Khan, A. J. Arif, C. M. Gupta, and A. P. Bhaduri: Cell-free Synthesis of Echinomycin and an Echinomycin Analog. Pure Appl. Chem. 28, 469 (1971).Google Scholar
  70. 60.
    Döpke, W.: Ergebnisse der Alkaloid-Chemie 1960–1968. 2 Bände. Berlin: Akademie-Verlag. 1976/1978.Google Scholar
  71. 61.
    Donovan, D. G. O., and H. Horan: The Biosynthesis of Arborine. J. Chem. Soc. (C) 1970, 2466.Google Scholar
  72. 62.
    Dreyer, D. L., and R. C. Brenner: Alkaloids of Some Mexican Zanthoxylum Species. Phytochemistry 19, 935 (1980).Google Scholar
  73. 63.
    Elguero, J., C. Marzin, A. R. Katritzky, and P. Linda: In: The Tautomerism of Heterocycles. Advances in Heterocyclic Chemistry (A. R. Katritzky and A. J. Boulton, ed.), Suppl. 1, p. 129. New York-San Francisco-London: Academic Press. 1976.Google Scholar
  74. 64.
    Fedeli, W., and F. Mazza: Crystal Structure of Tryptanthrin (Indolo[2,l- b]quinazoline-6,12-dione). J. Chem. Soc. Perkin Trans. II 1974, 1621.Google Scholar
  75. 65.
    Fiedler, E., H. P. Fiedler, A. Gerhard, W. Keller-Schierlein, W. A. König, and H. Zähner: Stoffwechselprodukte von Mikroorganismen. 156. Mitteilung. Synthese und Biosynthese substituierter Tryptanthrine. Arch. Mikrobiol. 107, 249 (1976).Google Scholar
  76. 65a.
    Fish, F., I. A. Meshal, and P. G. Waterman: Minor Alkaloids of Araliopsis tabouensis. Planta Med. 29, 310 (1976).Google Scholar
  77. 66.
    Fishman, M., and Ph. A. Cruickshank: Febrifugine Antimalarial Agents. I. Pyridine Analogs of Febrifugine. J. Med. Chem. 13, 155 (1970).Google Scholar
  78. 67.
    Fitzgerald, J. S., S. R. Johns, J. A. Lamberton, and A. H. Redcliffe: 6,7,8,9- Tetrahydropyridoquinazolines, a New Class of Alkaloids from Mackinlaya Species (Araliaceae). Aust. J. Chem. 19, 151 (1966).Google Scholar
  79. 68.
    Friedländer, P., and W. Roschdestwensky: Über ein Oxydationsprodukt des Indigblaues. Ber. dtsch. Chem. Ges. 48, 1841 (1915).Google Scholar
  80. 69.
    Ghosal, S., R. B. P. S. Chauhan, and R. Mehta: Alkaloids of Sida cordifolia. Phytochemistry 14, 830 (1975).Google Scholar
  81. 70.
    Gopinath, K. W., T. R. Govindachari, and U. Ramadas Rao: The Alkaloids of Zanthoxylum rhetsa DC. Tetrahedron 8, 293 (1960).Google Scholar
  82. 71.
    Goto, T., Y. Kishi, S. Takahashi, and Y. Hirata: Tetrodotoxin. Tetrahedron 21, 2059 (1965), and references cited therein.Google Scholar
  83. 72.
    Gröger, D.: Alkaloids Derived from Tryptophan and Anthranilic Acid. In: Encyclopedia of Plant Physiology, New Series, Vol. 8 (Bell, E. A., B. V. Charlwood, ed.), p. 128. Berlin-Heidelberg: Springer-Verlag. 1980.Google Scholar
  84. 73.
    Gröger, D.: Anthranilic Acid as Precursor of Alkaloids. Lloydia 32, 221 (1969).Google Scholar
  85. 74.
    Gröger, D.: Chinazolinalkaloide. In: Biosynthese der Alkaloide (Mothes, K., H. R. Schütte, ed.), p. 551. Berlin: VEB Deutscher Verlag der Wissenschaften. 1969.Google Scholar
  86. 75.
    Johne, S., and D. Gröger: Alkaloide in Linaria-Arten. Pharmazie 23, 35 (1968).Google Scholar
  87. 76.
    Gröger, D., and S. Johne: Zur Analytik und Biochemie der Alkaloide von Adhatoda vasica Nees. In: Festschrift K. Mothes, p. 205. Jena: G. Fischer Verlag. 1965.Google Scholar
  88. 77.
    Gröger, D., and S. Johne: Zur Biosynthese einiger Alkaloide von Glycosmis arborea (Rutaceae). Z. Naturforsch. 23b, 1072 (1968).Google Scholar
  89. 78.
    Grundon, M. F.: Quinazoline Alkaloids. Alkaloids 6, 108 (1976); 8, 83 (1978); 9, 85 (1979); 10, 80 (1980); 12, 88 (1982) and in other chapters of this periodical.Google Scholar
  90. 79.
    Gunatilaka, A. A. L., S. Sotheeswaran, S. Balasubramaniam, A. I. Chandrasekara, and H. T. B. Sriyani: Studies on Medicinal Plants of Sri Lanka. Ill: Pharmacologically Important Alkaloids of Some Sida Species. Planta Med. 39, 66 (1980).Google Scholar
  91. 80.
    Gupta, O. P., K. K. Anand, B. J. R. Ghatak, and C. K. Atal: Vasicine, Alkaloid of Adhatoda vasica, a Promising Uterotonic Abortifacient. Indian J. Exp. Biol. 16, 1075 (1978).Google Scholar
  92. 81.
