Advertisement

The Solution of Sparse Systems of Linear Equations

  • Siegfried Selberherr

Abstract

For the Solution of the nonlinear equations representing the discretized semiconductor equations it is required to solve repeatedly a linear system of algebraic equations. The coefficient matrices of these systems are said to be sparse beeause sufficiently many zero elements exist making it worthwhile to use special techniques which avoid storing and calculating with the zero elements. Actually, there are only very few non-zero elements and it is almost mandatory to account speeifieally for these elements. Unfortunately, this implies a significant overhead on Organization for the non-zero elements, which is a well-feared source of problems in the design and coding of actual programs.

Keywords

Iterative Method Spectral Radius Iterative Scheme Conjugate Gradient Method Sparse Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [8.1]
    Aitken, A. C.: Studies in Practical Mathematics V. On the Iterative Solution of a System of Linear Equations. Proc. Roy. Soc. Edinburgh See. A63, 52–60 (1950).Google Scholar
  2. [8.2]
    Arms, R. J., Gates, L. D., Zondek, B.: A Method of Block Iteration. SIAM 4, No. 4, 220–229 (1956).Google Scholar
  3. [8.3]
    Axellsson, O.: Lecture Notes on Iterative Methods. Report 72.04, Chalmers University, Göteborg, 1972.Google Scholar
  4. [8.4]
    Bank, R. E.: Marching Algorithms for Elliptic Boundary Value Problems. II: The Variable Coefficient Case. SIAM J. Numer. Anal. 14, No. 5, 950–970 (1977).CrossRefGoogle Scholar
  5. [8.5]
    Bank, R. E., Rose, D. J.: Marching Algorithms for Elliptic Boundary Value Problems. I: The Constant Coefficient Case. SIAM J. Numer. Anal. 14, No. 5, 792–829 (1977).CrossRefGoogle Scholar
  6. [8.6]
    Buzbee, B. L., Golub, G. H., Nielson, C. W.: On Direct Methods for Solving Poisson’s Equations. SIAM J. Numer. Anal. 7, No.4, 627–656 (1970).CrossRefGoogle Scholar
  7. [8.7]
    Buzbee, B. L., Dorr, F. W., George, J. A., Golub, G. H.: The Direct Solution of the Discrete Poisson Equation on Irregulär Regions. SIAM J. Numer. Anal. 8, No.4, 722–736 (1971).CrossRefGoogle Scholar
  8. [8.8]
    Curtis, A. R., Reid, J. K.: On the Automatic Scaling of Matrices for Gaussian Elimination. J. Inst. Math. Appl. 10, 118–124 (1972).CrossRefGoogle Scholar
  9. [8.9]
    Cuthill, E., McKee, J.: Reducing the Bandwidth of Sparse Symmetrie Matrices. Proc. ACM Conf., pp. 157–172 (1969).Google Scholar
  10. [8.10]
    Cuthill, E. H.: A Method of Normalized Block Iteration. J. ACM 6, 236–244 (1959).CrossRefGoogle Scholar
  11. [8.11]
    DeLaVallee-Poussin, F.: An Accelerated Relaxation Algorithm for Iterative Solution of Elliptic Equations. SIAM J. Numer. Anal. 5, No. 2, 340–351 (1968).CrossRefGoogle Scholar
  12. [8.12]
    Diamond, M.: An Economical Algorithm for the Solution of Finite Difference Equations. Dissertation, University of Illinois, Urbana, 1971.Google Scholar
  13. [8.13]
    Dorr, F. W.: The Direct Solution of the Discrete Poisson Equation on a Rectangle. SIAM Review 12, No. 2, 248–263 (1970).CrossRefGoogle Scholar
  14. [8.14]
    Doss, S., Miller, K.: Dynamic ADI methods for Elliptic Equations. SIAM J. Numer. Anal. 16, No. 5, 837–856 (1979).CrossRefGoogle Scholar
  15. [8.15]
    Douglas, J., Rachford, H. H.: On the Numerical Solution of Heat Conduction Problems in Two or Three Space Dimensions. Trans. Amer. Math. Soc. 82, 421–439 (1956).CrossRefGoogle Scholar