    Hagiwara, Y., M. Kurihara, and N. Yoda: Intramolecular Rearrangement — IV. Intramolecular Alkyl Rearrangements and Tautomerism of Quinazolinone Derivatives. Tetrahedron 25, 783 (1969).Google Scholar
  93. 82.
    Hart, N. K., S. R. Johns, and J. A. Lamberton: The Identification of a Minor Alkaloid of Mackinlaya macrosciadia (Araliaceae) as Deoxyvasicinone. Aust. J. Chem. 24, 223 (1971).Google Scholar
  94. 83.
    Hearn, J. M., R. A. Morton, and J. C. E. Simpson: Ultra-violet Absorption Spectra of Some Derivatives of Quinoline, Quinazoline, and Cinnoline. J. Chem. Soc. 1951, 3318.Google Scholar
  95. 84.
    Hikino, H., S. Nabetani, and T. Takemoto: Structure and Biosynthesis of Chrysogine, a Metabolite of Penicillium chrysogenum. Yakugaku Zasshi 93,619 (1973). (Japan) [Chem. Abstr. 79, 40 922 q (1973)].Google Scholar
  96. 85.
    Hill, R. K., and A. G. Edwards: The Absolute Configuration of Febrifugine. Chem. and Ind. 1962, 858.Google Scholar
  97. 86.
    Holubek, J., and O. Strouf (eds.): Spectral Data and Physical Constants of Alkaloids, Vol. I. Prag: Publishing House of the Czechoslovak Academy of Sciences. 1965.Google Scholar
  98. 87.
    Hooper, D.: Blätter von Adhatoda Vasica, Nees. Phar. J. 18, 841 (1888).Google Scholar
  99. 88.
    Horvath-Dora, K., and O. Clauder: Alkaloids Containing the Indolo[2,3-c]quinazolino[3,2-a]pyridine Skeleton. III. 3,14-Dihydrorutaecarpine. Acta Chim. Acad. Hung. 84, 93 (1975).Google Scholar
  100. 89.
    Huq, E. M., M. Ikram, and S. A. Warsi: Chemical Composition of Adhatoda vasica. II. Pakistan J. Sci. Ind. Res. 10, 224 (1967) [Chem. Abstr. 69, 16 807d (1968)].Google Scholar
  101. 90.
    Jain, M. P., and V. K. Sharma: Phytochemical Investigation of Roots of Adhatoda vasica. Planta Med. 46, 250 (1982).Google Scholar
  102. 91.
    Jang, C. S., F. Y. Fu, C. Y. Wang, K. C. Huang, G. Lu, and T. C. Chou: Ch’ang Shan, a Chinese Antimalarial Herb. Science 103, 59 (1946).Google Scholar
  103. 92.
    Jarrah, M. Y., and V. Thaller: 300 MHz 1H N.m.r. Spectra of Indolo[2,l-b]quinazoline-6,12-dione, Tryptanthrine, and its 2- and 8-Chloro-derivatives. J. Chem. Res. (S) 1980, 186; J. Chem. Res. (M) 1980, 2601.Google Scholar
  104. 93.
    Johne, S.: Search for Pharmaceutically Interesting Quinazoline Derivatives: Efforts and Results (1969–1980). Progr. Drug Res. 26, 259 (1982).Google Scholar
  105. 94.
    Johne, S., and D. Gröger: Natürlich vorkommende Chinazolin-Derivate. Pharmazie 25, 22 (1970).Google Scholar
  106. 95.
    Johne, S., D. Gröger, and M. Hesse: Neue Alkaloide aus Adhatoda vasica Nees. Helv. Chim. Acta 54, 826 (1971).Google Scholar
  107. 96.
    Johne, S., B. Jung, D. Gröger, and R. Radeglia: Synthese und 13C-NMR- Spektroskopie einiger Pyrrolo[2,l-b]chinazoline. J. Prakt. Chem. 319, 919 (1977).Google Scholar
  108. 97.
    Johne, S., K. Waiblinger, and D. Gröger: Untersuchungen zur Biosynthese des Chinazolinalkaloids Peganin in Adhatoda vasica Nees. Pharmazie 28, 403 (1973).Google Scholar
  109. 98.
    Johne, S., K. Waiblinger, and D. Gröger: Zur Biosynthese des Chinazolin-Alkaloids Arborin. Eur. J. Biochem. 15, 415 (1970).Google Scholar
  110. 99.
    Johns, S. R., and J. A. Lamberton: Alkaloids of Mackinlaya Species (Family Araliaceae). J. Chem. Soc. Chem. Commun. 1965, 267.Google Scholar
  111. 100.
    Kametani, T.: Evodiamine. Japan. Kokai 7777,098 [Chem. Abstr. 87, 201 858f (1977)].Google Scholar
  112. 101.
    Kametani, T.: Rutecarpine. Japan. Kokai 7877,100 [Chem. Abstr. 89, 163836d (1978)].Google Scholar
  113. 102.
    Kametani, T., T. Higa, K. Fukumoto, and M. Koizumi: One-Step Synthesis of Evodiamine and Rutecarpine. Heterocycles 4, 23 (1976).Google Scholar
  114. 103.
    Kametani, T., C. V. Loc, T. Higa, M. Ihara, and K. Fukumoto: Studies on the Syntheses of Heterocyclic Compounds. Part 724. Total Syntheses of the Quinazolinone Alkaloids Glycorine, Glomerine, Homoglomerine, Crysogine, and Euxylophoricines A and C. J. Chem. Soc. Perkin Trans. I 1977, 2347.Google Scholar
  115. 104.
    Kametani, T., C. V. Loc, T. Higa, M. Koizumi, M. Ihara, and K. Fukumoto: Iminoketene Cycloaddition. 2. Total Syntheses of Arborine, Glycosminine, and Rutecarpine by Condensation of Iminoketene with Amides. J. Amer. Chem. Soc. 99, 2306 (1977).Google Scholar
  116. 105.
    Kametani, T., C. V. Loc, T. Higa, M. Koizumi, M. Ihara, and K. Fukumoto: Simple Synthesis of Quinazolone Alkaloids, Arborine and Rutecarpine Through Iminoketene. Heterocycles 4, 1487 (1976).Google Scholar
  117. 106.
    Kametani, T., C. V. Loc, T. Higa, T. Ohsawa, M. Koizumi, M. Ihara, and K. Fukumoto: The Synthesis of Quinazolinone Alkaloids Through Potential Iminoketene Intermediate. Heterocycles 12, 208 (1979).Google Scholar
  118. 107.
    Kametani, T., C. V. Loc, M. Ihara, and K. Fukumoto: Modified Total Synthesis of Arborine, Glycosminine, and Glomerine by Condensation of Sulfinamide Anhydride with Thioamides. Heterocycles 9, 1585 (1978).Google Scholar
  119. 108.
    Kametani, T., T. Higa, C. V. Loc, M. Ihara, M. Koizumi, and K. Fukumoto: Iminoketene Cycloaddition. 1. A Facile Synthesis of Quinazolone System by Condensation of Iminoketene with Imines — A Total Synthesis of Evodiamine and Rutaecarpine by Retro Mass-Spectral Synthesis. J. Amer. Chem. Soc. 98, 6186 (1976).Google Scholar
  120. 109.
    Kametani, T., T. Ohsawa, M. Ihara, and K. Fukumoto: Studies on the Syntheses of Heterocyclic Compounds. DCCLV. Iminoketene Cycloaddition. (4). Alternative Syntheses of 5,6,7,8-Tetrahydro-2,3-dimethoxy-8-oxoisoquinolo[l,2-b]quinazoline and Rutecarpine. Chem. Pharm. Bull. 26, 1922 (1978).Google Scholar
  121. 110.
    Nakagawa, M., M. Taniguchi, M. Sodeoka, M. Ito, K. Yamaguchi, and T. Hino: Total Synthesis of (+)- and (—)-Tryptoquivaline G by Biomimetic Double Cyclization. J. Amer. Chem. Soc. 105, 3709 (1983).Google Scholar
  122. 111.
    Kamikado, T., S. Murakoshi, and S. Tamura: Structure Elucidation and Synthesis of Alkaloids Isolated from Fruits of Evodia rutaecarpa. Agric. Biol. Chem. 42, 1515 (1978).Google Scholar
  123. 112.
    Karimov, A., M. V. Telezhenetskaya, and S. Yu. Yunusov: The Synthetic Analogs of the Peganum Alkaloids. I. Synthesis of the Methoxy- and Oxysubstituted Deoxyvasicinones and Deoxypeganines. Khim. Prir. Soedin. 1982, 498 (Russ).Google Scholar
  124. 113.
    Khan, A. W., A. P. Bhaduri, C. M. Gupta, and M. M. Dhar: Actinomycetes Studies: Part I — Microbiological Synthesis of Quinazomycin, an Echinomycin Analogue Containing One Quinazol-4-one-3-acetyl Residue. Indian J. Biochem. 6, 220 (1969).Google Scholar
  125. 114.
    Khashimov, KH. N., M. V. Telezhenetskaya, YA. V. Rashkes, and S. Yu. Yunusov: Pegamine, a New Alkaloid from Peganum harmala. Khim. Prir. Soedin. 1970, 453 (Russ).Google Scholar
  126. 115.
    Khashimov, KH. N., M. V. Telezhenetskaya, N. N. Sharakhimov, and S. Yu. Yunusov: Dynamics of the Accumulation of Alkaloids in Peganum harmala. Khim. Prir. Soedin. 1971, 382 (Russ).Google Scholar
  127. 116.
    Khashimov, KH. N., M. V. Telezhenetskaya, and S. Yu. Yunusov: Peganidine, a New Base from Peganum harmala. Khim. Prir. Soedin. 1969, 599 (Russ).Google Scholar
  128. 117.
    Kim,Y. H., G. B. Brown, H. S. Mosher, and F. A. Fuhrman: Tetrodotoxin: Occurrence in Atelopid Frogs of Costa Rica. Science 189, 151 (1975) and references cited therein.Google Scholar
  129. 118.
    Kishi, Y., T. Fukuyama, M. Aratani, F. Nakatsubo, T. Goto, S. Inoue, H. Tanino, S. Sugiura, and H. Kakoi: Synthetic Studies on Tetrodotoxin and Related Compounds. IV. Stereospecific Total Syntheses of DL-Tetrodotoxin. J. Amer. Chem. Soc. 94, 9219 (1972) and earlier papers.Google Scholar
  130. 119.
    Köhler, H.: Die Prüfung von Galega-Arten auf ihren Gehalt an Giftstoffen mit Hilfe biologischer Methoden. I. Die Giftigkeit der Geißraute (Galega officinalis L.) für Warmblüter. Biol. Zentralbl. 88, 165 (1969).Google Scholar
  131. 120.
    Koepfli, J. B., J. F. Mead, and J. A. Brockman: Alkaloids of Dichroa febrifuga. I. Isolation and Degradative Studies. J. Amer. Chem. Soc. 71, 1048 (1949).Google Scholar
  132. 121.
    Koretskaya, N. I.: Alkaloids of Peganum harmala. I. Isolation of Two New Alkaloids. Zhur. Obshchei Khim. 27, 3361 (1957) (Russ).Google Scholar
  133. 122.