  16. [8.16]
    Duff, I. S., Reid, J. K.: A Comparison of Sparsity Orderings for Obtaining a Pivotal Sequence in Gaussian Elimination. J. Inst. Math. Appl. 14, 281–291 (1974).CrossRefGoogle Scholar
  17. [8.17]
    Duff, I. S.: A Survey of Sparse Matrix Research. Proc. IEEE 65, No. 4, 500–535 (1977).CrossRefGoogle Scholar
  18. [8.18]
    Duff, I. S., Stewart, G. W.: Sparse Matrix Proceedings 1978. Philadelphia: SIAM 1979.Google Scholar
  19. [8.19]
    Duff, I. S.: MA28 — A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations. Report R-8730, AERE Harwell, Oxfordshire, 1980.Google Scholar
  20. [8.20]
    Duff, I. S., Reid, J. K.: Experience of Sparse Matrix Codes on the CRAY-1. Report CSS-116, AERE Harwell, Oxfordshire, 1981.Google Scholar
  21. [8.21]
    Duff, I. S.: The Solution of Sparse Linear Equations on the CRAY-1. Report CSS-125, AERE Harwell, Oxfordshire, 1982.Google Scholar
  22. [8.22]
    Duff, I. S.: Research Directions in Sparse Matrix Computations. Report R-10547, AERE Harwell, Oxfordshire, 1982.Google Scholar
  23. [8.23]
    Duff, I. S.: A Survey of Sparse Matrix Software. Report R-10512, AERE Harwell, Oxfordshire, 1982.Google Scholar
  24. [8.24]
    Dupont, T.: A Factorization Procedure for the Solution of Elliptic Difference Equations. SIAM J. Numer. Anal. 5, No. 4, 753–782 (1968).CrossRefGoogle Scholar
  25. [8.25]
    Dupont, T., Kendall, R. D., Rachford, H. H.: An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations. SIAM J. Numer. Anal. 5, 559–573 (1968).CrossRefGoogle Scholar
  26. [8.26]
    Eisenstat, S. C.: Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods. SIAM J. Sci. Stat. Comput. 2, No. 1, 1–4 (1981).CrossRefGoogle Scholar
  27. [8.27]
    Eisenstat, S. C., Schultz, M. H., Sherman, A. H.: Algorithms and Data Structures for Sparse Symmetrie Gaussian Elimination. SIAM J. Sci. Stat. Comput. 2, No.2, 225–237 (1981).CrossRefGoogle Scholar
  28. [8.28]
    Evans, D. J.: Iterative Sparse Matrix Algorithms. In: Software for Numerical Mathematics, pp. 49–83. London: Academic Press 1974.Google Scholar
  29. [8.29]
    Even, R. K., Wallach, Y.: On the Direct Solution of Diriehlet’s Problem in Two Dimensions. Comput. 5, 45–56 (1970).CrossRefGoogle Scholar
  30. [8.30]
    Frankel, S. P.: Convergence Rates of Iterative Treatments of Partial Differential Equations. Mat. Tables Aids Comput. 4, 65–75 (1950).CrossRefGoogle Scholar
  31. [8.31]
    Franz, A. F., Franz, G. A., Selberherr, S., Ringhofer, C., Markowich, P.: Finite Boxes — A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation. IEEE Trans. Electron Devices ED-30, No. 9, 1070–1082 (1983).CrossRefGoogle Scholar
  32. [8.32]
    Geiringer, H.: On the Solution of Systems of Linear Equations by Certain Iterative Methods. Reissner Anniversary Volume, pp. 365–393. Ann Arbor: J. W. Edwards 1949.Google Scholar
  33. [8.33]
    Gentleman, W. M.: Implementing Nested Dissection. Report CS-82-03, University of Waterloo, 1982.Google Scholar
  34. [8.34]
    George, A., Liu, J., Ng, E.: User Guide for SPARSPAK: Waterloo Sparse Linear Equations Package. Report CS-78–30, University of Waterloo, 1980.Google Scholar
  35. [8.35]
    George, A.: Computer Implementation of the Finite Element Method. Report CS-71–208, Stanford University, 1971.Google Scholar
  36. [8.36]
    George, A., Liu, J. W. H.: An Automatic Nested Dissection Algorithm for Irregulär Finite Element Problems. SIAM J. Numer. Anal. 15, No. 5, 1053–1069 (1978).CrossRefGoogle Scholar