    Koretskaya, N. I., and L. M. Utkin: Alkaloids of Peganum harmala. II. Structure of Two New Alkaloids. Zhur. Obshchei. Khim. 28, 1087 (1958) (Russ).Google Scholar
  134. 123.
    Kuffner, F., G. Lenneis, and H. Bauer: Über die Konstitution eines Nebenalkaloids aus Adhatoda vasica Nees. Monatsh. Chem. 91, 1152 (1960).Google Scholar
  135. 124.
    Lahiri, P. K., and S. N. Pradhan: Pharmacological Investigation of Vasicinol — An Alkaloid from Adhatoda vasica Nees. Indian J. Exp. Biol. 2, 219 (1964) and references cited therein.Google Scholar
  136. 125.
    Leete, E.: Alkaloid Biogenesis. In: Biogenesis of Natural Compounds (P. Bernfeld, ed.), 2nd. edn., p. 953. Oxford etc.: Pergamon Press. 1967.Google Scholar
  137. 126.
    Leonhard, N. J., and M. J. Martell: Laboratory Realization of the Schöpf-Oechler Scheme of Vasicine Synthesis. Tetrahedron Lett. 1960, 44.Google Scholar
  138. 127.
    Liljegren, D. J.: Biosynthesis of Quinazoline Alkaloids of Peganum harmala. Phytochemistry 10, 2661 (1971).Google Scholar
  139. 128.
    Liljegren, D. J.: The Biosynthesis of Quinazoline Alkaloids of Peganum harmala L. Phytochemistry 7, 1299 (1968).Google Scholar
  140. 129.
    Lupu, K. G.: Dynamics of the Alkaloid Levels in Linaria vulgaris and L. genistifolia Grown in Moldavia. Rast. Resur. 9,206 (1973) (Russ) [Chem. Abstr. 79,15 906 e (1973)].Google Scholar
  141. 130.
    Machemer, H.: Die Autoxydation der Metallkomplexe des Indigos. Ber. dtsch. Chem. Ges. 63, 1341 (1930) and references cited therein.Google Scholar
  142. 131.
    Mann, S.: Chinazolinderivate bei Pseudomonaden. Arch. Mikrobiol. 56, 324 (1967).Google Scholar
  143. 132.
    Mann, S.: Besonderheiten im Tryptophanstoffwechsel von Pseudomonas aeruginosa. Arch. Hygiene Bakteriol. 151, 474 (1967).Google Scholar
  144. 133.
    Manske, R. H. F. (ed.): The Alkaloids. New York: Academic Press.Google Scholar
  145. 134.
    The Quinazolinocarbolines. In: (133); Vol. VIII, p. 55 (1965).Google Scholar
  146. 135.
    Marion, L.: In: (133); Vol. II, p. 369 (1952).Google Scholar
  147. 136.
    Mehta, D. R., J. S. Naravane, and R. M. Desai: Vasicinone. A Bronchodilator Principle from Adhatoda vasica Nees. (N. O. Acanthaceae). J. Org. Chem. 28, 445 (1963).Google Scholar
  148. 137.
    Meinwald, Y. C., J. Meinwald, and Th. Eisner: 1,2-Dialkyl-4(3H)-quinazolinones in the Defensive Secretion of a Millipede (Glomeris marginata). Science 154, 390 (1966).Google Scholar
  149. 138.
    Möhrle, H., and P. Gundlach: Eine neue Synthese für DL-Vasicin. Tetrahedron Lett. 1970, 3249.Google Scholar
  150. 139.
    Möhrle, H., Chr. Kamper, and R. Schmid: Eine neue Synthese von Rutaecarpin. Arch. Pharm. 313, 990 (1980).Google Scholar
  151. 140.
    Möhrle, H., and C.-M. Seidel: Eine neue Synthese für Arborin und strukturanaloge 4(1 H)-Chinazolinone, 1. u. 2. Mitt. Arch. Pharm. 309, 503; 572 (1976).Google Scholar
  152. 141.
    Morris, R. C., W. E. Hanford, and R. Adams: Structure of Vasicine. III. Position of the Hydroxyl Group. J. Amer. Chem. Soc. 57, 951 (1935).Google Scholar
  153. 142.
    Mosher, H. S., F. A. Fuhrman, H. D. Buchwald, and H. G. Fischer: Tarichatoxin — Tetrodotoxin: A Potent Neurotoxin. Science 144, 1100 (1964).Google Scholar
  154. 143.
    Mukherjee, A., and P. K. Dey: Changes in Amino Acid Metabolism in Rat Brain Following Glycosine Administration. Indian J. Exp. Biol. 8, 263 (1970).Google Scholar
  155. 144.
    Munoz, G. G., and R. Madronero: Neue Kondensationsreaktionen mit Imidchloriden. Synthese von Pyrido[2,l-b]chinazolinen. Chem. Ber. 95, 2182 (1962).Google Scholar
  156. 145.
    Nakasoto, T., S. Asada, and K. Marui: Dehydroevodiamine, Main Alkaloid from the Leaves of Evodia rutaecarpa. Yakugaku Zasshi 82, 619 (1962) [Chem. Abstr. 58, 3470 b (1963)].Google Scholar
  157. 145c.
    Ohnuma, T., Y. Kimura, and Y. Ban: Synthetic Studies on Oxindole Spiro-Lactones with Thallium (III) Trinitrate: Formal Synthesis of (±)-Tryptoquivaline G. Tetrahedron Lett. 22, 4969 (1981).Google Scholar
  158. 146.
    Onaka, T.: A General Three-Step Synthesis of Pyrrolidino[2,l-b]quinazolone Alkaloids via Biogenetically Patterned Path. Tetrahedron Lett. 1971, 4387.Google Scholar
  159. 147.
    Openshaw, H. T.: The Quinazoline Alkaloids. In: (133); Vol. Ill, p. 101 (1953); Vol. VII, p. 247 (1960).Google Scholar
  160. 148.
    Oripov, E., L. M. Yun, Kh. M. Shakhidoyatov, and Ch. Sh. Kadyrov: Some Reactions of α-Hydroxy- and α-Dimethylaminoformylidene-2,3-polymethylene-3,4- dihydro-4-quinazolinones. Khim. Prir. Soedin. 1978, 603 (Russ).Google Scholar
  161. 149.
    Pachter, I. J., R. J. Mohrbacher, and D. E. Zacharias: The Chemistry of Hortiamine and 6-Methoxyrhetsinine. J. Amer. Chem. Soc. 83, 635 (1961).Google Scholar
  162. 150.
    Pachter, I. J., R. F. Raffauf, G. E. Ullyot, and O. Ribeiro: Die Trennung und Identifizierung der Alkaloide von Hortia arborea. Angew. Chem. 69, 687 (1957).Google Scholar
  163. 151.
    Pachter, I. J., R. F. Raffauf, G. E. Ullyot, and O. Ribeiro: The Alkaloids of Hortia arborea Engl. J. Amer. Chem. Soc. 82, 5187 (1960).Google Scholar
  164. 152.
    Pachter, I. J., and G. Suld: The Structure and Synthesis of Rhetsinine. J. Org. Chem. 25, 1680 (1960).Google Scholar
  165. 153.
    Pakrashi, S. C., and J. Bhattacharyya: Indian Medicinal Plants. IV. Further Alkaloids from Glycosmis arborea. J. Sci. Ind. Res. (India) 21B, (1), 49 (1962).Google Scholar
  166. 154.
    Pakrashi, S. C., and J. Bhattacharyya: Studies on Indian Medicinal Plants. XIV. Interrelationships among the Quinazoline Alkaloids from Glycosmis arborea (Roxb.) DC. Tetrahedron 24, 1 (1968).Google Scholar
  167. 155.
    Pakrashi, S. C., and J. Bhattacharyya: Recent Advances in the Chemistry of Rutaceae Alkaloids. J. Sci. Ind. Res. (India) 24, 293 (1963).Google Scholar
  168. 156.
    Pakrashi, S. C., and J. Bhattacharyya: Studies on Indian Medicinal Plants. Part V: Isolation of Minor Alkaloids from Glycosmis arborea (Roxb.) DC. Ann. Biochem. Exptl. Med. 23, 123 (1963).Google Scholar
  169. 157.
    Pakrashi, S. C., J. Bhattacharyya, L. F. Johnson, and H. Budzikiewicz: Studies of Indian Medicinal Plants — VI. Structures of Glycosmicine, Glycorine and Glycosminine, the Minor Alkaloids from Glycosmis arborea (Roxb.) DC. Tetrahedron 19, 1011 (1963).Google Scholar
  170. 158.
    Pakrashi, S. C., A. De, and S. Chattopadhyay: Studies on 4-Quinazolinones: Part I — Convenient Synthesis of Glycosminine and Arborine, the Alkaloids from Glycosmis arborea and Related 4-Quinazolinones. Indian J. Chem. 6, 472 (1968).Google Scholar
  171. 159.
    Palazzo, S., L. I. Giannola, and S. Caronna: Reaction of Formation of 2-Substituted 4-Quinazolinones in Polyphosphoric Acid: Synthesis of Glycosminine. Atti Accad. Sci. Lett. Arti Palermo, Parte 1, 34, 339 (1976) [Chem. Abstr. 89, 43309n (1978)].Google Scholar
  172. 160.
    Pallares, E. S.: The Structure of the Water-Insoluble Pigment of the Bark of “Sangre de Drago”. Arch. Biochem. 10, 235 (1946).Google Scholar
  173. 161.
    Petersen, S., and E. Tietze: Die Reaktion cyclischer Lactimäther mit Amino-carbonsäuren. Justus Liebigs Ann. Chem. 623, 166 (1959).Google Scholar
  174. 162.
    Plugar, V. N., T. T. Gorovits, N. Tulyaganov, and Ya. V. Rashkes: Transformations of 4-Quinazolinone Group Alkaloids in Animals. Khim. Prir. Soedin. 1977, 250 (Russ).Google Scholar
  175. 163.
    Plekhanova, N. V., and S. T. Aktanova: Alkaloids of Peganum harmala. Issled. Flory Kirgizii na Alkaloidonosnost, Akad. Nauk Kirg. SSR, Inst. Organ. Khim. 1965, 57 (Russ) [Chem. Abstr. 64, 11550 f (1966)].Google Scholar
  176. 164.
    Plekhanova, N. V., and G. P. Sheveleva: Alkaloids of Linaria transiliensis and Linaria vulgariformis. Issled. Flory Kirgizii na Alkaloidonosnost, Akad. Nauk Kirg. SSR, Inst. Organ. Khim. 1965, 54 (Russ) [Chem. Abstr. 64, 11550e (1966)].Google Scholar
  177. 165.
    Plugar, V. N., Ya. V. Rashkes, and Kh. M. Schakhidoyatov: Mass Spectra of 2,3- Polymethylene-3,4-dihydro-4-quinazolones with Substituents at C9. Khim. Prir. Soedin. 1979, 180 (Russ).Google Scholar
  178. 166.
    Plugar, V. N., Ya. V. Rashkes, and Kh. M. Schakhidoyatov: Comparison of the Mass Spectra of 2,3-Polymethylene-l,2,3,4-tetrahydro-quinazol-4-ones. Khim. Prir. Soedin. 1978, 414 (Russ).Google Scholar
  179. 167.