  37. [8.37]
    George, A., Liu, J. W. H.: Algorithms for Matrix Partitioning and the Numerical Solution of Finite Element Systems. SIAM J. Numer. Anal. 15, No. 2, 297–327 (1978).CrossRefGoogle Scholar
  38. [8.38]
    George, A., Mclntyre, D. R.: On the Application of the Minimum Degree Algorithm to Finite Element Systems. SIAM J. Numer. Anal. 15, No. 1, 90–112 (1978).CrossRefGoogle Scholar
  39. [8.39]
    George, A., Poole, W. G., Voigt, R. G.: Incomplete Nested Dissection for Solving n by n Grid Problems. SIAM J. Numer. Anal. 15, No.4, 662–673 (1978).CrossRefGoogle Scholar
  40. [8.40]
    George, A.: An Automatic One-Way Dissection Algorithm for Irregulär Finite Element Problems. SIAM J. Numer. Anal. 17, No. 6, 740–751 (1980).CrossRefGoogle Scholar
  41. [8.41]
    George, A., Liu, J. W. H.: Computer Solutions of Large Sparse Positive Definite Systems. Englewood Cliffs, N.J.: Prentice-Hall 1981.Google Scholar
  42. [8.42]
    George, J. A., Liu, J. W. H.: A Minimal Storage Implementation of the Minimum Degree Algorithm. SIAM J. Numer. Anal. 17, No. 2, 282–299 (1980).CrossRefGoogle Scholar
  43. [8.43]
    George, J. A., Liu, J. W. H.: A Fast Implementation of the Minimum Degree Algorithm Using Quotient Graphs. ACM Trans. Mathematical Software 6, No. 3, 337–358 (1980).CrossRefGoogle Scholar
  44. [8.44]
    Gerschgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Mat. 7, 749–754 (1931).Google Scholar
  45. [8.45]
    Gibbs, N. E., Poole, W. G., Stockmeyer, P. K.: An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix. SIAM J. Numer. Anal. 13, No. 2, 236–250 (1976).CrossRefGoogle Scholar
  46. [8.46]
    Golub, G. H., Varga, R. S.: Chebyshev Semi-Iterative Methods, Successive Overrelaxation Methods, and Second Order Richardson Iterative Methods. Num. Math. 3, 147–168 (1961).CrossRefGoogle Scholar
  47. [8.47]
    Grimes, R. G., Kincaid, D. R., Young, D. M.: ITPACK 2.0 User’s Guide. Report CNA-139, Center for Numerical Analysis, University of Texas at Austin, 1979.Google Scholar
  48. [8.48]
    Grimes, R. G., Kincaid, D. R., Young, D. M.: ITPACK 2A — A Fortran Implementation of Adaptive Accelerated Iterative Methods for Solving Large Sparse Linear Systems. Report CNA-164, Center for Numerical Analysis, University of Texas at Austin, 1980.Google Scholar
  49. [8.49]
    Hageman, L. A., Franklin, T. L., Young, D.M.: On the Equivalence of Certain Iterative Acceleration Methods. SIAM J. Numer. Anal. 17, No. 6, 852–873 (1980).CrossRefGoogle Scholar
  50. [8.50]
    Hatcher, T. R.: An Error Bound for Certain Successive Overrelaxation Schemes. SIAM J. Numer. Anal. 19, No. 5, 930–941 (1982).CrossRefGoogle Scholar
  51. [8.51]
    Hestenes, M. R., Stiefel, E.: Method of Conjugate Gradients for Solving Linear Systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952).Google Scholar
  52. [8.52]
    Hockney, R. W.: A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis. J. ACM 12, No. 3, 95–113 (1965).CrossRefGoogle Scholar
  53. [8.53]
    Huang, J. W., Wing, O.: Optimal Parallel Triangulation of a Sparse Matrix. IEEE Trans. Circuits and Systems CAS-26, No. 9, 726–732 (1979).Google Scholar
  54. [8.54]
    Jacobi, C. G. J.: Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vorkommenden linearen Gleichungen. Astron. Nachr. 22, No. 523, 297–306 (1845).CrossRefGoogle Scholar
  55. [8.55]