    Plugar, V. N., Ya. V. Rashkes, and N. Tulyaganov: Quantitative Analysis of the Components of Desoxypeganine and Desoxyvasicinone Metabolites. Khim. Prir. Soedin. 1981, 201 (Russ).Google Scholar
  180. 168.
    Prakash, A., R. K. Varma, and S. Ghosal: Alkaloidal Constituents of Sida acuta, S. humilis, S. rhombifolia, and S. spinosa. Planta Med. 43, 384 (1981).Google Scholar
  181. 169.
    Price, J. R.: Quinazoline Alkaloids. Fortschr. Chem. org. Naturstoffe 13, 330 (1956).Google Scholar
  182. 170.
    Rajagopalan, T. R., S. Bhattacharji, and M. L. Dhar: Proceedings, Symposium on Drugs and Antibiotics ( Defence Research Laboratory, Kanpur ), 1961, 121.Google Scholar
  183. 171.
    Rashkes, Ya. V., M. V. Telezhenetskaya, V. N. Plugar, and S. Yu. Yunusov: Mass Spectra of Tetrahydroquinazoline and Tetrahydroquinazolin-4-one Derivatives. Khim. Prir. Soedin. 1977, 378 (Russ).Google Scholar
  184. 172.
    Rhee, R. P., and J. D. White: Synthesis of Cyclopenin and Glycosminine from Phenylpyruvic Acid. J. Org. Chem. 42, 3650 (1977).Google Scholar
  185. 173.
    Robinson, R.: The Structural Relations of Natural Products. Oxford: Clarendon Press. 1955.Google Scholar
  186. 174.
    Rosenfeld, A. D., and D. G. Kolesnikov: Über 1-Peganin aus Blüten und Stengeln von Peganum harmala L., Bemerkungen zu den Arbeiten von E. Späth über Peganin. Ber. dtsch. Chem. Ges. 69, 2022 (1936) and references cited therein.Google Scholar
  187. 175.
    Sakamoto, S., and K. Samejima: Preparation of Specific Antibody to 2,3-Trimethylene- 4-quinazolone for the Immunoassay of Δ1-Pyrroline. Chem. Pharm. Bull. 28, 916 (1980).Google Scholar
  188. 176.
    Sakamoto, S., and K. Samejima: Determination of Δ1-Pyrroline as 2,3-Trimethylene-4-quinazolone. Chem. Pharm. Bull. 27, 2220 (1979).Google Scholar
  189. 177.
    Sarkar, M., and D. P. Chakraborty: Some Minor Constituents from Glycosmis pentaphylla. Phytochemistry 16, 2007 (1977).Google Scholar
  190. 177a.
    Glycophymoline, a New Minor Quinazoline Alkaloid from Glycosmis pen¬taphylla. Phytochemistry 18, 694 (1979).Google Scholar
  191. 178.
    Schäfer, J., and M. Stein: Untersuchungen über toxische Inhaltsstoffe bei Galega officinalis L. Biol. Zentralbl. 88, 755 (1969).Google Scholar
  192. 179.
    Schäfer, J., and M. Stein: Über die Variabilität von Inhaltsstoffen in der Geißraute (Galega officinalis L.). Naturwissenschaften 54, 205 (1967).Google Scholar
  193. 180.
    Schildknecht, H., and W. F. Wenneis: Über Arthropoden-Abwehrstoffe XXV. Anthranilsäure als Precursor der Arthropoden-Alkaloide Glomerin and Homoglomerin. Tetrahedron Lett. 1967, 1815.Google Scholar
  194. 181.
    Schildknecht, H., and W. F. Wenneis: Über Arthropoden-(Insekten-)Abwehrstoffe XX. Strukturaufklärung des Glomerins. Z. Naturforsch. 21b, 552 (1966).Google Scholar
  195. 182.
    Schildknecht, H., W. F. Wenneis, K. H. Weis, and U. Maschwitz: Glomerin, ein neues Arthropoden-Alkaloid. Z. Naturforsch. 21b, 121 (1966).Google Scholar
  196. 183.
    Schindler, F., and H. Zähner: Tryptanthrin, ein von Tryptophan abzuleitendes Antibioticum aus Candida lipolytica. Arch. Mikrobiol. 79, 187 (1971).Google Scholar
  197. 184.
    Schöpf, C., A. Komzak, F. Braun, and E. Jacobi: Über die Polymeren des Δ1-Piperideins. Justus Liebigs Ann. Chem. 559, 1 (1948).Google Scholar
  198. 185.
    Schreiber, K., O. Aurich, and K. Pufahl: Isolierung von (+)-Peganin aus der Geißraute, Galega officinalis L. Arch. Pharm. 295, 271 (1962).Google Scholar
  199. 186.
    Sen, A. K., S. B. Mahato, and N. L. Dutta: Couroupitine A, a New Alkaloid from Couroupita guianensis. Tetrahedron Lett. 1974, 609.Google Scholar
  200. 187.
    Shakhidoyatov, Kh., A. Irishbaeva, and Ch. Sh. Kadyrov: Synthesis of Desoxypeganine and its Derivatives. Khim. Prir. Soedin. 1974, 681 (Russ).Google Scholar
  201. 188.
    Shakhidoyatov, Kh., A. Irishbaeva, E. Oripov, and Ch. Sh. Kadyrov: Quinazolines. VII. Synthesis of 6-Nitro-, Amino-, and 9,9-Dibromodesoxyvasicinone. Khim. Prir. Soedin. 1976, 557 (Russ).Google Scholar
  202. 189.
    Shakhidoyatov, Kh. M., and Ch. Sh. Kadyrov: Quinazolines. XII. 4-Thio Analogs of Desoxyvasicinone, its Derivatives and Homologs. Khim. Prir. Soedin. 1977, 668 (Russ).Google Scholar
  203. 190.
    Shakhidoyatov, Kh. M., and Ch. Sh. Kadyrov: Quinazolines. X. Synthesis of Methyl-enebis(6,6′-desoxyvasicinone) and its Homologs. Khim. Prir. Soedin. 1977, 544 (Russ).Google Scholar
  204. 191.
    Shakhidoyatov, Kh. M, Ya. Yamankulov, and Ch. Sh. Kadyrov: Quinazolines. XI. Condensation of Desoxyvasicinone with Aldehydes. Khim. Prir. Soedin. 1977, 552 (Russ).Google Scholar
  205. 192.
    Sharma, R. L., R. K. Gupta, B. K. Chowdhury, K. L. Dhar, and C. K. Atal: Syntheses of Some Vasicine Analogues. Indian J. Chem. 18B, 449 (1979).Google Scholar
  206. 193.
    Sharma, V. K., and M. P. Jain: Synthesis of Vasicinone Derivatives. Indian J. Chem. 21B, 75 (1982).Google Scholar
  207. 194.
    Sheumack, D. D., M. E. H. Howden, I. Spence, and R. J. Quinn: Maculotoxin: A Neurotoxin from the Venom Glands of the Octopus Hapalochlaena maculosa Identified as Tetrodotoxin. Science 199, 188 (1978).Google Scholar
  208. 195.
    Siddiqui, S.: A Reinvestigation of the Alkaloidal Constituents of Peganum harmala. Pakistan J. Sci. Ind. Res. 5, 207 (1962) [Chem. Abstr. 59, 5213 (1963)].Google Scholar
  209. 196.
    Snieckus, V. A.: Quinazoline Alkaloids. Alkaloids 2, 91 (1972); 3, 112 (1973); 4, 124 (1974); 5, 108 (1975).Google Scholar
  210. 197.
    Southwick, P. L., and L. Casanova: A New Synthesis of dl-Vasicine and a Methoxy Analog. J. Amer. Chem. Soc. 80, 1168 (1958).Google Scholar
  211. 198.
    Späth, E.: Über das Peganin (Vasicin). Monatsh. Chem. 72, 115 (1939).Google Scholar
  212. 199.
    Späth, E., and F. Kesztler-Gandini: Über ein Nebenalkaloid aus Adhatoda vasica Nees. Monatsh. Chem. 91, 1150 (1960).Google Scholar
  213. 200.
    Späth, E., F. Kuffner, and N. Platzer: Synthese und Konstitution des Peganins (Vasicins). Ber. dtsch. Chem. Ges. 68, 699 (1935).Google Scholar
  214. 201.
    Späth, E., and N. Platzer: Eine neue Synthese von Pegen-(9) und Peganin (IX. Mitteil, über Peganin). Ber. dtsch. Chem. Ges. 69, 255 (1936).Google Scholar
  215. 202.
    Späth, E., and N. Platzer: Über Derivate des Peganins und ihre Ring-Homologen (VIII. Mitteil, über Peganin). Ber. dtsch. Chem. Ges. 68, 2221 (1935).Google Scholar
  216. 203.
    Stephen, T., and H. Stephen: The Beckmann Rearrangement of cyclo Pentanone Oxime. J. Chem. Soc. 1956, 4694.Google Scholar
  217. 204.
    Strong, P. N., and J. F. W. Keana: Modification of Tetrodotoxin With Succinic Anhydride. Bioorg. Chem. 5, 255 (1976).Google Scholar
  218. 205.
    Szulzewsky, K., E. Höhne, S. Johne, and D. Gröger: Bestimmung der Molekül- und Kristallstruktur sowie der Absolutkonfiguration von Peganin. J. Prakt. Chem. 318, 463 (1976).Google Scholar
  219. 206.
    Takeda Chemical Industries, Ltd.: Tryptanthrin. Jpn. Kokai Tokkyo Koho 80 47,684 (1980) [Chem. Abstr. 93, 186400 d (1980)].Google Scholar
  220. 207.
    Telezhenetskaya, M. V., Kh. N. Kashimov, and S. Yu. Yunusov: Peganol, a New Alkaloid from Peganum harmala. Khim. Prir. Soedin. 1971, 849 (Russ).Google Scholar
  221. 208.
    Telezhenetskaya, M. V., and S. Yu. Yunusov: Alkaloids of Peganum harmala. Khim. Prir. Soedin. 1977, 731 (Russ).Google Scholar
  222. 208a.Toth, G., K. Horváth-Dora, O. Clauder, and H. Duddeck: Alkaloide mit Indolo[2′,3′:3,4]pyrido[2,1-b]chinazolin-Struktur. VII. Synthese und Untersuchungen des cis- und trans-Hexahydrorutaecarpins. Justus Liebigs Ann. Chem. 1977, 529.Google Scholar
  223. 209.
    Tscheche, T., and W. Werner: Evocarpin, ein neues Alkaloid aus Evodia rutaecarpa. Tetrahedron 23, 1873 (1967).Google Scholar
  224. 210.
    Tsien, R. Y., D. P. L. Green, S. R. Levinson, B. Rudy, and J. K. M. Sanders: A Pharmacologically Active Derivative of Tetrodotoxin. Proc. R. Soc. London, Ser. B 191, 555 (1975).Google Scholar
  225. 211.
    Springer, J. P.: The Absolute Configuration of Nortryptoquivaline. Tetrahedron Lett. 1979, 339.Google Scholar
  226. 212.
    Tsuda, K.: Über Tetrodotoxin, Giftstoff der Bowlfische. Naturwissenschaften 53, 171 (1966).Google Scholar
  227. 213.