    Jesshope, C. R.: Bipolar Transistor Modelling with Numerical Solutions to the 2-Dimensional DC and Transient Problems. Dissertation, University of Southampton, 1976.Google Scholar
  56. [8.56]
    Kershav, D. S.: The Incomplete Cholesky Conjugate Gradient Method for the Iterative Solution of Systems of Linear Equations. J. Comp. Phys. 26, 43–65 (1978).CrossRefGoogle Scholar
  57. [8.57]
    Kincaid, D. R., Respess, J. R., Young, D. M., Grimes, R. G.: ITPACK 2C: A FORTRAN Package for Solving Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods. ACM Trans. Mathematical Software 8, No. 3, 302–322 (1982).CrossRefGoogle Scholar
  58. [8.58]
    Lanczos, C.: Solution of Systems of Linear Equations by Minimized Iterations. J. Res. Nat. Bur. Stand. 49, 33–53 (1952).Google Scholar
  59. [8.59]
    Lewis, J. G.: Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms. ACM Trans. Mathematical Software 8, No. 2, 180–189 (1982).CrossRefGoogle Scholar
  60. [8.60]
    Lewis, J. G.: The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for Reordering Sparse Matrices. ACM Trans. Mathematical Software 8, No. 2, 190–194 (1982).CrossRefGoogle Scholar
  61. [8.61]
    Lewis, J. G.: Numerical Experiments with SPARSPAK. ACM Signum Newsletter 18, No. 3, 12–22 (1983).CrossRefGoogle Scholar
  62. [8.62]
    Lipton, R. J., Rose, D. J., Tarjan, R. E.: Generalized Nested Dissection. SIAM J. Numer. Anal. 16, No. 2, 346–358 (1979).CrossRefGoogle Scholar
  63. [8.63]
    Liu, W.-H., Sherman, A. H.: Comparative Analysis of the Cuthill-McKee and the Reverse Cuthill-McKee Ordering Algorithms for Sparse Matrices. SIAM J. Numer. Anal. 13, No. 2, 198–213 (1976).CrossRefGoogle Scholar
  64. [8.64]
    Lyusternik, L. A.: A Note for the Numerical Solution of Boundary Value Problems for the Laplace Equation and for the Calculation of Eigenvalues by the Method of Nets. Trudy Inst. Math. Acad. Sci. SSSR 20, 49–64 (1947).Google Scholar
  65. [8.65]
    Manteuffel, T. A.: Optimal Parameters for Linear Second Degree Stationary Iterative Methods. SIAM J. Numer. Anal. 19, No. 4, 833–839 (1982).CrossRefGoogle Scholar
  66. [8.66]
    Marsal, D.: Die Numerische Lösung partieller Differentialgleichungen. Mannheim: Bibliographisches Institut 1976.Google Scholar
  67. [8.67]
    Meis, T., Marcowitz, U.: Numerische Behandlung partieller Differentialgleichungen. Berlin-Heidelberg-New York: Springer 1978.Google Scholar
  68. [8.68]
    Munksgaard, N.: Solving Sparse Symmetrie Sets of Linear Equations by Preconditioned Conjugate Gradients. ACM Trans. Mathematical Software 6, No. 2, 206–219 (1980).CrossRefGoogle Scholar
  69. [8.69]
    Nekrasov, P. A.: Die Bestimmung der Unbekannten nach der Methode der kleinsten Quadrate bei einer sehr großen Anzahl der Unbekannten. Mat. Sob. 12, 189–204 (1885).Google Scholar
  70. [8.70]
    Ostrowski, A. M.: On the Linear Iteration Procedures for Symmetrie Matrices. Rend. Mat. Appl. 14, 140–163 (1954).Google Scholar
  71. [8.71]
    Parter, S.V.: On “Two-Line” Iterative Methods for Laplace and Biharmonic Equations. Numer. Math. 1, 240–252 (1959).CrossRefGoogle Scholar
  72. [8.72]
    Parter, S. V.: “Multi-Line” Iterative Methods for Elliptic Difference Equations and Fundamental Frequencies. Numer. Math. 3, 305–319 (1961).CrossRefGoogle Scholar
  73. [8.73]
    Parter, S. V., Steuerwalt, M.: Block Iterative Methods for Elliptic and Parabolic Difference Equations. SIAM J. Numer. Anal. 19, No. 6, 1173–1195 (1982).CrossRefGoogle Scholar
  74. [8.74]
    Peaceman, D. W., Rachford, H. H.: The Numerical Solution of Parabolic and Elliptic Differential Equations. J. SIAM 3, 28–41 (1955).Google Scholar
  75. [8.75]
    Pooch, U. W., Nieder, A.: A Survey of Indexing Techniques for Sparse Matrices. ACM Computing Surveys 5, No. 2, 109–132 (1973).CrossRefGoogle Scholar
  76. [8.76]
    Rheinboldt, W. C.: Methods for Solving Systems of Nonlinear Equations. Philadelphia: SIAM 1974.Google Scholar
  77. [8.77]
    Rosen, R.: Matrix Bandwidth Minimization. Proc. ACM Conf., pp. 585–595 (1968).Google Scholar
  78. [8.78]
    Saylor, P. E., Sebastian, J. D.: Calculation of Optimum Parameters for Alternating Direction Implicit Procedures. ACM Coli. Alg., No. 460 (1972).Google Scholar
  79. [8.79]
    Schreiber, R.: A New Implementation of Sparse Gaussian Elimination. ACM Trans. Mathematical Software 8, No. 3, 256–276 (1982).CrossRefGoogle Scholar
  80. [8.80]
    Sheldon, J. W.: On the Numerical Solution of Elliptic Difference Equations. Math. Tables Aids Comput. 9, 101–112 (1955).CrossRefGoogle Scholar
  81. [8.81]
    Sherman, A. H.: Algorithms for Sparse Gaussian Elimination with Partial Pivoting. ACM Trans. Mathematical Software 4, No. 4, 330–338 (1978).CrossRefGoogle Scholar
  82. [8.82]
    Stein, P., Rosenberg, R. L.: On the Solution of Linear Simultaneous Equations by Iteration. J. London Math. Soc. 23, 111–118 (1948).CrossRefGoogle Scholar
  83. [8.83]
    Stone, H. L.: Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM J. Numer. Anal. 5, 530–558 (1968).CrossRefGoogle Scholar
  84. [8.84]
    Strickwerda, J. C.: A Generalized Conjugate Gradient Method for Non-Symmetric Systems of Linear Equations. Report 2290, MRC, University of Wisconsin, 1981.Google Scholar
  85. [8.85]
    Swarztrauber, P. N., Sweet, R. A.: Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations. ACM Coli. Alg., No. 541 (1979).Google Scholar
  86. [8.86]
    Van Der Vorst, H. A.: A Vectorizable Variant of Some ICCG Methods. SIAM J. Sci. Stat. Comput. 3, No. 3, 350–356 (1982).CrossRefGoogle Scholar
  87. [8.87]
    Varga, R. S.: A Comparison of the Successive Overrelaxation Method and Semi-Iterative Methods Using Chebyshev Polynomials. J. SIAM 5, 39–46 (1957).Google Scholar
  88. [8.88]
    Varga, R. S.: Matrix Iterative Analysis. Englewood Cliffs, N.J.: Prentice-Hall 1962.Google Scholar
  89. [8.89]
    Wachspress, E. L.: Iterative Solution of Elliptic Systems. Englewood Cliffs, N.J.: Prentice-Hall 1966.Google Scholar
  90. [8.90]
    Wada, T., Dang, R. L. M.: Modification of ICCG Method for Application to Semiconductor Device Simulators. Electron. Lett. 18, 265–266 (1982).CrossRefGoogle Scholar
  91. [8.91]
    Young, D. M.: Iterative Methods for Solving Partial Difference Equations of Elliptic Type. Dissertation, Harvard University, 1950.Google Scholar
  92. [8.92]
    Young, D. M.: Iterative Solution of Large Linear Systems. New York: Academic Press 1971.Google Scholar
  93. [8.93]
    Zlatev, Z.: On Some Pivotal Strategies in Gaussian Elimination by Sparse Technique. SIAM J. Numer. Anal. 17, No. 1, 18–30 (1980).CrossRefGoogle Scholar
  94. [8.94]
    Zlatev, Z., Wasniewski, J., Schaumburg, K.: Comparison of Two Algorithms for Solving Large Linear Systems. SIAM J. Sci. Stat. Comput. 3, No.4, 486–501 (1982).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1984

Authors and Affiliations

  • Siegfried Selberherr
    • 1
  1. 1.Institut für Allgemeine Elektrotechnik und ElektronikTechnische Universität WienAustria

Personalised recommendations