    Tsuda, K., S. Ikuma, M. Kawamura, R. Tachikawa, K. Sakai, C. Tamura, and O. Amakasu: The Structures of Tetrodotoxin and its Derivatives. Chem. Pharm. Bull. 12, 1357 (1964) and references cited therein.Google Scholar
  228. 214.
    Vasudevan, T. N., and M. Luckner: Alkaloide aus Ruta angustifolia Pers., Ruta chalepensis L., Ruta graveolens L. und Ruta montana Mill. Pharmazie 23, 520 (1968).Google Scholar
  229. 215.
    Vincent, M., J. Maillard, and M. Benard: Structure and Properties of Alkyl Iodides of Alkyldihydro-4-quinazolones. Bull. Soc. Chim. Fr. 1963, 119.Google Scholar
  230. 216.
    Waiblinger, K., S. Johne, and D. Gröger: Zur Biosynthese des Pyrrolidinringes in Peganin. Phytochemistry 11, 2263 (1972).Google Scholar
  231. 217.
    Waletzky, E., G. Berkelhammer, and S. Kantor: Quinazolinones for Treating Coccidiosis. US Pat. 3,320,124 (1967) [Chem. Abstr. 68, 39 647v (1968)].Google Scholar
  232. 217a.
    Waterman, P. G.: Alkaloids of the Rutaceae. Distribution and Systematic Significance. Biochem. Syst. Ecol. 3, 149 (1975).Google Scholar
  233. 218.
    Williamson, T. A.: In: Heterocyclic Compounds (R. C. Elderfield, ed.), Vol. VI, p. 351. New York: Wiley. 1957. — Landquist, J. K.: In: Chemistry of Carbon Compounds (E. H. Rodd, ed.), Vol. IVB, p. 1308. London: Elsevier. 1959.Google Scholar
  234. 219.
    Woodward, R. B.: Structure of Tetrodotoxin. Pure Appl. Chem. 9, 49 (1964).Google Scholar
  235. 220.
    Woodward, R. B., and J. Z. Gougoutas: The Structure of Tetrodotoxin. J. Amer. Chem. Soc. 86, 5030 (1964).Google Scholar
  236. 221.
    Yamazaki, M., H. Fujimoto, and E. Okuyama: Structure Determination of Six Metabolites, Tryptoquivaline E, F, G, H, I and J from Aspergillus fumigatus. Chem. Pharm. Bull. 26, 111 (1978).Google Scholar
  237. 222.
    Yamazaki, M., H. Fujimoto, and E. Okuyama: Structure of Tryptoquivaline C (FTC) and D (FTD). Novel Fungal Metabolites from Aspergillus fumigatus. Chem. Pharm. Bull. 25, 2554 (1977).Google Scholar
  238. 223.
    Yamazaki, M., H. Fujimoto, and E. Okuyama: Structure Determination of Six Tryptoquivaline Related Metabolites from Aspergillus fumigatus. Tetrahedron Lett. 1976, 2861.Google Scholar
  239. 224.
    Yamazaki, M., and A. Ikuta: Biosynthesis of Evodia Alkaloids. Tetrahedron Lett. 1966, 3221.Google Scholar
  240. 225.
    Yamazaki, M., A. Ikuta, T. Mori, and T. Kawana: Biosynthesis of Evodia Alkaloids. II. The Participation of C1-Unit to the Formation of Indoloquinazoline Alkaloids. Tetrahedron Lett. 1967, 3317.Google Scholar
  241. 226.
    Yamazaki, M., and T. Kawana: Isolation of Hydroxyevodiamine (Rhetsinine) from the Fruits of Evodia rutaecarpa Hook fil. et Thomson. Yakugaku Zasshi 87, 608 (1967) (Japan) [Chem. Abstr. 67, 64 601 n (1967)].Google Scholar
  242. 226a.
    Yamazaki, M., E. Okuyama, and Y. Maebayashi: Isolation of Some New Tryptoquivaline — related Metabolites from Aspergillus fumigatus. Chem. Pharm. Bull. 27, 1611 (1979).Google Scholar
  243. 227.
    Yvore, P., N. Foure, J. Aycardi, and G. Bennejean: Efficiency of Stenorol in the Chemoprophylaxis of Avian Coccidiosis. Reel. Med. Vet. 150, 495 (1974).Google Scholar
  244. 228.
    Zabolotnaya, E. S., and L. N. Safronich: Alkaloids of Dichroa febrifuga Introduced into the USSR. Lekarstv. Rasteniya 1969 (15), 356 [Chem. Abstr. 76, 32240p (1972)].Google Scholar
  245. 229.
    Zharekeev, B. Kh., Kh. N. Khashimov, M. V. Telezhenetskaya, and S. Yu. Yunusov: New Alkaloids from Peganum harmala. Khim. Prir. Soedin. 1974, 264 (Russ).Google Scholar
  246. 230.
    Zharekeev, B. Kh., M. V. Telezhenetskaya, and S. Yu. Yunusov: Deoxypeganidine, a New Alkaloid from Peganum harmala. Khim. Prir. Soedin. 1973, 279 (Russ).Google Scholar
  247. 231.
    Ziegler, E., W. Steiger, and Th. Kappe: Synthesen von Heterocyclen, 130. Mitt.: Über das Glomerin und das Arborin. Monatsh. Chem. 100, 948 (1969).Google Scholar
  248. 232.
    Zutschi, U., P. G. Rao, A. Soni, O. P. Gupta, and C. K. Atal: Absorption and Distribution of Vasicine, a Novel Uterotonic. Planta Med. 40, 373 (1980).Google Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • S. Johne
    • 1
  1. 1.Institute of Plant BiochemistryThe Academy of Sciences of the German Democratic RepublicHalle (Saale)German Democratic Republic

Personalised recommendations